首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The invasive fungal pathogen Cronartium ribicola infects and kills whitebark pine (Pinus albicaulis) throughout western North America. Whitebark pine has been proposed for listing under the Endangered Species Act in the USA, and the loss of this species is predicted to have severe impacts on ecosystem composition and function in high‐elevation forests. Numerous fungal endophytes live inside whitebark pine tissues and may influence the severity of C. ribicola infection, either directly by inhibition of pathogen growth or indirectly by the induction of chemical defensive pathways in the tree. Terpenes, a form of chemical defence in pine trees, can also influence disease. In this study, we characterized fungal endophyte communities in whitebark pine seedlings before and after experimental inoculation with C. ribicola, monitored disease progression and compared fungal community composition in susceptible vs. resistant seedlings in a common garden. We analysed the terpene composition of these same seedlings. Seed family identity or maternal genetics influenced both terpenes and endophyte communities. Terpene and endophyte composition correlated with disease severity, and terpene concentrations differed in resistant vs. susceptible seedlings. These results suggest that the resistance to C. ribicola observed in natural whitebark pine populations is caused by the combined effects of genetics, endophytes and terpenes within needle tissue, in which initial interactions between microbes and hosts take place. Tree genotype, terpene and microbiome combinations associated with healthy trees could help to predict or reduce disease severity and improve outcomes of future tree breeding programmes.  相似文献   

2.
Interactions of Neotyphodium gansuense, Achnatherum inebrians, and nine fungal pathogens were studied by tests of inhibition of four fungal pathogens by Neotyphodium endophytes in vitro and by inoculation of nine fungal pathogens on detached leaves of endophyte-infected (E+) and endophyte-free (E−) plants. Compared with the controls, most isolates of N. gansuense significantly inhibited the growth in vitro of, in decreasing order of inhibition, Bipolaris sorokiniana, Curvularia lunata, Fusarium acuminatum, and Alternaria alternata. Inhibition zones appeared between pathogens and some isolates of N. gansuense. Some isolates of N. gansuense significantly inhibited sporulation of B. sorokiniana, A. alternata, and C. lunata. However, there was no significant inhibition of F. acuminatum and a few isolates significantly increased sporulation. The leaf inoculation trial indicated that almost all fungal pathogens were able to cause lesions on detached leaves regardless of endophyte status. Both the number and size of disease lesions on E+ A. inebrians leaves caused by A. alternata, F. chlamydosporum, F. oxysporum, and F. solani were reduced compared with those on E− leaves. Only lesion numbers (not size) of Ascochyta leptospora leaf spots were significantly reduced on E+ leaves compared with E− leaves. Conversely, only the length of Ascochyta leptospora leaf spots were significantly smaller on E+ leaves than on E− leaves; numbers of lesions were not significantly affected. C. lunata was strongly pathogenic to both E+ and E− leaves and numerous lesions developed and merged into patches, the leaf surface was covered and the leaf rotted away.  相似文献   

3.
    
《Phytomedicine》2014,21(12):1559-1581
This article focuses on the occurrence and biological activities of cyclobutane-containing (CBC) alkaloids obtained from fungi, fungal endophytes, and plants. Naturally occurring CBC alkaloids are of particular interest because many of these compounds display important biological activities and possess antitumour, antibacterial, antimicrobial, antifungal, and immunosuppressive properties. Therefore, these compounds are of great interest in the fields of medicine, pharmacology, medicinal chemistry, and the pharmaceutical industry. Fermentation and production of CBC alkaloids by fungi and/or fungal endophytes is also discussed. This review presents the structures and describes the activities of 98 CBC alkaloids.  相似文献   

4.
DNA sequencing continues to decrease in cost with the Illumina HiSeq2000 generating up to 600 Gb of paired-end 100 base reads in a ten-day run. Here we present a protocol for community amplicon sequencing on the HiSeq2000 and MiSeq Illumina platforms, and apply that protocol to sequence 24 microbial communities from host-associated and free-living environments. A critical question as more sequencing platforms become available is whether biological conclusions derived on one platform are consistent with what would be derived on a different platform. We show that the protocol developed for these instruments successfully recaptures known biological results, and additionally that biological conclusions are consistent across sequencing platforms (the HiSeq2000 versus the MiSeq) and across the sequenced regions of amplicons.  相似文献   

5.
We offer a guide to de novo genome assembly1 using sequence data generated by the Illumina platform for biologists working with fungi or other organisms whose genomes are less than 100 Mb in size. The guide requires no familiarity with sequencing assembly technology or associated computer programs. It defines commonly used terms in genome sequencing and assembly; provides examples of assembling short-read genome sequence data for four strains of the fungus Grosmannia clavigera using four assembly programs; gives examples of protocols and software; and presents a commented flowchart that extends from DNA preparation for submission to a sequencing center, through to processing and assembly of the raw sequence reads using freely available operating systems and software.  相似文献   

6.
    
