首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
The human major histocompatibility complex, HLA, contains the genes of several class II molecules. We present here the molecular maps of the DQ and DX subregions and analyze the sequences of the polymorphic DQ alpha and DQ beta genes as well as the DX alpha and DX beta genes. The DQ alpha and DQ beta genes are oriented in opposite directions, approximately 12 kilobases apart. The DX alpha and DX beta genes are similarly oriented about 8 kilobases. The exon-intron organizations of the DQ alpha and DX alpha genes are analogous to those of other class II alpha genes. Comparison of the DQ alpha gene sequence to three DQ alpha cDNA clones shows that amino acid replacements are predominantly located between residues 45 and 80 in the amino-terminal domain. Analysis of the frequency of silent and replacement substitutions indicates that there is little selection against replacements in DQ alpha first domains. The exons encoding the second domains of DQ alpha and DX alpha are virtually identical, suggesting that a gene conversion event has occurred between these genes. The DX beta gene is very similar to the DQ beta gene but differs in the cytoplasmic portion. The DX beta gene contains a separate exon of 24 nucleotides encoding the core of the cytoplasmic tail. This exon is not expressed in the DQ beta genes due to a nonfunctional splice junction. Comparison of the number of nucleotide substitutions in the DQ beta first and second domain exons suggests that little or no phenotypic selection acts on the first domain whereas the second domain is under strong selection.  相似文献   

3.
4.
5.
6.
7.
8.
Each of the two Xenopus laevis thyroid hormone receptor beta genes is at least 70 kilobases in length with similar intron-exon organization. There are up to eight alternatively spliced exons in the 5'-untranslated region. Excluding the extreme amino terminus, each receptor is encoded by six exons spanning about 6 kilobases of the genome, in which each of the two zinc fingers that comprise the DNA-binding domain is encoded by a separate exon and the hormone-binding domain is split into three exons. The last exon of the coding region also contains at least 600 base pairs of the 3'-untranslated region, which is about 8 kilobases. Each of the receptor genes has two promoters and just one of them is up-regulated in tadpoles by the administration of thyroid hormone.  相似文献   

9.
10.
We describe the isolation and characterization of the gene encoding the mouse high affinity Fc receptor Fc gamma RI. Using a mouse cDNA Fc gamma RI probe four unique overlapping genomic clones were isolated and were found to encode the entire 9 kb of the mouse Fc gamma RI gene. Sequence analysis of the gene showed that six exons account for the entire Fc gamma RI cDNA sequences including the 5'- and 3'-untranslated sequences. The first and second exons encode the signal peptide; exons 3, 4, and 5 encode the extracellular Ig binding domains; and exon 6 encodes the transmembrane domain, the cytoplasmic region, and the entire 3'-untranslated sequence. This exon pattern is similar to Fc gamma RIII and Fc epsilon RI but differs from the related Fc gamma RII gene which contains 10 exons and encodes the b1 and b2 Fc gamma RII. Southern blot analysis had shown that the mouse Fc gamma RI gene is a single copy gene with no RFLP in inbred strains of mice, but analysis of an intersubspecies backcross of mice showed that unlike other mouse FcR genes which are on mouse chromosome 1 the locus encoding Fc gamma RI, termed Fcg1, is located on chromosome 3. Interestingly, the Fcg1 locus is located near the end of a region with known linkage homology to human chromosome 1. Analysis of human x rodent somatic cell hybrid cell lines indicates that the human FCG1 locus encoding the human Fc gamma RI maps to chromosome I and therefore possibly linked to other FcR genes on this chromosome. These results suggest that the linkage relationships among these genes in the human genome are not preserved in the mouse.  相似文献   

11.
Structure and expression of the gene coding for the human serpin hLS2   总被引:3,自引:0,他引:3  
We have analyzed genomic clones encoding human leuserpin 2 (hLS2). The gene covers about 14.5 kilobases and consists of 5 exons and 4 introns. The genes coding for hLS2, alpha 1-antitrypsin, alpha 1-antichymotrypsin, and rat angiotensinogen share an equivalent exon-intron structure and therefore constitute a distinct subgroup within the serpin gene family, which otherwise displays a highly variable exon-intron pattern. With the exception of a segment in the second exon, the sequence similarity of the genes coding for hLS2 and alpha 1-antitrypsin extends to all exons including one encoding the 5'-untranslated sequences. The implications of these findings with respect to the genesis of the amino-terminal heterogeneity in the serpin family are discussed.  相似文献   

12.
The genes coding for the beta and epsilon subunits of the mouse muscle nicotinic acetylcholine receptor (nAChR) were mapped by Southern blot analysis, and the entire loci for both genes cloned. The results indicate that they are single-copy genes. Both were sequenced to determine their size and structural organization. The beta subunit gene spans approximately 8 kilobases and is organized into 11 exons. A region containing cysteines, which are thought to form a disulfide bond and which are highly conserved, is encoded by one exon in all muscle acetylcholine receptor genes with the exception of the beta subunit gene, where it is split into two exons. The epsilon subunit gene spans 4.3 kilobases and contains 12 exons; it has the same structure as the gamma and delta nAChR genes. The intron-exon boundaries and exonic organization of the five known nAChR genes were compared. The analysis showed that the first 4 exons and the last exon of all muscle and brain nAChR subunit genes have the same boundaries, with the exception of a nAChR-related gene in Drosophila.  相似文献   

