首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary The light chain of tetanus neurotoxin (TeNTL chain) has been shown to be endowed with zine endopeptidase activity, selectively directed towards the Gln76-Phe77 bond of synaptobrevin, a vesicle-associated membrane protein critically involved in neuroexocytosis. In previous reports, truncations at the NH2- and COOH-terminus of synaptobrevin have shown that the sequence 39–88 of synaptobrevin is the minimum substrate of TeNT, suggesting either the requirement of a well-defined three-dimensional structure of synaptobrevin or a role in the mechanism of substrate hydrolysis for residues distal from the cleavage site. In this study, the addition of NH2- and COOH-terminal peptides of synaptobrevin, S 27–55 (S1) and S 82–93 (S2), to the synaptobrevin fragment S 56–81 allowed the cleavage of this latter peptide by TeNT to occur. This appears to result from an activation process mediated by the simultaneous binding of S1 and S2 with complementary sites present on TeNT as shown by surface plasmon resonance experiments. All these results favor an exosite-controlled hydrolysis of synaptobrevin by TeNT probably involving a conformational change of the toxin. This could accound for the high degree of substrate specificity of TeNT and, probably, botulinum neurotoxins.  相似文献   

2.
Summary A study of the effects of malathion and parathion applied at 10 and 50 g/g of soil on transformations of urea and (NH4)2SO4–N in a sandy loam showed that the insecticides retarded urea hydrolysis as well as nitrification of urea and (NH4)2SO4–N. At 50 parts/106 rate of the insecticides, inhibition of urea hydrolysis ranged from 44 to 61% after 0.5 week and from 7 to 21% after 3 weeks of application. The insecticides inhibited the conversion of NH4 + to NO2 without appreciably affecting the subsequent oxidation of NO2 to NO3 –N. This resulted in accumulation of higher amounts of NH4 +–N in soil samples treated with ammonium sulfate or urea N.The results suggest that transformations of urea and NH4 + fertilizers in soils may be influenced by the amount of organophosphorus insecticide present and this may affect plant nutrition and fertilizer use.  相似文献   

3.
The isotope exchange between35S-labeled sulfur compounds of sulfate (SO4 2–), elemental sulfur (S0), polysulfide (Sn 2–), hydrogen sulfide (HS: H2S + HS + S2–), iron sulfide (FeS), and pyrite (FeS2) was studied at pH 7.6 and 20 °C in anoxic, sterile seawater. Isotope exchange was observed between S0, S2 2– HS, and FeS, but not between35S labeled SO4 2– or FeS2 and the other sulfur compounds. Polysulfide mediated the isotope exchange between S0 and bisulfide (HS). The isotope exchange between S0 and Sn 2–) reached 50% of equilibrium within < 2 min while exchange between S2 2– and HS approached equilibrium within 0.5-1 h. In all the experiments HS, revealed a fraction exchange from 0.79 to 1.00. Isotope exchange between S2– and FeS took place only via S2 2– and/or HS. The isotope exchange between iron sulfide and the other sulfur compounds was not complete within 24 h as shown by a fraction exchange of 0.07–0.83. This lack of equilibrium (fraction exchange < 1) was due to the isotope exchange between dissolved compounds and surfaces of sulfur particles. The isotopic exchange reactions limit the usefulness of radiotracers in process studies of the inorganic sulfur species. Exchange reactions will also affect the stable isotope distribution among the sulfur species. The kinetics of the isotopic exchange reactions, however, depend on both pH and temperature.  相似文献   