Phylogenetic distance among host species represents a proxy for host traits that act as biotic filters to shape host‐associated microbiome community structure. However, teasing apart potential biotic assembly mechanisms, such as host specificity or local species interactions, from abiotic factors, such as environmental specificity or dispersal barriers, in hyperdiverse, horizontally transmitted microbiomes remains a challenge. In this study, we tested whether host phylogenetic relatedness among 18 native Asteraceae plant species and spatial distance between replicated plots in a common garden affects foliar fungal endophyte (FFE) community structure. We found that FFE community structure varied significantly among host species, as well as host tribes, but not among host subfamilies. However, FFE community dissimilarity between host individuals was not significantly correlated with phylogenetic distance between host species. There was a significant effect of spatial distance among host individuals on FFE community dissimilarity within the common garden. The significant differences in FFE community structure among host species, but lack of a significant host phylogenetic effect, suggest functional differences among host species not accounted for by host phylogenetic distance, such as metabolic traits or phenology, may drive FFE community dissimilarity. Overall, our results indicate that host species identity and the spatial distance between plants can determine the similarity of their microbiomes, even across a single experimental field, but that host phylogeny is not closely tied to FFE community divergence in native Asteraceae.  相似文献   

7.
    
The microbiomes of rhizocompartments (nodule endophytes, root endophytes, rhizosphere and root zone) in soya bean and alfalfa were analysed using high‐throughput sequencing to investigate the interactions among legume species, microorganisms and soil types. A clear hierarchical filtration of microbiota by plants was observed in the four rhizocompartments – the nodule endosphere, root endosphere, rhizosphere and root zone – as demonstrated by significant variations in the composition of the microbial community in the different compartments. The rhizosphere and root zone microbial communities were largely influenced by soil type, and the nodule and root endophytes were primarily determined by plant species. Diverse microbes inhabited the root nodule endosphere, and the corresponding dominant symbiotic rhizobia belonged to Ensifer for alfalfa and EnsiferBradyrhizobium for soya bean. The nonsymbiotic nodule endophytes were mainly Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes. The variation in root microbial communities was also affected by the plant growth stage. In summary, this study demonstrated that the enrichment process of nodule endophytes follows a hierarchical filtration and that the bacterial communities in nodule endophytes vary according to the plant species.  相似文献   

8.
    
《Fungal biology》2022,126(8):534-546
While many Australian terrestrial orchids have highly specialized mycorrhizal associations, we tested the hypothesis that the geographically widespread orchid genus Cryptostylis associates with a diversity of fungal species. Using fungal isolation and molecular approaches, we investigated the mycorrhizal associations of five Australian Cryptostylis species (27 sites sampled) and included limited sampling from three Asiatic Cryptostylis species (two sites). Like related orchid genera, Tulasnellaceae formed the main fungal associations of the Cryptostylis species we sampled, although some ectomycorrhizal, ericoid and saprotrophic fungi were detected infrequently. Each species of Australian Cryptostylis associated with three to seven Tulasnella Operational Taxonomic Units (OTUs), except for C. hunteriana where only one Tulasnella OTU was detected. In total, eleven Tulasnella OTUs associated with Australian Cryptostylis. The Asiatic Cryptostylis associated with four different Tulasnella OTUs belonging to the same lineage as the Australian species. While five Tulasnella OTUs (T. australiensis, T. prima, T. warcupii, T. densa, and T. punctata) were used by multiple species of Australian Cryptostylis, the most commonly used OTU differed between orchid species. The association with different Tulasnella fungi by Cryptostylis species co-occurring at the same site suggests that in any given environmental condition, Cryptostylis species may intrinsically favour different fungal OTUs.  相似文献   

9.
10.
    
Diverse fungal assemblages colonize the fine feeder roots of woody plants, including mycorrhizal fungi, fungal root endophytes and soil saprotrophs. The fungi co-inhabiting Cenococcum geophilum ectomycorrhizae (ECM) of Abies balsamea, Betula papyrifera and Picea glauca were studied at two boreal forest sites in Eastern Canada by direct PCR of ITS rDNA. 50 non-Cenococcum fungal sequence types were detected, including several potentially mycorrhizal species as well as fungal root endophytes. Non-melanized ascomycetes dominated, in contrast to the dark septate endophytes (DSE) reported in most culture dependent studies. The results demonstrate significant differences in root associated fungal assemblages among the host species studied. Fungal diversity was also host dependent, with P. glauca roots supporting a more diverse community than A. balsamea. Differences in root associated fungal communities may well influence ecological interactions among host plant species.  相似文献   

11.
    
