首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Development of nine polymorphic microsatellites from a genomic library of hybrid striped bass (female Morone chrysops × male Morone saxatilus) DNA is described. Breeding of hybrid striped bass for aquaculture is based largely on breeding wild fish. Molecular markers such as microsatellites will be useful tools for developing broodstock, estimating heritability for production traits, and selective breeding via marker‐assisted selection. The nine polymorphic microsatellites include six dinucleotide and three complex repeat motifs. The number of alleles detected among a sample of 10 individuals of each species was relatively low. All polymerase chain reaction primer pairs also amplified products in the sea bass Dicentrarchus labrax.  相似文献   

2.
This paper demonstrates the contribution of both genetic and environmental effects on cultured European sea bass shape. We used the progeny of five populations of sea bass, in a partly diallel design, to investigate the genetics of shape (estimated with geometric morphometrics) in European sea bass. This was done using a common garden experiment with microsatellite markers assignment to parents and populations to avoid confusion between genetic and environmental effects. Additionally, one of the populations was studied over four different aquaculture facilities to investigate the effects of environment on shape. For the first time in this species, shape‐related traits were linked with genetic variation. The first relative warp analysis axis clearly differentiated rearing sites, demonstrating that the main shape/weight effects are related to culturing conditions, thereby accounting for ecomorphologically related differences. The second axis strongly differentiated groups by parental origins; there was a good correlation between shape differences and geographic distances between broodstock sampling locations. High heritabilities of axes scores (0.40–0.55) showed high genetic variation for shape within populations. This study shows that variation in shape has a high genetic component in sea bass, both at the population level and within populations. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 427–436.  相似文献   

3.
Hybrid zones have yielded considerable insight into many evolutionary processes, including speciation and the maintenance of species boundaries. Presented here are analyses from a hybrid zone that occurs among three salamanders –Plethodon jordani, Plethodon metcalfi and Plethodon teyahalee– from the southern Appalachian Mountains. Using a novel statistical approach for analysis of non‐clinal, multispecies hybrid zones, we examined spatial patterns of variation at four markers: single‐nucleotide polymorphisms (SNPs) located in the mtDNA ND2 gene and the nuclear DNA ILF3 gene, and the morphological markers of red cheek pigmentation and white flecks. Concordance of the ILF3 marker and both morphological markers across four transects is observed. In three of the four transects, however, the pattern of mtDNA is discordant from all other markers, with a higher representation of P. metcalfi mtDNA in the northern and lower elevation localities than is expected given the ILF3 marker and morphology. To explore whether climate plays a role in the position of the hybrid zone, we created ecological niche models for P. jordani and P. metcalfi. Modelling results suggest that hybrid zone position is not determined by steep gradients in climatic suitability for either species. Instead, the hybrid zone lies in a climatically homogenous region that is broadly suitable for both P. jordani and P. metcalfi. We discuss various selective (natural selection associated with climate) and behavioural processes (sex‐biased dispersal, asymmetric reproductive isolation) that might explain the discordance in the extent to which mtDNA and nuclear DNA and colour‐pattern traits have moved across this hybrid zone.  相似文献   

4.
5.
Analyzing the structure of hybrid zones is important for inferring their origin, dynamics and evolutionary significance. We examined the geographic structure of phenotypic and genetic variation in the contact zone between two Mexican red oaks, Quercus affinis and Q. laurina. A total of 105 individuals from seven populations were sampled along a 600‐km latitudinal gradient representing the distribution area of the two species and their contact zone. Individuals were genotyped for nine nuclear and four chloroplast DNA microsatellite loci (ncSSR and cpSSR, respectively), and characterized for several leaf and acorn traits. The cpSSR data revealed extensive haplotype sharing among populations of the two species, while a Bayesian assignment analysis based on ncSSRs identified two main genetic groups, each corresponding to one of the species, and two populations in the contact zone showing evidence of admixture. The proportion of genetic ancestry in the populations was strongly associated with latitude and showed a pattern of variation with the shape of a narrow sigmoidal cline. The variation in three of the seven phenotypic traits was partially congruent with molecular variation, while the other traits did not conform to a geographic cline but instead were correlated with environmental variables. In conclusion, the hybrid zone between the two oak species has some of the characteristics of a tension zone, but heterogeneous variation across traits suggests differential introgression and the action of extrinsic selection.  相似文献   