4.
Recombinant DNA techniques were used to develop an expression system for a 51-amino acid peptide fragment that encompasses residues 44–94 of human synaptobrevin 2. This protein is associated with secretory vesicles of nerve terminals and is a substrate for four of the seven serotypes of botulinum neurotoxin (BoNT). The DNA for the recombinant peptide was amplified by the polymerase chain reaction and cloned into the pTrxFus vector. The resulting synaptobrevin peptide was expressed as a thioredoxin fusion protein in E. coli and released into the medium by osmotic lysis. The 18.7-kDa thioredoxin-synaptobrevin protein, designated as TSB-51, is intended for use in a cell-free assay to test potential inhibitors of BoNT/B-mediated proteolysis of synaptobrevin with the ultimate aim of developing clinically effective therapeutic agents to counteract botulism. Incubation of TSB-51 with the purified light chain of BoNT/B resulted in proteolysis which was evident within 30 min and increased with time until completion (4 hr). Cleavage of TSB-51 appeared to be at the appropriate BoNT/B cleavage site as indicated by a reduced intensity of the 18.7-kDa band and the appearance of a band at 16.4 kDa on Tris-tricene polyacrylamide gradient gels. The concentration of free Zn2+ had a significant effect on the cleavage rate; low Zn2+ concentrations stimulated substrate cleavage, whereas high concentrations were inhibitory. Cleavage was not significantly depressed by the naturally occurring metalloprotease inhibitor phosphoramidon when tested at concentrations up to 5 mM. TSB-51 appears to be a useful substrate for studying BoNT/B and is expected to aid in the discovery of effective BoNT inhibitors.  相似文献   

5.
The hydrolysis of settleable substrate in domestic sewage was evaluated using its O2 utilization rate profile generated in an aerated batch reactor. The hydrolysis rate coefficient was 1.2 d–1, significantly lower than 3.8 d–1 and 1.9 d–1 characterizing soluble and suspended slowly biodegradable fractions. The settled portion of the sewage incorporated an active biomass fraction of 1560 mg COD l–1 that needed to be accounted for in the hydrolysis kinetics. The texture of the biomass/settled substrate mixture and the gradual hydrolysis of the particulate substrate within the floc structure were examined by microscopic analysis.  相似文献   

6.
Enteropeptidase (enterokinase EC 3.4.21.9), catalyzing trypsinogen activation, exhibits unique properties for high efficiency hydrolysis of the polypeptide chain after the N-terminal tetraaspartyl-lysyl sequence. This makes it a convenient tool for the processing of fusion proteins containing this sequence. We found the enteropeptidase-catalysing degradation of some bioactive peptides: cattle hemoglobin beta-chain fragments Hb (2–8) (LTAEEKA) and Hb (1–9) (MLTAEEKAA), human angiotensin II (DRVYIHPF) (AT). Model peptideswith truncated linker WDDRG and WDDKG also were shown to be susceptible to enteropeptidase action. Kinetic parameters ofenteropeptidase hydrolysis for these substrates were determined.K m values for all substrates with truncated linker (10-3 M) are an order of magnitude higher thancorresponding values for typical enteropeptidase artificial peptide or fusion protein substrates with full enteropeptidase linker –DDDDK– (K m 10-4 M). k cat values for AT, Hb (2–8), WDDRG and WDDKG are 30–40 min-1. But one additional amino acid residue at both N- and C-terminus of Hb (2–8) results in a drastic increase of hydrolysis efficiency: k cat value for Hb (1–9) is 1510 min-1. Recent study demonstrates the possibility of undesirable cleavage of target peptides or proteins containing the above-mentioned truncated linker sequences; further, the ability of enteropeptidase to hydrolyse specifically several biologically active peptides in vitro along with its unique natural substrate trypsinogen was demonstrated.  相似文献   

7.
Summary The linear growth phase in cultures limited by intracellular (conservative) substrate is represented by a flat exponential curve. Within the range of experimental errors, the presented model fits well the data from both batch and continuous cultures ofEscherichia coli, whose growth is limited in that way.List of symbols D dilution rate, h–1 - KS saturation constant, g.L–1 - S concentration of the limiting substrate, g.L–1 - Si concentration of the limiting substrate accumulated in the cells, g.g–1 - So initial concentration of the limiting substrate, g.L–1 - t time of cultivation, h - t1 time of exhaustion of the limiting substrate from medium, h - to beginning of exponential phase, h - X biomass concentration, g.L–1 - X1 biomass concentration at the time of exhaustion of the limiting substrate from the medium, g.L–1 - Xo biomass concn. at the beginning of exponential phase, g.L–1 - biomass concn. at steady-state, g.L–1 - Y growth yield coefficient (biomass/substrate) - specific growth rate, h–1 - m maximum specific growth rate, h–1  相似文献   

