首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Thermal phenotypic plasticity, otherwise known as acclimation, plays an essential role in how organisms respond to short‐term temperature changes. Plasticity buffers the impact of harmful temperature changes; therefore, understanding variation in plasticity in natural populations is crucial for understanding how species will respond to the changing climate. However, very few studies have examined patterns of phenotypic plasticity among populations, especially among ant populations. Considering that this intraspecies variation can provide insight into adaptive variation in populations, the goal of this study was to quantify the short‐term acclimation ability and thermal tolerance of several populations of the winter ant, Prenolepis imparis. We tested for correlations between thermal plasticity and thermal tolerance, elevation, and body size. We characterized the thermal environment both above and below ground for several populations distributed across different elevations within California, USA. In addition, we measured the short‐term acclimation ability and thermal tolerance of those populations. To measure thermal tolerance, we used chill‐coma recovery time (CCRT) and knockdown time as indicators of cold and heat tolerance, respectively. Short‐term phenotypic plasticity was assessed by calculating acclimation capacity using CCRT and knockdown time after exposure to both high and low temperatures. We found that several populations displayed different chill‐coma recovery times and a few displayed different heat knockdown times, and that the acclimation capacities of cold and heat tolerance differed among most populations. The high‐elevation populations displayed increased tolerance to the cold (faster CCRT) and greater plasticity. For high‐temperature tolerance, we found heat tolerance was not associated with altitude; instead, greater tolerance to the heat was correlated with increased plasticity at higher temperatures. These current findings provide insight into thermal adaptation and factors that contribute to phenotypic diversity by revealing physiological variance among populations.  相似文献   

2.
To assess the trade‐offs associated with cold and heat tolerance, selection experiments were conducted on the rate of recovery from chill‐ and heat‐coma using Drosophila melanogaster. Flies were treated with cold and heat to induce coma, and those that showed rapid or slow recovery from coma were selected. The lines selected for rapid (or slow) recovery from chill‐coma also showed rapid (slow) recovery from heat‐coma, although such a correlation was not observed in the lines selected for the rate of recovery from heat‐coma. On the other hand, survival after cold was enhanced in both lines selected for rapid and slow recovery from chill‐coma, and survival after heat was enhanced in both lines selected for rapid and slow recovery from heat‐coma. It was assumed that cold and heat treatments to induce coma caused some damages to flies and those that were tolerant to cold or heat were unintentionally selected in the present coma‐based selection. Only a weak trade‐off was observed between survival‐based cold and heat tolerance. On the other hand, developmental time was prolonged and desiccation resistance, walking speed, and longevity were reduced in the lines selected for rapid and slow recovery from chill‐ and/or heat‐coma, suggesting that these resistance and life‐history traits are under trade‐offs with cold and/or heat tolerance. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 72–80.  相似文献   

3.
In temperate regions, an organism's ability to rapidly adapt to seasonally varying environments is essential for its survival. In response to seasonal changes in selection pressure caused by variation in temperature, humidity, and food availability, some organisms exhibit plastic changes in phenotype. In other cases, seasonal variation in selection pressure can rapidly increase the frequency of genotypes that offer survival or reproductive advantages under the current conditions. Little is known about the relative influences of plastic and genetic changes in short‐lived organisms experiencing seasonal environmental fluctuations. Cold hardening is a seasonally relevant plastic response in which exposure to cool, but nonlethal, temperatures significantly increases the organism's ability to later survive at freezing temperatures. In the present study, we demonstrate seasonal variation in cold hardening in Drosophila melanogaster and test the extent to which plasticity and adaptive tracking underlie that seasonal variation. We measured the post‐cold hardening freeze tolerance of flies from outdoor mesocosms over the summer, fall, and winter. We bred outdoor mesocosm‐caught flies for two generations in the laboratory and matched each outdoor cohort to an indoor control cohort of similar genetic background. We cold hardened all flies under controlled laboratory conditions and then measured their post‐cold hardening freeze tolerance. Comparing indoor and field‐caught flies and their laboratory‐reared G1 and G2 progeny allowed us to determine the roles of seasonal environmental plasticity, parental effects, and genetic changes on cold hardening. We also tested the relationship between cold hardening and other factors, including age, developmental density, food substrate, presence of antimicrobials, and supplementation with live yeast. We found strong plastic responses to a variety of field‐ and laboratory‐based environmental effects, but no evidence of seasonally varying parental or genetic effects on cold hardening. We therefore conclude that seasonal variation in post‐cold hardening freeze tolerance results from environmental influences and not genetic changes.  相似文献   

