首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Does the inositol tris/tetrakisphosphate pathway exist in rat heart?   总被引:2,自引:0,他引:2  
D Renard  J Poggioli 《FEBS letters》1987,217(1):117-123
Appearance of two isomers of inositol trisphosphate (InsP3) was observed when [3H]inositol prelabelled rat heart ventricles were stimulated for 10 and 30 s with noradrenaline. In contrast, inositol tetrakisphosphate (InsP4) could not be detected. However the existence of the inositol tris/tetrakisphosphate pathway was demonstrated by studying [3H]inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) metabolism in a soluble fraction of rat heart. There, [3H]Ins-1,4,5-P3 was phosphorylated to form [3H]Ins-1,3,4,5-P4. Raising [Ca2+] from 1 nM to 1 microM increased InsP3 kinase activity by 2-fold (EC50 for Ca2+ approx. 56 nM). This effect appeared to be due to an increase of the apparent Vmax of the enzyme while the apparent Km was unchanged.  相似文献   

2.
The two-step isomerization of inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) to Ins-1,3,4-P3 via the intermediate inositol 1,3,4,5-tetrakisphosphate (Ins-P4) was studied in intact RINm5F cells and in subcellular fractions. Muscarinic stimulation with carbamylcholine leads to a rapid (2 s) rise in both Ins-1,4,5-P3 and Ins-P4, whereas Ins-1,3,4-P3 was produced only after a lag of at least 5 s. In cells with depleted Ca2+ stores, the rise in Ins-1,4,5-P3 was nearly tripled, and that of Ins-1,3,4-P3 markedly diminished as compared to control cells. Raising the free Ca2+ concentration from 10(-7) to 10(-5) M increased inositol 1,4,5-triphosphate-3-kinase activity in cytosolic fractions by 2 1/2-fold (EC50 for Ca2+ approximately 0.8 microM) but had no effect on the activity of inositol 1,4,5-triphosphate-5-phosphomonoesterase. At 10(-7) M Ca2+ these two enzymes displayed comparable activity when assayed at concentrations of Ins-1,4,5-P3 occurring in stimulated cells; however, at 10(-5) M Ca2+, kinase activity predominates. These results suggest that Ins-1,4,5-P3 counter-regulates its own levels through the activity of inositol 1,4,5-trisphosphate 3-kinase and that the increase in [Ca2+]i may account for the transience of the rise in Ins-1,4,5-P3 seen during muscarinic stimulation of RINm5F cells.  相似文献   

3.
Angiotensin stimulates rapid and prominent increases in inositol polyphosphates and their metabolites in bovine glomerulosa cells labeled with [3H]inositol. In addition to the early formation of inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) and inositol 1,3,4-trisphosphate (Ins-1,3,4-P3), as well as their intermediate product, inositol 1,3,4,5-tetrakisphosphate (Ins-1,3,4,5-P4), delayed increases in two new InsP4 isomers were consistently observed by high resolution high performance liquid chromatography. Studies on the metabolism of purified Ins-1,3,4,5-P4 preparations, labeled with [3H]inositol and 32P to monitor sites of dephosphorylation, were performed in permeabilized glomerulosa cells. In addition to rapid degradation of Ins-1,3,4,5-P3 to Ins-1,3,4-P3 and then to Ins-3,4-P2, there was delayed formation of one of the putative InsP4 isomers observed during AII stimulation in intact cells. The kinetics of formation of the new InsP4 isomer, and the lack of phosphate in its 5 position based on isotope ratios, were consistent with its origin from Ins-1,3,4-P3. This was confirmed by the conversion of [3H]Ins-1,3,4-P3 to the new InsP4 isomer in permeabilized cells by a kinase distinct from that which phosphorylates Ins-1,4,5-P3. These results have demonstrated that the dephosphorylation sequence of Ins-1,4,5-P3 metabolism is accompanied by a complex cycle of higher phosphorylations with formation of new intermediates of potential significance in cellular regulation.  相似文献   