8.
Botulinum neurotoxins (BoNTs) and tetanus neurotoxin (TeNT) inhibit neurotransmitter release by proteolyzing a single peptide bond in one of the three soluble N-ethylmaleimide-sensitive factor attachment protein receptors SNAP-25, syntaxin, and vesicle-associated membrane protein (VAMP)/synaptobrevin. TeNT and BoNT/B, D, F, and G of the seven known BoNTs cleave the synaptic vesicle protein VAMP/synaptobrevin. Except for BoNT/B and TeNT, they cleave unique peptide bonds, and prior work suggested that different substrate segments are required for the interaction of each toxin. Although the mode of SNAP-25 cleavage by BoNT/A and E has recently been studied in detail, the mechanism of VAMP/synaptobrevin proteolysis is fragmentary. Here, we report the determination of all substrate residues that are involved in the interaction with BoNT/B, D, and F and TeNT by means of systematic mutagenesis of VAMP/synaptobrevin. For each of the toxins, three or more residues clustered at an N-terminal site remote from the respective scissile bond are identified that affect solely substrate binding. These exosites exhibit different sizes and distances to the scissile peptide bonds for each neurotoxin. Substrate segments C-terminal of the cleavage site (P4-P4') do not play a role in the catalytic process. Mutation of residues in the proximity of the scissile bond exclusively affects the turnover number; however, the importance of individual positions at the cleavage sites varied for each toxin. The data show that, similar to the SNAP-25 proteolyzing BoNT/A and E, VAMP/synaptobrevin-specific clostridial neurotoxins also initiate substrate interaction, employing an exosite located N-terminal of the scissile peptide bond.  相似文献   

9.
Magnetite-producing magnetotactic bacteria collected from the oxic–anoxic transition zone of chemically stratified marine environments characterized by O2/H2S inverse double gradients, contained internal S-rich inclusions resembling elemental S globules, suggesting they oxidize reduced S compounds that could support autotrophy. Two strains of marine magnetotactic bacteria, MV-1 and MV-2, isolated from such sites grew in O2-gradient media with H2S or thiosulfate (S2O32–) as electron sources and O2 as electron acceptor or anaerobically with S2O32– and N2O as electron acceptor, with bicarbonate (HCO3)/CO2 as sole C source. Cells grown with H2S contained S-rich inclusions. Cells oxidized S2O32– to sulfate (SO42–). Both strains grew microaerobically with formate. Neither grew microaerobically with tetrathionate (S4O62–), methanol, or Fe2+ as FeS, or siderite (FeCO3). Growth with S2O32– and radiolabeled 14C-HCO3 showed that cell C was derived from HCO3/CO2. Cell-free extracts showed ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) activity. Southern blot analyses indicated the presence of a form II RubisCO (cbbM) but no form I (cbbL) in both strains. cbbM and cbbQ, a putative post-translational activator of RubisCO, were identified in MV-1. MV-1 and MV-2 are thus chemolithoautotrophs that use the Calvin–Benson–Bassham pathway. cbbM was also identified in Magnetospirillum magnetotacticum. Thus, magnetotactic bacteria at the oxic–anoxic transition zone of chemically stratified aquatic environments are important in C cycling and primary productivity.  相似文献   

