首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Jin HO  An S  Lee HC  Woo SH  Seo SK  Choe TB  Yoo DH  Lee SB  Um HD  Lee SJ  Park MJ  Kim JI  Hong SI  Rhee CH  Park IC 《Cellular signalling》2007,19(7):1393-1403
Redd1, a recently discovered stress-response gene, is regulated by hypoxia via hypoxia-inducible factor 1 (HIF-1) and by DNA damage via p53/p63; however, the signaling pathway by which its expression is induced by hypoxia has not been elucidated. In the present study, we demonstrated that the expression of Redd1 in response to hypoxia (1% O(2)), hypoxia-mimetic agent, cobalt chloride (CoCl(2)) and high cell density (HCD) requires coactivation of HIF-1alpha and Sp1. CoCl(2) and HCD induced the activation of HIF-1alpha and Sp1 in HeLa cells, and siRNAs targeting HIF-1alpha and Sp1 abrogated Redd1 expression. Inhibition of phosphatidylinositol 3-kinase (PI3K) by LY294002 and by a dominant-negative PI3K mutant reduced the expression of Redd1 and activation of HIF-1alpha and Sp1 by CoCl(2) and HCD. Also, suppression of Akt activation blocked the expression of Redd1 and the activation of HIF-1alpha and Sp1 by CoCl(2) and HCD. Furthermore, we found that the induction of Redd1 expression by CoCl(2) can be mediated by activation of Sp1 in HIF-1alpha-deficient cells but that a higher level of Redd1 expression is achieved when these cells are transfected with HIF-1alpha. These results demonstrate that hypoxic condition-and HCD-induced expression of Redd1 is mediated by coactivation of Sp1 and HIF-1alpha downstream of the PI3K/Akt signaling pathway.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
The induction of vascular endothelial growth factor (VEGF) is an essential feature of tumor angiogenesis. Hypoxia is a potent stimulator of VEGF expression, and hypoxia-inducible factor-1 (HIF-1) is considered to be critical for this induction. However, we have previously demonstrated that induction of VEGF by hypoxia was preserved when HIF-1alpha was silenced. We sought to better define the molecular basis of this HIF-1-independent regulation. In colon cancer cells, hypoxia stimulated multiple K-ras effector pathways including phosphatidylinositol 3-kinase. VEGF promoter deletion studies identified a novel promoter region between -418 and -223 bp that was responsive to hypoxia in a PI3K/Rho/ROCK-dependent manner. Electrophoretic mobility shift assays identified a fragment between -300 and -251 bp that demonstrated a unique shift only in hypoxic conditions. Inhibition of PI3K or ROCK blocked the formation of this complex. A binding site for c-Myc, a target of ROCK, was identified at -271 bp. A role for c-Myc in the hypoxic induction of VEGF was demonstrated by site-directed mutagenesis of the VEGF promoter and silencing of c-Myc by small interfering RNA. Collectively, these findings suggest an alternative mechanism for the hypoxic induction of VEGF in colon cancer that does not depend upon HIF-1alpha but instead requires the activation of PI3K/Rho/ROCK and c-Myc.  相似文献   

11.
PKCdelta has been shown to be activated by insulin and to interact with insulin receptor and IRS. PKB(Akt) plays an important role in glucose transport and glycogen synthesis. In this study, we investigated the possibility that PKCdelta may be involved in insulin-induced activation of PKB. Studies were conducted on primary cultures of rat skeletal muscle. PKB was activated by insulin stimulation within 5min and reached a peak by 15-30min. Insulin also increased the physical association between PKCdelta with PKB and with PDK1. The insulin-induced PKCdelta-PKB association was PI3K dependent. PKB-PKCdelta association was accounted for by the involvement of PDK1. Overexpression of dominant negative PKCdelta abrogated insulin-induced association of PKCdelta with both PKB and PDK1. Blockade of PKCdelta also decreased insulin-induced Thr308 PKB phosphorylation and PKB translocation. Moreover, PKCdelta inhibition reduced insulin-induced GSK3 phosphorylation. The results indicate that insulin-activated PKCdelta interacts with PDK1 to regulate PKB.  相似文献   