4.
S H Ryu  S Y Lee  K Y Lee  S G Rhee 《FASEB journal》1987,1(5):388-393
Inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) is an important second-messenger molecule that mobilizes Ca2+ from intracellular stores in response to the occupancy of receptor by various Ca2+-mobilizing agonists. The fate of Ins-1,4,5-P3 is determined by two enzymes, a 3-kinase and a 5-phosphomonoesterase. The first enzyme converts Ins-1,4,5-P3 to Ins-1,3,4,5-P4, whereas the latter forms Ins-1,4-P2. Recent studies suggest that Ins-1,3,4,5-P4 might modulate the entry of Ca2+ from an extracellular source. In the current report, we describe the partial purification of the 3-kinase [approximately 400-fold purified, specific activity = 0.12 mumol/(min.mg)] from the cytosolic fraction of bovine brain and studies of its catalytic properties. We found that the 3-kinase activity is significantly activated by the Ca2+/calmodulin complex. Therefore, we propose that Ca2+ mobilized from endoplasmic reticulum by the action of Ins-1,4,5-P3 forms a complex with calmodulin, and that the Ca2+/calmodulin complex stimulates the conversion of Ins-1,4,5-P3, an intracellular Ca2+ mobilizer, to Ins-1,3,4,5-P4, an extracellular Ca2+ mobilizer. A rapid assay method for the 3-kinase was developed that is based on the separation of [3-32P]Ins-1,3,4,5-P4 and [gamma-32P]ATP by thin-layer chromatography. Using this new assay method, we evaluated kinetic parameters (Km for ATP = 40 microM, Km for Ins-1,4,5-P3 = 0.7 microM, Ki for ADP = 12 microM) and divalent cation specificity (Mg2+ much greater than Mn2+ greater than Ca2+) for the 3-kinase. Studies with various inositol polyphosphates indicate that the substrate-binding site is quite specific to Ins-1,4,5-P3. Nevertheless, Ins-2,4,5-P3 could be phosphorylated at a velocity approximately 1/20-1/30 that of Ins-1,4,5-P3.  相似文献   

5.
Angiotensin II stimulates rapid formation of inositol-1,4,5-trisphosphate (Ins-1,4,5-P3) in bovine adrenal glomerulosa cells. In addition to being rapidly metabolized to lower inositol phosphates, Ins-1,4,5-P3 is converted to Ins-1,3,4,5-tetrakisphosphate (Ins-1,3,4,5-P4) and Ins-1,3,4-P3 which is in turn phosphorylated to a further Ins-P4 isomer, namely Ins-1,3,4,6-P4. In bovine adrenocortical cytosol [3H]Ins-1,3,4,5-P4 and [3H]Ins-1,3,4-P3 were converted to Ins-1,3,4,6-P4 and inositol pentakisphosphate (Ins-P5) in a metabolic sequence suggesting that unlike Ins-1,3,4,5-P4, Ins-1,3,4,6-P4 is a direct precursor of Ins-P5. Consistent with this assumption, [3H]Ins-1,3,4,6-P4 was converted to Ins-P5 in electropermeabilized adrenal glomerulosa cells. These findings demonstrate that Ins-1,3,4,6-P4 is an intermediate link between InsP3 metabolism and the higher inositol phosphates detected in several tissues.  相似文献   