4.
Thermal tolerance has a major effect on individual fitness and species distributions and can be determined by genetic variation and phenotypic plasticity. We investigate the effects of developmental and adult thermal conditions on cold tolerance, measured as chill coma recovery (CCR) time, during the early and late adult stage in the Glanville fritillary butterfly. We also investigate the genetic basis of cold tolerance by associating CCR variation with polymorphisms in candidate genes that have a known role in insect physiology. Our results demonstrate that a cooler developmental temperature leads to reduced cold tolerance in the early adult stage, whereas cooler conditions during the adult stage lead to increased cold tolerance. This suggests that adult acclimation, but not developmental plasticity, of adult cold tolerance is adaptive. This could be explained by the ecological conditions the Glanville fritillary experiences in the field, where temperature during early summer, but not spring, is predictive of thermal conditions during the butterfly's flight season. In addition, an amino acid polymorphism (Ala‐Glu) in the gene flightin, which has a known function in insect flight and locomotion, was associated with CCR. These amino acids have distinct biochemical properties and may thus affect protein function and/or structure. To our knowledge, our study is the first to link genetic variation in flightin to cold tolerance, or thermal adaptation in general.  相似文献   

5.
Daily and seasonal fluctuations in temperature present significant challenges for the survival of many ectothermic species that can be tempered via thermal acclimation. In the present study, we use multiple naturally derived genotypes of Drosophila melanogaster to determine the persistence of beneficial short‐term thermal acclimation on subsequent survival after cold shock. We found that the benefit of short‐term acclimation persisted for 2 h in most genotypes after a rapid cold hardening treatment. Genotype did not directly influence the persistence of short‐term acclimation benefits, indicating that environmental variation may be more important for the persistence of acclimation benefits rather than genetic capacity for acclimation. The present study extends the current understanding of the limits and importance of short‐term acclimation events, providing greater detail on the timing of the loss of short‐term acclimation benefits in a genetically variable natural population.  相似文献   

6.
Coping with seasonal and daily variation in environmental conditions requires that organisms are able to adjust their reproduction and stress tolerance according to environmental conditions. Females of Drosophila montana populations have adapted to survive over the dark and cold winters at high latitudes and altitudes by spending this season in photoperiodically controlled reproductive diapause and reproducing only in spring/summer. The present study showed that flies of a northern population of this species are quite tolerant of low temperatures and show high seasonal and short-term plasticity in this trait. Culturing the flies in short day length (nearly all females in reproductive diapause), as well as allowing the flies to get cold hardened before the cold treatment, increased the cold tolerance of both sexes both in chill coma recovery time test and in mortality assay. Chill coma recovery time test performed for the females of two additional D. montana populations cultured in a day length where about half of the females enter diapause, also showed that diapause can increase female cold tolerance even without a change in day length. Direct linkage between diapause and cold tolerance was found in only two strains representing a high-altitude population of the species, but the phenomenon will certainly be worth of studying in northern and southern populations of the species with larger data sets.  相似文献   

7.
The distribution of insects can often be related to variation in their response to thermal extremes, which in turn may reflect differences in plastic responses or innate variation in resistance. Species with widespread distributions are expected to have evolved higher levels of plasticity than those from restricted tropical areas. This study compares adult thermal limits across five widespread species and five restricted tropical species of Drosophila from eastern Australia and investigates how these limits are affected by developmental acclimation and hardening after controlling for environmental variation and phylogeny. Irrespective of acclimation, cold resistance was higher in the widespread species. Developmental cold acclimation simulating temperate conditions extended cold limits by 2°-4°C, whereas developmental heat acclimation under simulated tropical conditions increased upper thermal limits by <1°C. The response to adult heat-hardening was weak, whereas widespread species tended to have a larger cold-hardening response that increased cold tolerance by 2°-5°C. These patterns persisted after phylogenetic correction and when flies were reared under high and low constant temperatures. The results do not support the hypothesis that widely distributed species have larger phenotypic plasticity for thermal tolerance limits, and Drosophila species distributions are therefore more closely linked to differences in innate thermal tolerance limits.  相似文献   