12.
13.
We have previously demonstrated the roles of RhoA, Rac1, and Cdc42 in hypoxia-driven angiogenesis. However, the role of oncogenes in hypoxia signaling is poorly understood. Given the importance of Rho proteins in the hypoxic response, we hypothesized that Rho family members could act as mediators of hypoxic signal transduction. We investigated the cross-talk between hypoxia and oncogene-driven signal transduction pathways and explored the role of Rac1 on hypoxia-induced hypoxia-inducible factor (HIF)-1α and VEGF expression. Since the phosphatidylinositol 3'-kinase (PI3K) pathway is involved in signal transduction of many oncogenes, we explored the role of PI3K on Rac1-mediated expression of HIF-1α and VEGF in hypoxia. We showed that LY-294002, a PI3K inhibitor, suppressed HIF-1α and VEGF induction under hypoxic conditions by up to 50%. Activation of Rac1 resulted in an upregulation of hypoxia-induced HIF-1α expression, which was blocked by LY-294002. These data suggested that Rac1 is an intermediate in the PI3K-mediated induction of HIF-1α. Interestingly, there was a significant downregulation of the tumor suppressor genes p53 and von Hippel-Lindau tumor suppressor (VHL) in cells expressing a constitutively active form of Rac1. Rac1-mediated inhibition of p53 and VHL could therefore be implicated in the upregulation of HIF-1α expression.  相似文献   

14.
15.
16.
17.
Mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) signaling pathways are pivotal and intensively studied signaling pathways in hypoxic conditions. However, the roles of MAPK and PI3K in the regulation of hypoxia-induced atrial natriuretic peptide (ANP) secretion are not well understood. The purpose of the present study was to investigate the mechanism by which the MAPK/ERK (extracellular signal-regulated kinase) and PI3K signaling pathways regulate the acute hypoxia-induced ANP secretion in isolated beating rabbit atria. An acute hypoxic perfused beating rabbit atrial model was used. The ANP levels in the atrial perfusates were measured by radioimmunoassay, and the hypoxia-inducible factor-1α (HIF-1α) mRNA and protein levels in the atrial tissue were determined by RT-PCR and Western blot. Acute hypoxia significantly increased ANP secretion and HIF-1α mRNA and protein levels. Hypoxia-induced ANP secretion was markedly attenuated by the HIF-1α inhibitors, rotenone (0.5 μmol/L) and CAY10585 (10 μmol/L), concomitantly with downregulation of the hypoxia-induced HIF-1α mRNA and protein levels. PD098059 (30 μmol/L) and LY294002 (30 μmol/L), inhibitors of MAPK and PI3K, markedly abolished the hypoxia-induced ANP secretion and atrial HIF-1α mRNA and protein levels. The hypoxia-suppressed atrial dynamics were significantly attenuated by PD098059 and LY294002. Acute hypoxia in isolated perfused beating rabbit atria, markedly increased ANP secretion through HIF-1α upregulation, which was regulated by the MAPK/ERK and PI3K pathways. ANP appears to be part of the protective program regulated by HIF-1α in the response to acute hypoxic conditions.  相似文献   

18.
19.
20.
Migration and invasion of fibroblast-like synoviocytes (FLSs) are critical in the pathogenesis of rheumatoid arthritis (RA). Hypoxic conditions are present in RA joints, and hypoxia has been extensively studied in angiogenesis and inflammation. However, its effect on the migration and invasion of RA-FLSs remains unknown. In this study, we observed that RA-FLSs exposed to hypoxic conditions experienced epithelial–mesenchymal transition (EMT), with increased cell migration and invasion. We demonstrated that hypoxia-induced EMT was accompanied by increased hypoxia-inducible factor (HIF)-1α expression and activation of Akt. After knockdown or inhibition of HIF-1α in hypoxia by small interfering RNA or genistein (Gen) treatment, the EMT transformation and invasion ability of FLSs were regained. HIF-1α could be blocked by phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002, indicating that HIF-1α activation was regulated by the PI3K/Akt pathway. Administration of LY294002 (20 mg/kg, intra-peritoneally) twice weekly and Gen (25 mg/kg, by gavage) daily for 3 weeks from day 20 after primary immunization in a collagen-induced arthritis rat model, markedly alleviated the clinical signs, radiology progression, synovial hyperplasia, and inflammatory cells infiltration of joints. Thus, results of this study suggest that activation of the PI3K/Akt/HIF-1α pathway plays a pivotal role in mediating hypoxia-induced EMT transformation and invasion of RA-FLSs under hypoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号