6.
In adrenal glomerulosa cells, angiotensin II stimulates rapid increases in inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) and inositol 1,3,4,5-tetrakisphosphate (Ins-1,3,4,5-P4), followed by slower increases in two additional inositol tetrakisphosphate (InsP4) isomers. One of these InsP4 isomers was previously identified as Ins-1,3,4,6-P4 and shown to be a precursor of inositol pentakisphosphate (InsP5). Analysis of the third InsP4 isomer, purified from cultured bovine adrenal cells labeled with [3H]inositol and stimulated by angiotensin II, revealed that the polyol produced by periodate oxidation, borohydrate reduction, and dephosphorylation was [3H]iditol. This finding is consistent with precursor structures of either Ins-1,4,5,6-P4 or Ins-3,4,5,6-P4 (= L-Ins-1,4,5,6-P4) for the third InsP4 isomer. The [3H]iditol was readily converted to [3H]sorbose by the stereospecific enzyme, L-iditol dehydrogenase, indicating that it originated from Ins-3,4,5,6-P4. Chicken erythrocytes labeled with [3H]inositol also contained high levels of Ins-1,3,4,6-P4 and Ins-3,4,5,6-P4, as well as InsP5, but only small amounts of Ins-1,3,4,5-P4. Both [3H]Ins-1,3,4,6-P4 and [3H]Ins-3,4,5,6-P4, but not [3H]Ins-1,3,4,5-P4, were phosphorylated to form InsP5 in permeabilized bovine glomerulosa cells. In addition, InsP5 itself was slowly dephosphorylated to Ins-1,4,5,6-P4, indicating that its structure is Ins-1,3,4,5,6-P5. These results demonstrate that the higher inositol phosphates are metabolically interrelated and are linked to the receptor-regulated InsP3 response by the conversion of Ins-1,3,4-P3 through Ins-1,3,4,6-P4 to Ins-1,3,4,5,6-P5. The source of Ins-3,4,5,6-P4, the other precursor of InsP5, is not yet known but its elevation in angiotensin II-stimulated glomerulosa cells suggests that its formation is also influenced by agonist-regulated processes.  相似文献   

7.
We have examined regulation by protein kinase C (Ca2+/phospholipid-dependent enzyme) of thrombin-induced inositol polyphosphate accumulation in human platelets. When platelets are exposed to thrombin for 10 s, the protein kinase C inhibitor staurosporine causes inositol phosphate elevations over control values of 2.7-fold (inositol 1,4,5-trisphosphate (Ins(1,4,5)P3], 1.9-fold (inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4], and 1.2-fold (inositol 1,3,4-trisphosphate). In the same period, phosphatidic acid and diacylglycerol are unaffected. The myosin light chain kinase inhibitor ML-7 has no effect on inositol phosphate accumulations. Staurosporine does not inhibit Ins(1,4,5)P3 3-kinase and 5-phosphomonoesterase activities in saponin-permeabilized platelets incubated with exogenous Ins(1,4,5)P3 unless the platelets have been exposed to thrombin and protein kinase C is consequently activated. The protein kinase C agonist beta-phorbol 12,13-dibutyrate increases the Vmax of the 3-kinase 1.8-fold, with little effect on Km. Our results provide strong evidence for a role for protein kinase C in regulating inositol phosphate levels in thrombin-activated platelets. We propose that endogenously activated protein kinase C removes Ins(1,4,5)P3 by stimulating both 5-phosphomonoesterase and Ins(1,4,5)P3 3-kinase. Initial activation of phospholipase C does not appear to be affected by such protein kinase C. Inhibition of protein kinase C by staurosporine decreases 5-phosphomonoesterase activity. The resulting elevated Ins(1,4,5)P3, as substrate for Ins(1,4,5)P3 3-kinase, promotes production of Ins(1,3,4,5)P4, which also may accumulate through decreased 5-phosphomonoesterase activity and elevated Ca2+ levels. These factors apparently counteract the inhibitory effect on 3-kinase, yielding a net increase in Ins(1,3,4,5)P4.  相似文献   