6.
Life‐history traits, especially the mode and duration of larval development, are expected to strongly influence the population connectivity and phylogeography of marine species. Comparative analysis of sympatric, closely related species with differing life histories provides the opportunity to specifically investigate these mechanisms of evolution but have been equivocal in this regard. Here, we sample two sympatric sea stars across the same geographic range in temperate waters of Australia. Using a combination of mitochondrial DNA sequences, nuclear DNA sequences, and microsatellite genotypes, we show that the benthic‐developing sea star, Parvulastra exigua, has lower levels of within‐ and among‐population genetic diversity, more inferred genetic clusters, and higher levels of hierarchical and pairwise population structure than Meridiastra calcar, a species with planktonic development. While both species have populations that have diverged since the middle of the second glacial period of the Pleistocene, most P. exigua populations have origins after the last glacial maxima (LGM), whereas most M. calcar populations diverged long before the LGM. Our results indicate that phylogenetic patterns of these two species are consistent with predicted dispersal abilities; the benthic‐developing P. exigua shows a pattern of extirpation during the LGM with subsequent recolonization, whereas the planktonic‐developing M. calcar shows a pattern of persistence and isolation during the LGM with subsequent post‐Pleistocene introgression.  相似文献   

7.
Hybrid zones, where distinct populations meet and interbreed, give insight into how differences between populations are maintained despite gene flow. Studying clines in genetic loci and adaptive traits across hybrid zones is a powerful method for understanding how selection drives differentiation within a single species, but can also be used to compare parallel divergence in different species responding to a common selective pressure. Here, we study parallel divergence of wing colouration in the butterflies Heliconius erato and H. melpomene, which are distantly related Müllerian mimics which show parallel geographic variation in both discrete variation in pigmentation, and quantitative variation in structural colour. Using geographic cline analysis, we show that clines in these traits are positioned in roughly the same geographic region for both species, which is consistent with direct selection for mimicry. However, the width of the clines varies markedly between species. This difference is explained in part by variation in the strength of selection acting on colour traits within each species, but may also be influenced by differences in the dispersal rate and total strength of selection against hybrids between the species. Genotyping‐by‐sequencing also revealed weaker population structure in H. melpomene, suggesting the hybrid zones may have evolved differently in each species, which may also contribute to the patterns of phenotypic divergence in this system. Overall, we conclude that multiple factors are needed to explain patterns of clinal variation within and between these species, although mimicry has probably played a central role.  相似文献   

8.
Aim We tested whether a hybrid zone that has formed between an endemic and an invasive species of marine mussel has shifted poleward as expected under a general hypothesis of global warming or has responded instead to decadal climate oscillations. Location We sampled 15 locations on the coast of California, USA, that span the distributions of the two species of marine mussels and their hybrids. Methods Mussels were sampled in 2005–08 and analysed at three nuclear gene loci using methods identical to those used in a study a decade earlier in order to document the genetic architecture of this system. Change in the system was determined by comparing the frequency of species‐specific alleles and multi‐locus genotypes over the intervening decade. Climate variation over the same period was examined by comparing the Pacific Decadal Oscillation (PDO), El Niño/Southern Oscillation (ENSO), upwelling indices and sea surface temperature (SST) during and prior to the study period. Results Contrary to the general expectations of global warming we show that the highly invasive warm‐water mussel Mytilus galloprovincialis and the hybrid zone formed with the endemic species Mytilus trossulus has rapidly contracted southwards. Mytilus galloprovincialis declined in abundance over the northern third of its geographic range (c. 540 km) and has become rare or absent across the northern 200 km of the range it previously colonized during its initial invasion. The distribution of the native species M. trossulus has remained unchanged over the same time period. Main conclusions The large‐scale range shift in the warm‐water invasive species M. galloprovincialis and the hybrid zone it forms with M. trossulus has been exceptionally rapid and is in the opposite direction to that predicted by the global warming hypotheses. This shift, however, is consistent with decadal climate variation associated with the ENSO and the PDO. Since the biogeography of this system was first described in 1999, the PDO has shifted from a warm phase, dominated by frequent and large El Niño events, to a cold‐phase period, with minimal ENSO activity. Thus recent decadal climate variation can oppose global trends in average temperature and this study illustrates the need to integrate the effects of climate change across multiple time‐scales.  相似文献   