13.
Recently three isoforms of the mouse retinoic acid receptor (mRAR beta 1, mRAR beta 2, mRAR beta 3) have been described, generated from the same gene (Zelent et al., 1991). The isoforms differ in their 5'-untranslated (5'-UTR) and A region, but have identical B to F regions. The N-terminal variability of mRAR beta 1/beta 3 is encoded in the first two exons (E1 and E2), while exon E3 includes N-terminal sequences of the mRAR beta 2 isoform. We have determined the structure of the human RAR beta 2 gene, using a genomic library from K562 cells. The open reading frame is split into eight exons: E3 contains sequences for the N-terminal A region and E4 to E10 encode the common part of the receptor, including the DNA-binding domain and ligand-binding domain. Corresponding to other nuclear receptors, both 'zinc-fingers' of the DNA-binding domain are encoded separately in two exons and the ligand-binding domain is assembled from five exons.  相似文献   

14.
The gene for the hIL-5R alpha subunit, which is present in a single copy in the human genome, has been analysed in detail. It is located on chromosome 3 in the region 3p26. The gene organization reflects its relationship to the cytokine/haematopoietin receptor superfamily. Three introns are located in the 5' untranslated region. The subsequent exons determine the functional domains of the hIL-5R alpha protein: the signal peptide, three fibronectin type III-like (FN-like) modules, each built up by two exons, the membrane anchor and two exons forming the cytoplasmic tail, the first of which contains the proline cluster region. In addition, a specific exon generating a soluble isoform is located before the membrane anchor exon. This specific exon contains an in frame TAA stop codon, followed by a polyadenylation signal. Hence, a normal splicing event leads to a soluble IL-5R alpha variant, whereas alternative splicing is required for cell membrane anchoring. A second area of alternative splicing is found in the 5' leader sequence, and possibly relates to the presence of short open reading frames preceding the main ATG. All intron-exon junctions meet the GT-AG rule. The gene structures of all cytokine/haematopoietin receptors documented so far have also been compared with respect to intron phasing. This shows that all introns between the FN-III-like modules are of the +1 type, but in addition, splice sites within the Cys-module and WS-WS-module are invariably of the +2 and 0 type, respectively.  相似文献   

15.
16.
17.
The T cell antigen receptor (TCR) is a multisubunit complex which has a dual function of antigen recognition and signal transduction. One of its invariant subunits, the zeta chain, has been shown to have a significant role in the expression and function of the TCR on the cell surface. The mouse and human zeta cDNAs share significant homologies to each other but are distinct from all of the previously characterized TCR components. We now report the isolation and structural analysis of the complete murine zeta gene. This gene spans at least 31 kilobases and divides into eight exons. The first exon, which is located at least 20 kilobases upstream from the second exon, codes for the 5'-untranslated region and most of the signal peptide. The second exon codes for the remainder of the signal peptide, the extracellular domain, the transmembrane domain, and the first three amino acids of the intracytoplasmic domain. Exons 3-7 encode the majority of the intracytoplasmic domain. The eight exon encodes the carboxyl-terminal 21 amino acids and the 3'-untranslated region. Four groups of mRNA initiation sites have been identified at approximately 140 base pairs upstream to the AUG codon. No TATA-like box has been detected. The gene is localized to the distal part of chromosome 1 in a linkage group highly conserved between man and mouse.  相似文献   

18.
The high affinity receptor for IgE (Fc epsilon RI) found on mast cells and basophils is a tetrameric complex of a single alpha subunit, a single beta subunit, and two identical gamma subunits. The genes for the three subunits of mouse Fc epsilon RI have now been cloned from the mast cell line, PT18. When compared at the DNA level, the rat and mouse subunits are similarly conserved. However, at the protein level the homology between mouse and rat alpha is surprisingly low (71% identities) especially in the cytoplasmic regions (57% identities) which are of different length (25 and 20 residues, respectively). By contrast the beta and gamma are homogeneously conserved between mouse and rat (83 and 93% identities, respectively). The consensus amino acid sequence of the alpha subunit derived from three species (rat, mouse, and human) shows that the cytoplasmic tail diverges to the same extent as the leader peptide. Conversely, the transmembrane domain of the alpha is highly conserved and contains 10 consecutive residues that are identical. Comparisons between mouse Fc epsilon RI and other mouse proteins reveal regions of high homology between the alpha subunit and Fc gamma RIIa and between the gamma subunit and the zeta chain of the T cell receptor. Cells transfected with the alpha gene express the alpha subunit on their surface very inefficiently. Efficient expression is only achieved after co-transfection of the three rodent genes or of the human alpha gene together with the rodent gamma without apparent need for beta. The subunits are completely interchangeable upon transfection so that various chimeric mouse-rat-human receptors can be expressed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号