8.
Metabolism of inositol 1,4,5-trisphosphate was investigated in permeabilized guinea-pig hepatocytes. The conversion of [3H]inositol 1,4,5-trisphosphate to a more polar 3H-labelled compound occurred rapidly and was detected as early as 5 s. This material co-eluted from h.p.l.c. with inositol 1,3,4,5 tetrakis[32P]phosphate and is presumably an inositol tetrakisphosphate. A significant increase in the 3H-labelled material co-eluting from h.p.l.c. with inositol 1,3,4-trisphosphate occurred only after a definite lag period. Incubation of permeabilized hepatocytes with inositol 1,3,4,5-tetrakis[32P]phosphate resulted in the formation of 32P-labelled material that co-eluted with inositol 1,3,4-trisphosphate; no inositol 1,4,5-tris[32P]phosphate was produced, suggesting the action of a 5-phosphomonoesterase. The half-time of hydrolysis of inositol 1,3,4,5-tetrakis[32P]phosphate of approx. 1 min was increased to 3 min by 2,3-bisphosphoglyceric acid. Similarly, the rate of production of material tentatively designed as inositol 1,3,4-tris[32P]phosphate from the tetrakisphosphate was reduced by 10 mM-2,3-bisphosphoglyceric acid. In the absence of ATP there was no conversion of [3H]inositol 1,4,5-trisphosphate to [3H]inositol tetrakisphosphate or to [3H]inositol 1,3,4-trisphosphate, which suggests that the 1,3,4 isomer does not result from isomerization of inositol 1,4,5-trisphosphate. The results of this study suggest that the origin of the 1,3,4 isomer of inositol trisphosphate in isolated hepatocytes is inositol 1,3,4,5-tetrakisphosphate and that inositol 1,4,5-trisphosphate is rapidly converted to this tetrakisphosphate. The ability of 2,3-bisphosphoglyceric acid, an inhibitor of 5-phosphomonoesterase of red blood cell membrane, to inhibit the breakdown of the tetrakisphosphate suggests that the enzyme which removes the 5-phosphate from inositol 1,4,5-trisphosphate may also act to convert the tetrakisphosphate to inositol 1,3,4-trisphosphate. It is not known if the role of inositol 1,4,5-trisphosphate kinase is to inactivate inositol 1,4,5-trisphosphate or whether the tetrakisphosphate product may have a messenger function in the cell.  相似文献   

9.
In a cytosolic fraction derived from insulin-secreting RINm5F cells, the rate of conversion of inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) to inositol 1,3,4,5-tetrakisphosphate (Ins-1,3,4,5-P4) was half-maximally stimulated by 0.8 microM Ca2+ (Biden, T. J., and Wollheim, C. B. (1986) J. Biol. Chem. 261, 11931-11934). In the present study we show that after initial purification by anion exchange chromatography, the Ins-1,4,5-P3 kinase activity responsible for that conversion is stimulated by Ca2+-calmodulin, but not by Ca2+ alone. This is almost certainly due to a specific interaction of the enzyme and its activator since kinase activity was retained on a calmodulin-linked Sepharose 6B column in the presence of Ca2+ but eluted upon chelation of the cation. After this two-step purification, Ins-1,4,5-P3 kinase activity was maximally stimulated 5-fold by 10 microM calmodulin in the presence of 10(-5) M Ca2+, and 2 1/2-fold at 10(-6) M Ca2+. Under these conditions the minimum concentrations of calmodulin needed to stimulate activity were in the 10-50 nM range. At 10(-7) M Ca2+, calmodulin (up to 30 microM) was without effect. Stimulated Ins-1,4,5-P3 kinase activity was inhibited in a dose-dependent fashion by N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W7) although the calmodulin antagonist had no effect on the residual activity seen at 10(-7) M Ca2+. These results strongly support our previous suggestion that alterations in cytosolic free Ca2+ concentrations play an important role in regulating the levels of Ins-1,4,5-P3 and Ins-1,3,4,5-P4 during cellular stimulation.  相似文献   

10.
The role of Ca2+ in the generation of inositol phosphates was investigated using rat pancreatic islets after steady state labeling with myo-[2-3H]inositol. Depolarizing K+ concentrations (24 mM) evoked early (2 s) increases in inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) and inositol 1,3,4,5-tetrakisphosphate (Ins-1,3,4,5-P4) as measured by high performance anion-exchange chromatography. The increase in Ins-1,4,5-P3 was transient and was followed by a more pronounced rise in Ins-1,3,4-P3. These effects were dependent on the presence of extracellular Ca2+ but were not secondary to release of either neurotransmitters or metabolites of arachidonic acid. K+ also promoted the breakdown of phosphatidylinositol 4,5-bisphosphate (PtdIns-4,5-P2) and of the other phosphoinositides. Glucose (16.7 mM) was less marked in its effects but still promoted rapid increases in Ins-1,3,4,5-P4 (2 s) and Ins-1,4,5-P3 (10 s) and a slower rise in Ins-1,3,4-P3 (30 s). The levels of all three metabolites rose steadily over 10 min stimulation. These responses to glucose could be largely, although not entirely, inhibited by depletion of extracellular Ca2+ or by Ca2+ channel blockade with verapamil (20 microM). Carbamylcholine (0.5 mM) was the most potent stimulus used evoking early rises in Ins-1,4,5-P3 and Ins-1,3,4,5-P4 (2 s) followed by Ins-1,3,4-P3 (10 s), effects which were only partially dependent on extracellular Ca2+. The results suggest that a Ca2+-mediated PtdIns-4,5-P2 hydrolysis accounts for most of the Ins-1,4,5-P3 generated in response to glucose but not carbamylcholine. In addition, glucose may exert effects on inositol phosphate metabolism which are Ca2+ independent.  相似文献   