10.
This field manipulation study tested the effect of weekly pulses of solutions of NH4NO3 and (NH4)2SO4 salts on the evolution of CH4 and N2O from peatland soils. Methane and nitrous oxide emission from a nutrient-poor fen in northern Minnesota USA was measured over a full growing season from plots receiving weekly additions of NH4NO3 or (NH4)2SO4. At this relatively pristine site, natural additions of N and S in precipitation occur at 8 and 5 kg ha–1 y–1, respectively. Nine weekly additions of the dissolved salts were made to increase this to a total deposition of 31 kg N ha–1 y–1 on the NH4NO3-amended plots and 30 and 29 kg ha–1 y–1 of N and S, respectively, in the (NH4)2SO4-amended plots. Methane flux was measured weekly from treatment and control plots and all data comparisons are made on plots measured on the same day.After the onset of the treatments, and over the course of the growing season, CH4 emission from the (NH4)2SO4-amended plots averaged 163 mg CH4 m–2 d–1, significantly lower than the same-day control plot mean of 259 mg CH4 m–2 d–1 (repeated measures ANOVA). Total CH4 flux from (NH4)2SO4 treatment plots was one third lower than from control plots, at 11.7 and 17.1 g CH4 m–2, respectively. Methane emission from the NH4NO3-amended plots (mean of 256 mg CH4 m–2 d–1) was not significantly different from that of controls measured on the same day (mean of 225 mg CH4 m–2 d–1). Total CH4 flux from NH4NO3 treatment plots and same-day controls was 16.9 and 15.1 g CH4 m–2, respectively. In general, stable, relatively warm and wet periods followed by environmental `triggers' such as rainfall or changes in water table or atmospheric pressure, which produced a CH4 `pulse' in the other plots, produced no observable peak in CH4 emission from the (NH4)2SO4-amended plots. Nitrous oxide emission from all of the plots was below the detection limit over the course of the experiment.  相似文献   

11.
Summary The influence of temperature on the growth of the theromophilic Bacillus caldotenax was investigated using chemostat techniques and a chemically defined minimal medium. All determined growth constants, that is maximal specific growth rate, yield and maintenance, were temperature dependent. It was striking that the very large maintenance requirement was about 10 times higher than for mesophilic cells under equivalent conditions. A death rate, which was very substantial at optimal and supraoptimal growth temperatures, was estimated by comparing the maintenance for substrate and oxygen. There was no indication for a thermoadaptation as postulated by Haberstich and Zuber (1974).Symbols D Dilution rate (h–1) - Dc=max Critical dilution rate (h–1) - E Temperature characteristic (J mol–1) - k Organism constant - kd Death rate coefficient (h–1) - km Maintenance substrate coefficient estimated from MO (h–1) - MO Maintenance respiration, mmol O2 per g dry biomass and h (mmol g–1h–1) - MO Maintenance respiration, taking kd into account - mS Maintenance substrate coefficient, g glucose per g dry biomass and h (h–1) - OD Optical density at 546 nm - QO2 Specific O2-uptake rate (mmol g–1h–1) - Q O2 V Specific O2-uptake rate for viable portion of biomass (mmol g–1 h–1) - QS Specific glucose uptake rate (h–1) - Q S V Specific glucose uptake rate for viable portion of biomass (h–1) - R Gas constant 8.28 J mol–1K–1 - S Substrate concentration in reactor (g l–1) - SO Influent substrate concentration (g l–1) - Tmax Maximal growth temperature (°C) - Tmin Minimal growth temperature (°C) - X Dry biomass (g l–1) - XtOt=X Dry biomass containing dead and viable cells - Xv Viable portion of biomass - Y O m Potential yield for O2 corrected for maintenance respiration (g mol–1) - Y S m Potential yield for substrate corrected for maintenance requirement, g biomass per g glucose (–) - Specific growth rate (h–1) - max Maximal specific growth rate (h–1)  相似文献   