9.
Although hybridization frequently occurs among plant species, hybrid zones of divergent lineages formed at species boundaries are less common and may not be apparent in later generations of hybrids with more parental‐like phenotypes, as a consequence of backcrossing. To determine the effects of dispersal and selection on species boundaries, we compared clines in leaf traits and molecular hybrid index along two hybrid zones on Yakushima Island, Japan, in which a temperate (Rubus palmatus) and subtropical (Rubus grayanus) species of wild raspberry are found. Leaf sinus depth in the two hybrid zones had narrower clines at 600 m a.s.l. than the molecular hybrid index and common garden tests confirmed that some leaf traits, including leaf sinus depth that is a major trait used in species identification, are genetically divergent between these closely related species. The sharp transition in leaf phenotypic traits compared to molecular markers indicated divergent selection pressure on the hybrid zone structure. We suggest that species boundaries based on neutral molecular data may differ from those based on observed morphological traits.  相似文献   

10.
We investigated the effects that habitat variation has on the structure and dynamics of a hybrid zone between two closely related crickets in Connecticut. A collecting protocol was developed in which crickets were sampled from characteristic habitats on either side of the hybrid zone and from two distinct habitat types within the zone. Presumptive pure Gryllus pennsylvanicus were sampled from fields in northwestern Connecticut and represent “inland” populations. “Pure” Gryllus firmus were sampled from beaches along the coast and represent the “coastal” populations. Crickets from within the hybrid zone were sampled from two different soil types: the “loam” populations from loamy soils and the “sand” populations from sandy soils. Moreover, an attempt was made to identify closely adjacent sand and loam localities to determine the scale of habitat variation and its possible effects on hybrid-zone structure. In general, there was little variation in morphological traits or in allozyme and mtDNA genotype frequencies among localities from within each of the four habitat types. Between each of the closely situated sand and loam localities within the hybrid zone, however, there were very significant differences in each of these sets of markers. In addition, crickets from hybrid-zone populations were tested for reproductive isolation. The asymmetric outcome of hybrid crosses that exists across the zone (Harrison, 1983) also exists on a finer ecological scale within the zone. Thus, this hybrid zone is a mosaic of strikingly differentiated populations. The dynamics of hybrid zones with mosaic structures are discussed in contrast to the traditional clinal models. The data are also discussed in light of the semipermeable nature of species boundaries. The extent to which a species boundary is permeable varies not only from one genetic marker to the next, but also with the ecological and geographic context of species interaction.  相似文献   

11.
Hybridization has presented a challenge for taxonomists and conservation biologists, since hybridizing forms could be stable evolutionary entities or ephemeral forms that are blending together. However, hybrid zones also provide a unique opportunity for evolutionary biologists who study the interaction between gene flow and reproductive isolation in speciation. Three forms of woodpeckers (sapsuckers; genus Sphyrapicus) in North America that are mostly geographically separated but hybridize with each other where they come into contact present a remarkable system for the study of hybridization. We provide the first comprehensive analysis of phenotypic and genetic variation across a hybrid zone between two of these forms, the red‐breasted Sphyrapicus ruber and yellow‐bellied S. varius sapsuckers. The objective was to infer whether selection maintains the differences between forms. Our analysis of eight morphometric and 20 plumage traits, and two molecular markers showed clear differences between the forms and roughly concordant clinal variation across a narrow hybrid zone. Thirty percent of sampled birds in the hybrid zone had mixed west/east genotypes at the genetic markers examined. The center of the genetic cline was located 20 km west of the crest of the Rocky Mountains. The width of the zone was 122 km, narrower than would be expected under neutral blending given reasonable estimates of the age of the zone and individual dispersal distances. Heterozygote deficit and cytonuclear disequilibrium at the centre of the hybrid zone suggested nonrandom mating or limited hybridization. Given these patterns and lack of evidence for habitat segregation we conclude that this hybrid zone is maintained by selection, most likely in the form of hybrid inferiority. This study provides an illustrative example of extensive hybridization between stable entities, providing additional evidence against the historical practice of treating hybridizing forms as members of the same species.  相似文献   

12.
13.
Two grasshopper species Stenobothrus rubicundus and S. clavatus were previously shown to meet in a narrow hybrid zone on Mount Tomaros in northern Greece. The species are remarkable for their complex courtship songs accompanied by conspicuous movements of antennae and wings. We analyzed variations in forewing morphology, antenna shape, and courtship song across the hybrid zone using a geographic information system, and we documented three contact zones on Mount Tomaros. All male traits and female wings show abrupt transitions across the contact zones, suggesting that these traits are driven by selection rather than by drift. Male clines in antennae are displaced toward S. clavatus, whereas all clines in wings are displaced toward S. rubicundus. We explain cline discordance as depending on sexual selection via female choice. The high covariance between wings and antennae found in the centers of all contact zones results from high levels of linkage disequilibria among the underlying loci, which in turn more likely results from assortative mating than from selection against hybrids. The covariance is found to be higher in clavatus‐like than rubicundus‐like populations, which implies asymmetric assortative mating in parental‐like sites of the hybrid zone and a movement of the hybrid zone in favor of S. clavatus.  相似文献   