8.
In organisms with complex life cycles, the adaptive value of thermotolerance depends on life-history timing and seasonal temperature profiles. We illustrate this concept by examining variation in annual thermal environments and thermal acclimation among four geographic populations of the pitcher plant mosquito. Only diapausing larvae experience winter, whereas both postdiapause and nondiapause adults occur only during the growing season. Thus, adults experience transient cold stress primarily during the spring. We show that adult cold tolerance (chill coma recovery) is enhanced in spring-like conditions via thermal acclimation but is unaffected by diapause state. Moreover, adult mosquitoes from northern populations were more cold tolerant than those from southern populations largely because acclimation responses were steeper in the north. In contrast to cold tolerance, there was no significant acclimation of heat tolerance (heat knockdown), and no significant differences in heat tolerance between northern and southern populations. Field temperature data show that because of evolved differences in diapause timing, adult exposure to cold stress is remarkably consistent across geography. This suggests that geographic variation in cold tolerance may not be the result of direct selection on adults. Our results illustrate the importance of the interplay between phenological and thermal adaptation for understanding variation along climatic gradients.  相似文献   

9.
Under global warming, the survival of many populations of sedentary organisms in seasonal environments will largely depend on their ability to cope with warming in situ by means of phenotypic plasticity or adaptive evolution. This is particularly true in high‐latitude environments, where current growing seasons are short, and expected temperature increases large. In such short‐growing season environments, the timing of growth and reproduction is critical to survival. Here, we use the unique setting provided by a natural geothermal soil warming gradient (Hengill geothermal area, Iceland) to study the response of Cerastium fontanum flowering phenology to temperature. We hypothesized that trait expression and phenotypic selection on flowering phenology are related to soil temperature, and tested the hypothesis that temperature‐driven differences in selection on phenology have resulted in genetic differentiation using a common garden experiment. In the field, phenology was related to soil temperature, with plants in warmer microsites flowering earlier than plants at colder microsites. In the common garden, plants responded to spring warming in a counter‐gradient fashion; plants originating from warmer microsites flowered relatively later than those originating from colder microsites. A likely explanation for this pattern is that plants from colder microsites have been selected to compensate for the shorter growing season by starting development at lower temperatures. However, in our study we did not find evidence of variation in phenotypic selection on phenology in relation to temperature, but selection consistently favoured early flowering. Our results show that soil temperature influences trait expression and suggest the existence of genetically based variation in flowering phenology leading to counter‐gradient local adaptation along a gradient of soil temperatures. An important implication of our results is that observed phenotypic responses of phenology to global warming might often be a combination of short‐term plastic responses and long‐term evolutionary responses, acting in different directions.  相似文献   

10.
Enhanced soil respiration in response to global warming may substantially increase atmospheric CO2 concentrations above the anthropogenic contribution, depending on the mechanisms underlying the temperature sensitivity of soil respiration. Here, we compared short‐term and seasonal responses of soil respiration to a shifting thermal environment and variable substrate availability via laboratory incubations. To analyze the data from incubations, we implemented a novel process‐based model of soil respiration in a hierarchical Bayesian framework. Our process model combined a Michaelis–Menten‐type equation of substrate availability and microbial biomass with an Arrhenius‐type nonlinear temperature response function. We tested the competing hypotheses that apparent thermal acclimation of soil respiration can be explained by depletion of labile substrates in warmed soils, or that physiological acclimation reduces respiration rates. We demonstrated that short‐term apparent acclimation can be induced by substrate depletion, but that decreasing microbial biomass carbon (MBC) is also important, and lower MBC at warmer temperatures is likely due to decreased carbon‐use efficiency (CUE). Observed seasonal acclimation of soil respiration was associated with higher CUE and lower basal respiration for summer‐ vs. winter‐collected soils. Whether the observed short‐term decrease in CUE or the seasonal acclimation of CUE with increased temperatures dominates the response to long‐term warming will have important consequences for soil organic carbon storage.  相似文献   