12.
Summary Chaetomium cellulolyticum (ATCC 32319) was cultivated on glucose, Avicel and/or Sigmacell in a 20-1 stirred tank batch reactor. The substrate (cellulose) concentration, the cell mass concentration (through protein and/or nitrogen content), reducing sugar concentration, the enzyme activity, the alkali consumption rate, the dissolved O2 and CO2 concentrations in the outlet gas were measured. The specific growth rate, the substrate yield coefficient, cell productivity, the oxygen consumption rate, the CO2 production rate and the volumetric mass transfer coefficient were determined. At the beginning of the growth phase the oxygen utilization rate exhibits a sharp maximum. This maximum could be used to start process control. Because of the long lag phase periodic batch operation is recommended.Symbols CP cell protein concentration (g l–1) - FPA FP enzyme activity (IU l–1) - GP dissolved protein concentration (g l–1) - IU international unit of enzyme activity - kLa volumetric mass tranfer coefficient (h–1) - LG alkali (1 n NaOH) consumption (ml) - LGX specific alkali consumption rate per cell mass (ml g–1 h–1) - P cell mass productivity (g l–1 h–1) - specific oxygen consumption rate per cell mass (g g–1 h–1) - Q aeration rate (volumetric gas flow rate per volume of medium, vvm) (min–1) - N impeller speed (revolution per minute, rpm) (min–1) - S substrate concentration (g l–1) - S0 S at tF=0 (g l–1) - S0 S in feed (g l–1) - SR acid consumption (ml) - TDW total dry weight (g l–1) - T temperature (° C) - tF cultivation time (h) - U substrate conversion - X cell mass concentration (g l–1) - YX/S vield coefficient - specific growth rate (h–1) - m maximum specific growth rate (h–1)  相似文献   

13.
Divalent metal ions promote hydrolysis of RNA backbones generating 5′OH and 2′;3′P as cleavage products. In these reactions, the neighboring 2′OH act as the nucleophile. RNA catalyzed reactions also require divalent metal ions and a number of different metal ions function in RNA mediated cleavage of RNA. In one case, the LZV leadzyme, it was shown that this catalytic RNA requires lead for catalysis. So far, none of the naturally isolated ribozymes have been demonstrated to use lead to activate the nucleophile. Here we provide evidence that RNase P RNA, a naturally trans-acting ribozyme, has leadzyme properties. But, in contrast to LZV RNA, RNase P RNA mediated cleavage promoted by Pb2+ results in 5′ phosphate and 3′OH as cleavage products. Based on our findings, we infer that Pb2+ activates H2O to act as the nucleophile and we identified residues both in the substrate and RNase P RNA that most likely influenced the positioning of Pb2+ at the cleavage site. Our data suggest that Pb2+ can promote cleavage of RNA by activating either an inner sphere H2O or a neighboring 2′OH to act as nucleophile.  相似文献   

14.
Mathematical model parameters for the methanogenic degradation of propylene glycol were estimated in a sequential manner by means of an optimization technique. Model parameters determined from an initial experimental data set using one bioreactor were then verified with the results from a second bioreactor. The proposed methodology is a useful tool to obtain model parameters for continuous flow reactors with completely mixed regime. Abbrevations: S – substrate concentration (mg COD l–1); S in – influent substrate concentration (mg COD l–1); D L – dilution rate (day–1); – stoichiometric coefficients (ND); nx – number of microbial species (ND); X S – fixed biomass concentration (mg biomass l–1); X L – suspended biomass concentration of (mg biomass l–1); k d – decay rate of biomass (day–1); b S – specific detachment rate of biofilm (day–1); – specific growth rate of biomass (day–1); m – maximum specific growth rate of biomass (day–1); K S – half saturation constant (mg COD l–1); K I – inhibition constant (mg COD l–1).  相似文献   