14.
Morphological variation between populations of the same species can arise as a response to genetic variation, local environmental conditions, or a combination of both. In this study, I examined small‐scale geographic variation in bill size and body mass in little penguins (Eudyptula minor) across five breeding colonies in South Australia separated by <150 km. To help understand patterns driving the differences, I investigated these variations in relation to environmental parameters (air temperature, sea surface temperature, and water depth) and geographic distances between the colonies. I found substantial morphological variation among the colonies for body mass and bill measurements (except bill length). Colonies further located from each other showed greater morphological divergence overall than adjacent colonies. In addition, phenotypic traits were somewhat correlated to environmental parameters. Birds at colonies surrounded by hotter sea surface temperatures were heavier with longer and larger bills. Birds with larger and longer bills were also found at colonies surrounded by shallower waters. Overall, the results suggest that both environmental factors (natural selection) and interpopulation distances (isolation by distance) are causes of phenotypic differentiation between South Australian little penguin colonies.  相似文献   

15.
A hybrid zone along an environmental gradient should contain a clinal pattern of genetic and phenotypic variation. This occurs because divergent selection in the two parental habitats is typically strong enough to overcome the homogenizing effects of gene flow across the environmental transition. We studied hybridization between two parapatric tree squirrels (Tamiasciurus spp.) across a forest gradient over which the two species vary in coloration, cranial morphology and body size. We sampled 397 individuals at 29 locations across a 600‐km transect to seek genetic evidence for hybridization; upon confirming hybridization, we examined levels of genetic admixture in relation to maintenance of phenotypic divergence despite potentially homogenizing gene flow. Applying population assignment analyses to microsatellite data, we found that Tamiasciurus douglasii and T. hudsonicus form two distinct genetic clusters but also hybridize, mostly within transitional forest habitat. Overall, based on this nuclear analysis, 48% of the specimens were characterized as T. douglasii, 9% as hybrids and 43% as T. hudsonicus. Hybrids appeared to be reproductively viable, as evidenced by the presence of later‐generation hybrid genotypes. Observed clines in ecologically important phenotypic traits—fur coloration and cranial morphology—were sharper than the cline of putatively neutral mtDNA, which suggests that divergent selection may maintain phenotypic distinctiveness. The relatively recent divergence of these two species (probably late Pleistocene), apparent lack of prezygotic isolating mechanisms and geographic coincidence of cline centres for both genetic and phenotypic variation suggest that environmental factors play a large role in maintaining the distinctiveness of these two species across the hybrid zone.  相似文献   

16.
Maintenance of genetic distinction in the face of gene flow is an important aspect of the speciation process. Here, we provide a detailed spatial and genetic characterization of a hybrid zone between two subspecies of the European rabbit. We examined patterns of allele frequency change for 22 markers located on the autosomes, X‐chromosome, Y‐chromosome and mtDNA in 1078 individuals sampled across the hybrid zone. While some loci revealed extremely wide clines (≥ 300 km) relative to an estimated dispersal of 1.95–4.22 km/generation, others showed abrupt transitions ( 10 km), indicating localized genomic regions of strong selection against introgression. The subset of loci showing steep clines had largely coincident centers and stepped changes in allele frequency that did not co‐localize with any physical barrier or ecotone, suggesting that the rabbit hybrid zone is a tension zone. The steepest clines were for X‐ and Y‐chromosome markers. Our results are consistent with previous inference based on DNA sequence variation of individuals sampled in allopatry in suggesting that a large proportion of each genome has escaped the overall barrier to gene flow in the middle of the hybrid zone. These results imply an old history of hybridization and high effective gene flow and anticipate that isolation factors should often localize to small genomic regions.  相似文献   

17.
Natural mating and mass spawning in the European sea bass (Dicentrarchus labrax L., Moronidae, Teleostei) complicate genetic studies and the implementation of selective breeding schemes. We utilized a two‐step experimental design for detecting QTL in mass‐spawning species: 2122 offspring from natural mating between 57 parents (22 males, 34 females and one missing) phenotyped for body weight, eight morphometric traits and cortisol levels, had been previously assigned to parents based on genotypes of 31 DNA microsatellite markers. Five large full‐sib families (five sires and two dams) were selected from the offspring (570 animals), which were genotyped with 67 additional markers. A new genetic map was compiled, specific to our population, but based on the previously published map. QTL mapping was performed with two methods: half‐sib regression analysis (paternal and maternal) and variance component analysis accounting for all family relationships. Two significant QTL were found for body weight on linkage group 4 and 6, six significant QTL for morphometric traits on linkage groups 1B, 4, 6, 7, 15 and 23 and three suggestive QTL for stress response on linkage groups 3, 14 and 23. The QTL explained between 8% and 38% of phenotypic variance. The results are the first step towards identifying genes involved in economically important traits like body weight and stress response in European sea bass.  相似文献   