11.
In adrenal glomerulosa cells, angiotensin II (AII) rapidly stimulates the formation of inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) and causes marked long-term changes in the levels of highly phosphorylated inositols. Glomerulosa cells prelabeled with [3H]inositol for 48 h and exposed to AII for 10 min showed prominent increases in inositol 1,3,4,5-tetrakisphosphate (Ins-1,3,4,5-P4) and smaller increases in two additional tetrakisphosphates, Ins-1,3,4,6-P4 and another (Ins-3,4,5,6-P4) eluting in the position of Ins-3,4,5,6-P4 and its stereoisomer, Ins-1,4,5,6-P4, on anion exchange liquid chromatography. A concomitant decrease in InsP5 indicates that an increase in Ins-1,4,5,6-P4, the breakdown product of InsP5, is probably responsible for the initial rise in Ins-3,4,5,6-P4 during 10 min stimulation by AII. During prolonged stimulation by AII, Ins-1,3,4,5-P4 began to decline from its high, stimulated level after the first hour but the level of Ins-1,3,4,6-P4 remained elevated for several hours. There were also progressive increases in the levels of Ins-3,4,5,6-P4 and InsP5 during stimulation for up to 16 h with AII. Treatment of adrenal cells for 16 h with the cyclic AMP-mediated secretagogue, adrenocorticotropic hormone (ACTH), slightly increased basal levels of Ins-1,3,4,6-P4, Ins-3,4,5,6-P4, and InsP5, and enhanced the subsequent AII-stimulated increases in the two additional tetrakisphosphate isomers but not of inositol trisphosphates or Ins-1,3,4,5-P4. This change in the pattern of the higher inositol phosphate response to AII was manifested within 2 h after exposure to ACTH, and was mimicked by treatment with 8-bromo cyclic AMP or forskolin. Treatment with 50 microM cycloheximide abolished the ACTH-induced increases in inositol polyphosphate responses during AII stimulation, but had no effect on the responses of untreated cells to AII. The conversion of [3H]Ins-1,3,4-P3 to [3H]Ins-1,3,4,6-P4, a reaction linking the receptor-mediated InsP3 response to higher inositol phosphates, was enhanced in permeabilized cells that were pretreated for 16 h with either ACTH or AII. These results demonstrate that the reactions by which Ins-1,3,4,6-P4 and Ins-3,4,5,6-P4 are formed and converted to InsP5 are influenced by agonist-stimulated regulatory processes that include both calcium-dependent and cyclic AMP-dependent mechanisms of target cell activation. They also reveal changes consistent with agonist-induced conversion of InsP5 to its dephosphorylated metabolite, Ins-1,4,5,6-P4, during short-term stimulation by AII.  相似文献   

12.
Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), which mobilizes intracellular Ca2+, is metabolized either by dephosphorylation to inositol 1,4-bisphosphate(Ins-(1,4)P2) or by phosphorylation to inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4). It has been shown in vitro that Ins(1,3,4,5)P4 is also dephosphorylated by a 5-phosphomonoesterase to inositol 1,3,4-trisphosphate. However, we have found that exogenous Ins(1,3,4,5)P4 is dephosphorylated to predominantly Ins(1,4,5)P3 in saponin-permeabilized platelets in the presence of KCl (40-160 mM). This inositol polyphosphate 3-phosphomonoesterase activity is independent of Ca2+ (0.1-100 microM), and it was also observed when the ionic strength of the incubation medium was increased with Na+. The action of KCl appears to be due to activation of a 3-phosphomonoesterase as well as an inhibition of the 5-phosphomonoesterase, because the dephosphorylation of Ins(1,4,5)P3 to Ins(1,4)P2 was completely inhibited by KCl. The 3-phosphomonoesterase may be regulated by a protein kinase C, since both thrombin and phorbol dibutyrate increase 3-phosphomonoesterase activity and this is inhibited by staurosporine. The formation of Ins(1,4,5)P3 from Ins(1,3,4,5)P4 reported here provides an additional pathway for the formation of the Ca2+-mobilizing second messenger in stimulated cells.  相似文献   