15.
Sulfate reduction and S-oxidation in a moorland pool sediment   总被引:3,自引:2,他引:1  
In an oligotrophic moorland pool in The Netherlands, S cycling near the sediment/water boundary was investigated by measuring (1) SO4 2– reduction rates in the sediment, (2) depletion of SO4 2– in the overlying water column and (3) release of35S from the sediment into the water column. Two locations differing in sediment type (highly organic and sandy) were compared, with respect to reduction rates and depletion of SO4 2– in the overlying water.Sulfate reduction rates in sediments of an oligotrophic moorland pool were estimated by diagenetic modelling and whole core35SO4 2– injection. Rates of SO4 2– consumption in the overlying water were estimated by changes in SO4 2– concentration over time in in situ enclosures. Reduction rates ranged from 0.27–11.2 mmol m–2 d–1. Rates of SO4 2– uptake from the enclosed water column varied from –0.5, –0.3 mmol m–2 d–1 (November) to 0.43–1.81 mmol m–2 d–1 (July, August and April). Maximum rates of oxidation to SO4 2– in July 1990 estimated by combination of SO4 2– reduction rates and rates of in situ SO4 2– uptake in the enclosed water column were 10.3 and 10.5 mmol m–2 d–1 at an organic rich and at a sandy site respectively.Experiments with35S2– and35SO4 2– tracer suggested (1) a rapid formation of organically bound S from dissimilatory reduced SO4 2– and (2) the presence of mainly non SO4 2–-S derived from reduced S transported from the sediment into the overlying water. A35S2– tracer experiment showed that about 7% of35S2– injected at 1 cm depth in a sediment core was recovered in the overlying water column.Sulfate reduction rates in sediments with higher volumetric mass fraction of organic matter did not significantly differ from those in sediments with a lower mass fraction of organic matter.Corresponding author  相似文献   

16.
Summary Optimal growth conditions for Zymomonas mobilis have been established using continuous cultivation methods. Optimal substrate utilization efficiency occurs with 2.5 g l–1 yeast extract, 2.0 g l–1 ammonium sulfate and 6.0 g l–1 magnesium sulfate in the media. Catabolic activity is at its maximum with glucose uptake rates of 16–18 g l–1 h–1 and ethanol production rates of 8–9 g l–1 h–1, Qg values of 22–26 and Qp values between 11 and 13, which results in 40 g l–1 h–1 ethanol yields using a 100 g l–1 substrate feed. Any increase in these parameters goes on cost of substrate utilization efficiency. Calcium pantothenate can not substitute yeast extract.Abbreviations G Glucose (%) - Pant Calcium pantothenate (mg l–1) - D Dilution rate (h–1) - NH4 Ammonium sulfate (%) - Mg Magnesium sulfate (%) - S1 Residual glucose in the fermenter (g l–1) - S0 Glucose feed (g l–1) - Eth Ethanol concentration (g l–1) - GUR Glucose uptake rate (g l–1 h–1) - Qg Specific glucose uptake rate (g g–1 h–1) - Qp Specific ethanol production rate (g g–1 h–1) - EPR Ethanol production rate (g l–1 h–1) - Yg Yield coefficient for glucose (g g–1) - Yp Conversion efficiency (%) - C Biomass concentration (g l–1) Present address: (Until June 1982) Institut für Mikrobiologie, TH Darmstadt, 6100 Darmstdt, Federal Republic of Germany  相似文献   

17.
The dynamics of inorganic N are important in soil, and this applies particularly to the saline–alkaline soils of the former lake Texcoco in Mexico with high pH and salinity where a forestation program was started in the 1970s. In soils of lake Texcoco, in Mexico, more than 50% of applied N could not be accounted for one day after application of 200 mg kg–1 soil along with glucose amendment. It was not clear whether this was due to abiotic or biotic processes, the form of inorganic N applied or the result of applying an easily decomposable substrate. We investigated this by adding glucose and 200 mg kg–1 soil as (NH4)2SO4-N or KNO3-N to sterilized and unsterilized soil. The changes in inorganic and ninhydrin N, microbial biomass C and production of CO2 were then monitored. Between the time of applying N and extraction with 0.5 M K2SO4, i.e., after ca 2 h, approximately 110 mg NH4 +-N kg–1 dry soil could not be accounted for in the unsterilized and sterilized soil and that remained so for the entire incubation in the sterilized soil. After 1 day this increased to 140 mg NH4 +-N kg–1 dry soil in the unsterilized control and 170 mg NH4 +-N kg–1 dry soil in C amended soil. Volatilization of NH3 accounted for 56 mg NH4 +-N kg–1 so the rest appeared to be adsorbed on the soil matrix. The NH3 volatilization and NH4 + fixed in the soil matrix remained constant over time and no oxidation to NO2 or NO3 had occurred, so unaccounted N in unsterilized soil was probably incorporated into the microbial biomass in excess of what was required for metabolic activity. The unaccounted N was ca 70 mg NO3 –N in nitrate amended soil after 3 days and 138 NO3 –N when glucose was additionally added. Losses through abiotic processes were absent as inferred from changes in sterilized soil and the aerobic incubation inhibited possible losses through denitrification. It was inferred that NO3 that could not be accounted for was taken up by micro-organisms in excess of what was required for metabolic activity.  相似文献   