18.
Herein, we use genetic data from 277 sleeper sharks to perform coalescent‐based modeling to test the hypothesis of early Quaternary emergence of the Greenland shark (Somniosus microcephalus) from ancestral sleeper sharks in the Canadian Arctic‐Subarctic region. Our results show that morphologically cryptic somniosids S. microcephalus and Somniosus pacificus can be genetically distinguished using combined mitochondrial and nuclear DNA markers. Our data confirm the presence of genetically admixed individuals in the Canadian Arctic and sub‐Arctic, and temperate Eastern Atlantic regions, suggesting introgressive hybridization upon secondary contact following the initial species divergence. Conservative substitution rates fitted to an Isolation with Migration (IM) model indicate a likely species divergence time of 2.34 Ma, using the mitochondrial sequence DNA, which in conjunction with the geographic distribution of admixtures and Pacific signatures likely indicates speciation associated with processes other than the closing of the Isthmus of Panama. This time span coincides with further planetary cooling in the early Quaternary period followed by the onset of oscillating glacial‐interglacial cycles. We propose that the initial S. microcephalusS. pacificus split, and subsequent hybridization events, were likely associated with the onset of Pleistocene glacial oscillations, whereby fluctuating sea levels constrained connectivity among Arctic oceanic basins, Arctic marginal seas, and the North Atlantic Ocean. Our data demonstrates support for the evolutionary consequences of oscillatory vicariance via transient oceanic isolation with subsequent secondary contact associated with fluctuating sea levels throughout the Quaternary period—which may serve as a model for the origins of Arctic marine fauna on a broad taxonomic scale.  相似文献   

19.
Cattleya coccinea and C. brevipedunculata (Orchidaceae) are closely related species distinguished primarily by geographical distribution, vegetative morphology and flowering period. Both species inhabit high‐elevation regions in south‐eastern Brazil, but are traditionally associated with different habitats, located in cloudy forests and campos rupestres (rocky fields), respectively. We used morphometrics and genetic variation of microsatellite markers to test the occurrence of a hybrid zone between these species located in Parque Estadual do Ibitipoca (PEI), Brazil. Morphological data reveal a continuum of variation between the putative taxa, influenced mainly by characters of leaf, pseudobulb and peduncle. However, genetic data do not support the occurrence of hybridization and introgression in PEI, showing that it is a pure population of C. brevipedunculata. Differences in vegetative characters among individuals from cloudy forests and campos rupestres suggest that morphological variation may be related to phenotypic plasticity in response to environmental light fluctuations, an unknown situation for this species. These results highlight the inconsistency of morphology for the identification of hybrids and the role of vegetative characters as a possible complicating factor for the taxonomy of these species, as they are subject to environmental influence.  相似文献   

20.
The striped bass (Morone saxatilis) and its relatives (genus Morone) are of great importance to fisheries and aquaculture in North America. As part of a collaborative effort to employ molecular genetics technologies in striped bass breeding programs, we previously developed nearly 500 microsatellite markers. The objectives of this study were to construct a microsatellite linkage map of striped bass and to examine conserved synteny between striped bass and three-spined stickleback (Gasterosteus aculeatus). Of 480 microsatellite markers screened for polymorphism, 289 informative markers were identified and used to genotype two half-sib mapping families. Twenty-six linkage groups were assembled, and only two markers remain unlinked. The sex-averaged map spans 1,623.8 cM with an average marker density of 5.78 cM per marker. Among 287 striped bass microsatellite markers assigned to linkage groups, 169 (58.9%) showed homology to sequences on stickleback chromosomes or scaffolds. Comparison between the stickleback genome and the striped bass linkage map revealed conserved synteny between these two species. This is the first linkage map for any of the Morone species. This map will be useful for molecular mapping and marker-assisted selection of genes of interest in striped bass breeding programs. The conserved synteny between striped bass and stickleback will facilitate fine mapping of genome regions of interest and will serve as a new resource for comparative mapping with other Perciform fishes such as European sea bass (Dicentrarchus labrax), gilthead sea bream (Sparus aurata), and tilapia (Oreochromis ssp.).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号