13.
Epidermal growth factor (EGF) treatment of A-431 cells induces a biphasic increase in the levels of inositol phosphates. The growth factor produces an initial, rapid increase in the level of inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) due to hydrolysis of phosphatidyl-inositol-4,5-bisphosphate (Wahl, M., Sweatt, J. D., and Carpenter, G. (1987) Biochem. Biophys. Res. Commun. 142, 688-695). The level of inositol 1,3,4,5-tetrakisphosphate (Ins-1,3,4,5-P4) also rises rapidly in response to treatment with EGF. The initial formation (less than 1 min) of Ins-1,4,5-P3 and Ins-1,3,4,5-P4 does not require Ca2+ present in the culture medium. However, the addition of Ca2+ to the medium at levels of 100 microM or greater potentiates the growth factor-stimulated increases in the levels of all inositol phosphates at later times after EGF addition (1-60 min). The data suggest that EGF-receptor complexes initially stimulate the enzyme phospholipase C in a manner that is independent of an influx of extracellular Ca2+. The presence of Ca2+ in the medium allows prolonged growth factor activation of phospholipase C. Treatment of A-431 cells with Ca2+ ionophores (A23187 and ionomycin) did not mimic the activity of EGF in producing a rapid increase in the formation of the Dowex column fraction containing Ins-1,4,5-P3, Ins-1,3,4,5-P4, and inositol 1,3,4-trisphosphate (InsP3). However, the initial EGF-stimulated formation of inositol phosphates was substantially diminished in cells loaded with the Ca2+ chelator Quin 2/AM. EGF receptor occupancy studies indicated that maximal stimulation of InsP3 accumulation by EGF requires nearly full (75%) occupancy of available EGF binding sites, while half-maximal stimulation requires 25% occupancy. 12-O-Tetradecanoylphorbol-13-acetate (TPA), an exogenous activator of Ca2+/phospholipid-dependent protein kinase (protein kinase C), causes a dramatic, but transient, inhibition of the EGF-stimulated formation of inositol phosphates. Tamoxifen and sphingosine, reported pharmacologic inhibitors of protein kinase C activity, potentiate the capacity of EGF to induce formation of inositol phosphates. Neither TPA nor tamoxifen significantly affects the 125I-EGF binding capacity of A-431 cells; however, TPA appeared to enhance internalization of the ligand. Ligand occupation of the EGF receptor on the A-431 cell appears to initiate a complex signaling mechanism involving production of intracellular messengers for Ca2+ mobilization and activation of protein kinase C.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The effects of carbobenzyloxy-leucine-tyrosine-chloromethylketone (zLYCK), an inhibitor of chymotrypsin, were investigated on the activation pathways of the human neutrophil respiratory burst. At 10 microM zLYCK, a parallel inhibition was observed of superoxide production stimulated with the chemo-attractant FMLP and of chymotrypsin-like activity of human neutrophils. By contrast, superoxide production induced by PMA was minimally affected by zLYCK. The known transduction pathways triggered by FMLP were analyzed. zLYCK did not affect either the FMLP-induced cytosolic free calcium transient, inositol 1,4,5 trisphosphate formation, nor the PMA-induced phosphorylation of the 47-kDa substrate of protein kinase C. zLYCK did not affect the activity of protein kinase C extracted from neutrophils. In Ca(2+)-depleted cells, in which phosphatidylinositol 4,5-biphosphate breakdown does not occur, zLYCK inhibited the FMLP-induced respiratory burst in cells primed by low doses of PMA. The activity of the NADPH oxidase tested with active membranes from stimulated neutrophils or in a cell-free system was not inhibited by zLYCK. We conclude that: 1) zLYCK inhibits superoxide production through the inhibition of a chymotrypsin-like protease of the neutrophil, 2) zLYCK inhibits FMLP-induced activation of NADPH oxidase through a pathway independent of PtdInsP2 breakdown and cytosolic free calcium, and 3) zLYCK may prove a useful probe for the characterization of its target protease in neutrophil activation.  相似文献   