Microbes influence plant phenotypes but most known examples of this are from the study of below-ground microbes and plant disease modification. To examine the potential importance of phyllosphere microbes on non-disease related plant traits, we used sterile Arabidopsis clones to test the effects of foliar fungi on flowering phenology and reproductive allocation under conditions of varying water stress. We inoculated the sterile plants with fully-factorial combinations of four fungal isolates, then measured flowering time and reproductive allocation for each treatment group under normal and water-stressed conditions. All plants inoculated with foliar fungi had significantly later flowering and greater seed mass than the sterile control groups. The magnitude of this effect depended on the specific fungi present, but individual fungal effects diminished as inoculum richness increased. Above-ground microbes likely influence other plant traits as well and should be considered in any study measuring plant phenotypes.  相似文献   

12.
Although roots of species in the Pinaceae are usually colonized by ectomycorrhizal (EM) fungi, there are increasing reports of the presence of arbuscular mycorrhizal (AM) and dark septate endophytic (DSE) fungi in these species. The objective of this study was to determine the colonization patterns in seedlings of three Pinus (pine) species (Pinus banksiana, Pinus strobus, Pinus contorta) and Picea glauca x Picea engelmannii (hybrid spruce) grown in soil collected from a disturbed forest site. Seedlings of all three pine species and hybrid spruce became colonized by EM, AM, and DSE fungi. The dominant EM morphotype belonged to the E-strain category; limited colonization by a Tuber sp. was found on roots of Pinus strobus and an unknown morphotype (cf. SuillusRhizopogon group) with thick, cottony white mycelium was present on short roots of all species. The three fungal categories tended to occupy different niches in a single root system. No correlation was found between the percent root colonized by EM and percent colonization by either AM or DSE, although there was a positive correlation between percent root length colonized by AM and DSE. Hyphae and vesicles were the only AM intracellular structures found in roots of all species; arbuscules were not observed in any roots.  相似文献   

13.
Deschampsia antarctica Desv. (Poaceae) represents one of the two vascular plants that have colonized the Antarctic continent, which is usually exposed to extreme environmental conditions. In this work, we have characterized the endophytic fungi associated with the leaves of D. antarctica. Endophytic fungi were recovered from 91 individual plants from different points of Admiralty Bay at King George Island, Antarctica. A total of 26 fungal isolates were obtained from 273 leaf fragments. All isolates were identified by analysis of the sequences of the internal transcribed spacer region (ITS) of the rDNA. Alternaria and Phaeosphaeria were the most frequent genera associated with the plant. Other fungal isolates were identified as Entrophospora sp. and several undescribed Ascomycete species. An interesting result was obtained for the isolates UFMGCB 215 and UFMGCB 262, which were related to fungi associated with bryophytes present in boreal ecosystems. Some isolates showed low identity in the ITS sequences to sequences of fungal species deposited in GenBank, suggesting that these fungi could be new species. This work is the first report on fungal endophytes associated with leaves of the Antarctic grass D. antarctica.  相似文献   

14.
真菌菌剂改善烟叶品质的初步研究*   总被引:8,自引:1,他引:8       下载免费PDF全文
利用分离自不同生境烟叶上的7个真菌菌株菌剂处理上部叶烤烟烟丝,分析表明,处理后烟叶内与品质相关的主要化学成分含量发生了改变,烟叶品质得到改善。其中菌株BF03、BF06及BF63使烟叶内糖、氮、烟碱、蛋白质等主要化学成分含量及各种成分之间比例趋于平衡。评吸结果表明,经供试菌剂处理的烟叶香气质提高,香气量增加,刺激性减小,余味舒适,烟叶品质明显高于对照。  相似文献   

15.
    
Chitin, the structural component that provides rigidity to the cell wall of fungi is the product of chitin synthases (Chs). These enzymes are not restricted to fungi, but are amply distributed in four of the five eukaryotic 'crown kingdoms'. Dendrograms obtained by multiple alignment of Chs revealed that fungal enzymes can be classified into two divisions that branch into at least five classes, independent of fungal divergence. In contrast, oomycetes and animals each possess a single family of Chs. These results suggest that Chs originated as a branch of beta-glycosyl-transferases, once the kingdom Plantae split from the evolutionary line of eukaryotes. The existence of a single class of Chs in animals and Stramenopiles, against the multiple families in fungi, reveals that Chs diversification occurred after fungi departed from these kingdoms, but before separation of fungal groups. Accordingly, each fungal taxon contains members with enzymes belonging to different divisions and classes. Multiple alignment revealed the conservation of specific motifs characteristic of class, division and kingdom, but the strict conservation of only three motifs QXXEY, EDRXL and QXRRW, and seven isolated amino acids in the core region of all Chs. Determination of different structural features in this region of Chs brought to light a noticeable conservation of secondary structure in the proteins.  相似文献   

16.
    