11.
Many organisms modify their physiological functions by acclimating to changes in their environment. Recent studies of thermal physiology have been influenced by verbal models that fail to consider the selective advantage of acclimation and thus make no predictions about variation in acclimation capacity. We used a quantitative model of optimal plasticity to generate predictions about the capacity of Drosophila melanogaster to acclimate to developmental temperature. This model predicts that the ability to acclimate thermal sensitivity should evolve when temperature varies greatly among generations. Based on the model, we expected that flies from the highly seasonal environment of New Jersey would acclimate thermal sensitivity more than would flies from the less seasonal environment of Florida. When raised at constant and fluctuating temperatures, flies from these populations failed to adjust their thermal optima in the way predicted by the model, suggesting that current assumptions about functional and genetic constraints should be reconsidered.  相似文献   

12.
Short‐term physiological plasticity allows plants to thrive in highly variable environments such as the Mediterranean ecosystems. In such context, plants that maximize physiological performance under favorable conditions, such as Cistus spp., are generally reported to have a great cost in terms of plasticity (i.e., a high short‐term physiological plasticity) due to the severe reduction of physiological performance when stress factors occur. However, Cistus spp. also show a noticeable resilience ability in response to stress factors. We hypothesized that in Cistus species the short‐term physiological response to stress and that to subsequent recovery can show a positive trade‐off to offset the costs of the photosynthetic decline under drought. Gas exchange, chlorophyll fluorescence, and water relations were measured in C. salvifolius, C. monspeliensis, and C. creticus subsp. eriocephalus during an imposed experimental drought and subsequent recovery. Plants were grown outdoor in common garden conditions from seeds of different provenances. The short‐term physiological response to stress and that to recovery were quantified via phenotypic plasticity index (PIstress and PIrecovery, respectively). A linear regression analysis was used to identify the hypothesized trade‐off PIstress–PIrecovery. Accordingly, we found a positive trade‐off between PIstress and PIrecovery, which was consistent across species and provenances. This result contributes in explaining the profit, more than the cost, of a higher physiological plasticity in response to short‐term stress imposition for Cistus spp because the costs of a higher PIstress are payed back by an as much higher PIrecovery. The absence of leaf shedding during short‐term drought supports this view. The trade‐off well described the relative variations of gas exchange and water relation parameters. Moreover, the results were in accordance with the ecology of this species and provide the first evidence of a consistent trade‐off between the short‐term physiological responses to drought and recovery phases in Mediterranean species.  相似文献   

13.
Nongenetic parental effects may affect offspring phenotype, and in species with multiple generations per year, these effects may cause life‐history traits to vary over the season. We investigated the effects of parental, offspring developmental and offspring adult temperatures on a suite of life‐history traits in the globally invasive agricultural pest Grapholita molesta. A low parental temperature resulted in female offspring that developed faster at low developmental temperature compared with females whose parents were reared at high temperature. Furthermore, females whose parents were reared at low temperature were heavier and more fecund and had better flight abilities than females whose parents were reared at high temperature. In addition to these cross‐generational effects, females developed at low temperature had similar flight abilities at low and high ambient temperatures, whereas females developed at high temperature had poorer flight abilities at low than at high ambient temperature. Our findings demonstrate a pronounced benefit of low parental temperature on offspring performance, as well as between‐ and within‐generation effects of acclimation to low temperature. In cooler environments, the offspring generation is expected to develop more rapidly than the parental generation and to comprise more fecund and more dispersive females. By producing phenotypes that are adaptive to the conditions inducing them as well as heritable, cross‐generational plasticity can influence the evolutionary trajectory of populations. The potential for short‐term acclimation to low temperature may allow expanding insect populations to better cope with novel environments and may help to explain the spread and establishment of invasive species.  相似文献   