15.
The actions of angiotensin II (AII) on inositol polyphosphate production and metabolism were analyzed in cultured bovine adrenal glomerulosa cells. In cells labeled for 24 hr with [3H]inositol, AII caused a rapid and prominent rise in formation of Ins-P3 (mainly the Ins-1,3,4,-P3 isomer) and of Ins-P4, with marked increases in two isomers of Ins-P2 and Ins-P. These findings are consistent with rapid formation and turnover of Ins-1,4,5-P3, partly via conversion to Ins-1,3,4,5-P4 with subsequent metabolism to Ins-1,3,4-P3 and lower inositol phosphates. The demonstration of a cytosolic Ins-P3-kinase gave further evidence for the presence of the tris/tetrakisphosphate pathway and Ins-P4 synthesis during AII action in the bovine adrenal cortex.  相似文献   

16.
Accumulation of inositol phosphates (Ins-Ps, revealed by high performance liquid chromatography), changes of the cytosolic free Ca2+ [( Ca2+]i, revealed by fura-2), membrane potential and ionic currents (revealed by bis-oxonol and patch clamping) were investigated in PC12 cells treated with bradykinin (BK). The phenomena observed were (a) due to the activation of a B2 receptor (inhibitor studies) and (b) unaffected by pertussis toxin, cAMP analogs, and inhibitors of either cyclooxygenase or voltage-gated Ca2+ channels. During the initial tens of s, three interconnected events predominated: accumulation of Ins-1,4,5-P3, Ca2+ release from intracellular stores and hyperpolarization due to the opening of Ca2+-activated K+ channels. Phorbol myristate acetate partially inhibited Ins-1,4,5-P3 accumulation at all [BK] investigated, and the [Ca2+]i increase at [BK] less than 50 nM. In PC12 cells treated with maximal [BK] in the Ca2+-containing incubation medium, Ins-1,4,5-P3 peaked at 10 s, dropped to 20% of the peak at 30 s, and returned to basal within 5 min; the peak increase of Ins-1,3,4-P3 was slower and was variable from experiment to experiment, while Ins-P4 rose for 2 min, and remained elevated for many min thereafter. Meanwhile, influx of Ca2+ from the extracellular medium, plasma membrane depolarization (visible without delay when hyperpolarization was blocked), and increased plasma membrane conductance were noticed. Evidence is presented that these last three events (which were partially inhibited by phorbol myristate acetate at all [BK]) were due to the activation of a cation influx, which was much more persistent than the elevation of the two Ins-P3 isomers. Our results appear inconsistent with the possibility that in intact PC12 cells the BK-induced activation of cation influx is accounted for entirely by the increases of either Ins-1,3,4-P3 or Ins-1,4,5-P3 (alone or in combination with Ins-1,3,4,5-P4), as previously suggested by microinjection studies in different cell types.  相似文献   

17.
The second messenger function of inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) was investigated in carbamylcholine-stimulated RINm5F cells by analysis of the early changes in inositol phosphates, cytosolic free Ca2+ concentration ([Ca2+]i), and insulin secretion. After a lag of 2 s, [Ca2+]i rose to a peak at 13 +/- 2 s, a response which was due mainly to mobilization from intracellular stores since it persisted even in the absence of extracellular Ca2+. The Ca2+ response had already declined toward prestimulatory levels by the time insulin secretion reached its maximal rate (2-3 min). Although the rises in inositol trisphosphate preceded those of both inositol bisphosphate and monophosphate, all three attained maximal concentrations after 1 min and remained elevated for at least 10 min. The accumulation of inositol trisphosphate was truly Ca2+-independent since it persisted under conditions in which the rise in [Ca2+]i was abolished by prior depletion of intracellular Ca2+ pools. Further analysis by high performance liquid chromatography revealed the presence of the two isomers, Ins-1,4,5-P3 and Ins-1,3,4-P3 in stimulated cells. The latter was virtually absent under nonstimulatory conditions but started to accumulate after a 5-s lag and reached maximal levels after 30 s of stimulation. Ins-1,4,5-P3 doubled within 1 s of carbamylcholine addition, reached a peak after 5 s, and, although declining thereafter, remained slightly elevated for at least 3 min. Hence, both the onset and peak of the rise of Ins-1,4,5-P3 preceded that of [Ca2+]i, which in turn preceded the peak in insulin release. These results strongly suggest that Ins-1,4,5-P3 acts as the second messenger by which carbamylcholine mobilizes intracellular Ca2+ during the initiation of insulin release.  相似文献   