18.
We synthesized three types of 11mer substrate, namely the natural substrate S11O and the thiosubstituted substrates S11SpS and S11RpS, in which the respective pro-Sp and pro-Rp oxygen atoms were replaced by sulfur, and subjected them to detailed kinetic analysis in the cleavage reaction catalyzed by a hammerhead ribozyme. In agreement with previous findings, in the presence of Mg2+ or Ca2+ ions the rate of ribozyme-catalyzed cleavage of S11SpS was as high as that of S11O, whereas the corresponding rate for S11RpS was nearly four orders of magnitude lower than that for either S11O or S11SpS. However, the rate of the ribozyme-catalyzed reaction with each of the three substrates was enhanced by Cd2+ ions. Such results have generally been taken as evidence that supports the direct interaction of the sulfur atom at the Rp position of the cleavage site with the added Cd2+ ion. However, our present analysis demonstrates that (i) the added Cd2+ ion binds at the P9 site; (ii) the bound Cd2+ ion at the P9 site replaces two Mg2+ or two Ca2+ ions, an observation that suggests a different mode of interaction with the added Cd2+ ion; and, most importantly and in contrast to the conclusion reached by other investigators, (iii) the Cd2+ ion does not interact with the sulfur atom at the Rp position of the scissile phosphate either in the ground state or in the transition state.  相似文献   

19.
Endonucleolytic processing of precursor tRNAs (ptRNAs) by RNase P yields 3′-OH and 5′-phosphate termini, and at least two metal ions are thought to be essential for catalysis. To determine if the hydrolysis reaction catalyzed by bacterial RNase P (RNAs) involves stabilization of the 3′-oxyanion leaving group by direct coordination to one of the catalytic metal ions, ptRNA substrates with single 3′-S-phosphorothiolate linkages at the RNase P cleavage site were synthesized. With a 3′-S-phosphorothiolate-modified ptRNA carrying a 7 nt 5′-flank, a complete shift of the cleavage site to the next unmodified phosphodiester in the 5′-direction was observed. Cleavage at the modified linkage was not restored in the presence of thiophilic metal ions, such as Mn2+ or Cd2+. To suppress aberrant cleavage, we also constructed a 3′-S-phosphorothiolate-modified ptRNA with a 1 nt 5′-flank. No detectable cleavage of this substrate was seen in reactions catalyzed by RNase P RNAs from Escherichia coli and Bacillus subtilis, independent of the presence of thiophilic metal ions. Ground state binding of modified ptRNAs was not impaired, suggesting that the 3′-S-phosphorothiolate modification specifically prevents formation of the transition state, possibly by excluding catalytic metal ions from the active site.  相似文献   

20.
The best culture medium composition for the production of bikaverin by Gibberella fujikuroi in shake-flasks, i.e. 100 g glucose l–1; 1 g NH4Cl l–1; 2 g rice flour l–1; 5 g KH2PO4 l–1 and 2.5 g MgSO4 l–1, was obtained through a fractional factorial design and then scaled-up to a fluidized bioreactor. The effects of carbon and nitrogen concentrations, inoculum size, aeration, flow rate and bead sizes on batch bikaverin production using immobilized G. fujikuroi in a fluidized bioreactor were determined by an orthogonal experimental design. Concentrations of up to 6.83 g bikaverin l–1 were obtained when the medium contained 100 g glucose l–1 and 1 g NH4Cl l–1 with an inoculum ratio of 10% v/v, an aeration rate of 3 volumes of air per volume of medium min–1, and a bead size of 3 mm. Based on dry weight, the bikaverin production was 30–100 times larger than found in submerged culture and approximately three times larger than reported for solid substrate fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号