14.
15.
Many biotic and abiotic variables influence the dispersal and distribution of organisms. Temperature has a major role in determining these patterns because it changes daily, seasonally and spatially, and these fluctuations have a significant impact on an organism's behaviour and fitness. Most ecologically relevant phenotypes that are adaptive are also complex and thus they are influenced by many underlying loci that interact with the environment. In this study, we quantified the degree of thermal phenotypic plasticity within and among populations by measuring chill‐coma recovery times of lines reared from egg to adult at two different environmental temperatures. We used sixty genotypes from six natural populations of Drosophila melanogaster sampled along a latitudinal gradient in South America. We found significant variation in thermal plasticity both within and among populations. All populations exhibit a cold acclimation response, with flies reared at lower temperatures having increased resistance to cold. We tested a series of environmental parameters against the variation in population mean thermal plasticity and discovered the mean thermal plasticity was significantly correlated with altitude of origin of the population. Pairing our data with previous experiments on viability fitness assays in the same populations in fixed and variable environments suggests an adaptive role of this thermal plasticity in variable laboratory environments. Altogether, these data demonstrate abundant variation in adaptive thermal plasticity within and among populations.  相似文献   

16.
Thermal tolerance and its plasticity are important for understanding ectotherm responses to climate change. However, it is unclear whether plasticity is traded‐off at the expense of basal thermal tolerance and whether plasticity is subject to phylogenetic constraints. Here, we investigated associations between basal thermal tolerance and acute plasticity thereof in laboratory‐reared adult males of eighteen Drosophila species at low and high temperatures. We determined the high and low temperatures where 90% of flies are killed (ULT90 and LLT90, respectively) and also the magnitude of plasticity of acute thermal pretreatments (i.e. rapid cold‐ and heat‐hardening) using a standardized, species‐specific approach for the induction of hardening responses. Regression analyses of survival variation were conducted in ordinary and phylogenetically informed approaches. Low‐temperature pretreatments significantly improved LLT90 in all species tested except for D. pseudoobscura, D. mojavensis and D. borealis. High‐temperature pretreatment only significantly increased ULT90 in D. melanogaster, D. simulans, D. pseudoobscura and D. persimilis. LLT90 was negatively correlated with low‐temperature plasticity even after phylogeny was accounted for. No correlations were found between ULT90 and LLT90 or between ULT90 and rapid heat‐hardening (RHH) in ordinary regression approaches. However, after phylogenetic adjustment, there was a positive correlation between ULT90 and RHH. These results suggest a trade‐off between basal low‐temperature tolerance and acute low‐temperature plasticity, but at high temperatures, increased basal tolerance was accompanied by increased plasticity. Furthermore, high‐ and low‐temperature tolerances and their plasticity are clearly decoupled. These results are of broad significance to understanding how organisms respond to changes in habitat temperature and the degree to which they can adjust thermal sensitivity.  相似文献   

17.
The ability to buffer detrimental effects of environmental stress on fitness is of great ecological importance because, in nature, pronounced environmental variation may regularly induce stress. Furthermore, several stressors may interact in a synergistic manner. In the present study, plastic responses in cold, heat and starvation resistance are investigated in the tropical butterfly Bicyclus anynana Butler, 1879, using a full factorial design with two acclimation temperatures (20 and 27 °C) and four short‐term stress treatments (control, cold, heat, starvation). Warm‐acclimated butterflies are more heat‐ but less cold‐tolerant as expected. Short‐term cold and starvation exposure reduce cold and heat resistance, and short‐term heat exposure decreases cold but increases heat resistance. Starvation resistance is not affected by any of the short‐term treatments. Thus, the effects of short‐term stress exposure are either neutral or negative, except for a positive effect of heat exposure on heat resistance, indicating the negative effects of pre‐exposure to stress. Interestingly, significant interactions between acclimation temperature and short‐term stress exposure for heat and cold resistance are found, demonstrating that larger temperature differences incur more damage. Therefore, animals may not generally be able to benefit from pre‐exposure to stress (through ‘hardening’), depending on their previously experienced conditions. The complex interactions between environmental variation, stress and resistance are highlighted, warranting further investigations.  相似文献   