18.
A very high density of stereospecific binding sites for inositol-(1,4,5)P3 have been identified in rat cerebellar membranes using [3H]inositol-(1,4,5)P3 and a rapid centrifugation step to separate free and bound ligand. Binding was shown to be rapid and reversible and of relatively high affinity (KD 23 nM). Incubations were carried out at 4 degrees and under these conditions HPLC analysis demonstrated that there was no significant metabolism of [3H]-(1,4,5)P3 in the presence or absence of ATP over 15 min. The specificity of the site has been carefully evaluated using both natural and novel synthetic inositol phosphates. The stereospecificity is very marked with the D-, DL- and L-isomers of Ins(1,4,5)P3 showing a 1:4:2000 ratio of affinity for the binding site. D-Ins(2,4,5)P3 was the only other phosphate to show relatively high affinity (KD 1500 nM). HPLC-pure Ins(1,3,4)P3 and Ins(1,3,4,5)P4 were substantially weaker and Ins(1,4)P2, Ins-2-P1, Ins-1-P1, Ins(1,2)-cyclic P1 and inositol were totally inactive at concentrations less than 50 microM. These data are discussed in relation to a putative receptor on the endoplasmic reticulum by which Ins(1,4,5)P3 can initiate the release of bound Ca2+.  相似文献   

19.
EGF is a low molecular weight polypeptide hormone which acts as a regulator of cell growth and differentiation. The A-431 cell line has been used frequently to examine receptor-mediated biochemical effects of EGF, since this cell line has an increased (20-50 fold) level of EGF receptors. We have utilized A-431 cells to examine the influence of EGF on formation of an intracellular second messenger, inositol, 1,4,5-trisphosphate (Ins-1,4,5-P3), and other inositol phosphates. The results show that EGF induces rapid formation of Ins-1,4,5-P3 as well as Ins-1,3,4-P3 and Ins-1,3,4,5-P4. There is a concurrent decrease in the level of the lipid precursor for Ins-1,4,5-P3, phosphatidylinositol 4,5-biphosphate (PIP2). Furthermore, we have examined five other cell lines that overexpress the EGF receptor and find that EGF treatment induces formation of inositol polyphosphates in those cell lines also.  相似文献   

20.
Stimulation of aldosterone production by angiotensin II in the adrenal glomerulosa cell is mediated by increased phosphoinositide turnover and elevation of intracellular Ca2+ concentration. In cultured bovine glomerulosa cells, angiotensin II caused rapid increases in inositol-1,4,5-trisphosphate (Ins-1,4,5-P3) levels and cytosolic Ca2+ during the first minute of stimulation, when both responses peaked between 5 and 10 s and subsequently declined to above-baseline levels. In addition to this temporal correlation, the dose-response relationships of the angiotensin-induced peak increases in cytosolic Ca2+ concentrations and Ins-1,4,5-P3 levels measured at 10 s were closely similar. However, at later times (greater than 1 min) there was a secondary elevation of Ins-1,4,5-P3, paralleled by increased formation of inositol 1,3,4,5-tetrakisphosphate that was associated with cytosolic Ca2+ concentrations only slightly above the resting value. These results are consistent with the primary role of Ins-1,4,5-P3 in calcium mobilization during activation of the glomerulosa cell by angiotensin II. They also suggest that Ins-1,4,5-P3 participates in the later phase of the target-cell response, possibly by acting alone or in conjunction with its phosphorylated metabolites to promote calcium entry and elevation of cytosolic Ca2+ during the sustained phase of aldosterone secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号