18.
Abstract Chill‐susceptible insects are able to improve their survival of acute cold exposure over both the short term (i.e. hardening at a relatively severe temperature) and longer term (i.e. acclimation responses at milder temperatures over a longer time frame). However, the mechanistic overlap of these responses is not clear. Four larval stages of four different strains of Drosophila melanogaster are used to test whether low temperature acclimation (10 °C for 48 h) improves the acute cold tolerance (LT90, ~2 h) of larvae, and whether acclimated larvae still show hardening responses after brief exposures to nonlethal cold or heat, or a combination of the two. Acclimation results in increased cold tolerance in three of four strains, with variation among instars. However, if acclimation is followed by hardening pre‐treatments, there is no improvement in acute cold survival. It is concluded that short‐term thermal responses (e.g. hardening) may be of more ecological relevance to short‐lived life stages such as larvae, and that the mechanisms of low temperature hardening and acclimation in D. melanogaster may be antagonistic, rather than complementary.  相似文献   

19.
Insect thermal tolerance shows a range of responses to thermal history depending on the duration and severity of exposure. However, few studies have investigated these effects under relatively modest temperature variation or the interactions between short‐ and longer‐term exposures. In the present study, using a full‐factorial design, 1 week‐long acclimation responses of critical thermal minimum (CTmin) and critical thermal maximum (CTmax) to temperatures of 20, 25 and 30 °C are investigated, as well as their interactions with short‐term (2 h) sub‐lethal temperature exposures to these same conditions (20, 25 and 30 °C), in two fruit fly species Ceratitis capitata (Wiedemann) and Ceratitis rosa Karsch from South Africa. Flies generally improve heat tolerance with high temperature acclimation and resist low temperatures better after acclimation to cooler conditions. However, in several cases, significant interaction effects are evident for CTmax and CTmin between short‐ and long‐term temperature treatments. Furthermore, to better comprehend the flies' responses to natural microclimate conditions, the effects of variation in heating and cooling rates on CTmax and CTmin are explored. Slower heating rates result in higher CTmax, whereas slower cooling rates elicit lower CTmin, although more variation is detected in CTmin than in CTmax (approximately 1.2 versus 0.5 °C). Critical thermal limits estimated under conditions that most closely approximate natural diurnal temperature fluctuations (rate: 0.06 °C min?1) indicate a CTmax of approximately 42 °C and a CTmin of approximately 6 °C for these species in the wild, although some variation between these species has been found previously in CTmax. In conclusion, the results suggest critical thermal limits of adult fruit flies are moderated by temperature variation at both short and long time scales and may comprise both reversible and irreversible components.  相似文献   

20.
The present study examines life stage‐related variation in the thermal limits to activity and survival in an African pest, the false codling moth Thaumatotibia leucotreta (Lepidoptera, Tortricidae). Thermal tolerance, including the functional activity limits of critical thermal maxima and minima (CTmax and CTmin respectively), upper and lower lethal temperature, and the effect of heat and cold hardening (short‐term acute plasticity), is measured across a diverse range of low or high temperature stress conditions in both larvae and adults. We also report the sum of inducible and cognate forms of the amounts of heat shock protein 70 (HSP70) as an explanatory variable for changes in thermotolerance. The results show that the larvae have high variability in CTmax and CTmin at different ramping rates and low levels of basal (innate) thermal tolerance. By contrast, the adults show high basal tolerance and overall lower variability in CTmax and CTmin, indicating lower levels of phenotypic plasticity in thermotolerance. HSP70 responses, although variable, do not reflect these tolerance or survival patterns. Larvae survive across a broader range of temperatures, whereas adults remain active across a broader range of temperatures. Life stage‐related variation in thermal tolerance is most pronounced under the slowest (most ecologically‐relevant) ramping rate (0.06 °C min–1) during lower critical thermal limit experiments and least pronounced during upper thermal limit experiments. Thus, the ramping rate can hinder or enhance the detection of stage‐related variation in thermal limits to activity and survival of insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号