《Fungal biology》2023,127(6):1053-1066
Pulse crop rotation in rice cultivation is a widely accepted agronomic practice. Depending upon the water regime, rice cultivation has been classified into wetland and aerobic practices. However, no studies have been conducted so far to understand the impact of pulse crop rotation and rice mono-cropping on fungal diversity, particularly in aerobic soil. A targeted metagenomic study was conducted to compare the effects of crop rotations (rice-rice and rice-pulse) on fungal diversity in wetland and aerobic rice soils. Out of 445 OTUs, 41.80% was unknown and 58.20% were assigned to six phyla, namely Ascomycota (56.57%), Basidiomycota (1.32%), Zygomycota (0.22%), Chytridiomycota (0.04%), Glomeromycota (0.03%), and Blastocladiomycota (0.02%). Functional trait analysis found wetland rice-pulse rotation increased symbiotrophs (36.7%) and saprotrophs (62.1%) population, whereas higher pathotrophs were found in aerobic rice–rice (62.8%) and rice-pulse (61.4%) cropping system. Certain soil nutrients played a major role in shaping the fungal community; Ca had significant (p < 0.05) positive impact on saprotroph, symbiotroph and endophytes, whereas Cu had significant (p < 0.05) negative impact on pathotrophs. This study showed that rice-pulse crop rotation could enhance the saprophytic and symbiotic fungal diversity in wetland and reduce the population of pathogens in aerobic rice cultivation.  相似文献   

17.
    
Chemical investigation of the endophytic fungus, KL-1.1, isolated from the leaves of Psidium guajava (Linn) led to the isolation of two new cytochalasin derivatives, 18-desoxy-19,20-epoxycytochalasin C and 18-desoxycytochalasin C, together with five other known derivatives. The structures of the isolated compounds were elucidated by one and two dimensional nuclear magnetic resonance spectroscopy as well as by mass spectrometry. These compounds represent novel chemical scaffold with potential for development into anticancer agents.  相似文献   

18.
庞煜  马达  王波  蔡燕雪  王际辉  肖珊 《生物工程学报》2024,40(10):3395-3406
植物内生菌是一类能够在植物体内度过部分生命周期而不会引起宿主病害的微生物,是种类和功能十分丰富的微生物资源。随着测序技术的进步,在微生物领域中关于植物内生菌的研究愈发深入。Sanger测序的定向验证性以及较低的测序成本使得该测序技术沿用至今,但其测序的通量较低,不适用于更深层次的内生菌基因组研究。本文简要概述了植物内生菌的研究历程,并综述了以高通量为技术特点的下一代测序(next-generation sequencing,NGS)和以单分子实时测序技术(single-molecule real-time,SMRT)为代表的第三代测序技术在植物内生菌研究领域的应用,总结了不同测序技术在实际研究中的优势和局限性,并探讨了如何根据研究需求选择合适的测序技术,希望为研究者进一步发掘植物内生菌的潜在价值提供参考。  相似文献   

19.
Endophytic fungi from Nyctanthes arbor-tristis were isolated and evaluated for their antimicrobial activity. A total of 19 endophytic fungi were isolated from 400 segments of healthy leaf and stem tissues of N. arbor-tristis. Eighteen endophytic fungi were obtained from leaf, while only ten from stem. Alternaria alternata had the highest colonization frequency (15.0%) in leaf, whereas Cladosporium cladosporioides ranked first in stem with a colonization frequency of 12%. The diversity and species richness were found higher in leaf tissues than in stem. The similarity indices between leaf and stem were 0.473 for Jaccard’s and 0.642 for the Sorenson index, respectively. Of 16, 12 (75%) endophytic fungal extracts showed antibacterial activity against either one or more pathogenic bacteria. The endophytic Nigrospora oryzae showed maximum inhibition against Shigella sp. and Pseudomonas aeruginosa. The leaf endophytes Colletotrichum dematium and Chaetomium globosum exhibited a broad range of anibacterial activity and were active against Shigella flexnii, Shigella boydii, Salmonella enteritidis, Salmonella paratyphi, and P. aeruginosa. Nine out of 16 (56.25%) endophytic fungi exhibited antifungal activity to one or more fungal pathogens. Colletotrichum dematium inhibited 55.87% of the radial growth of the phytopathogen Curvularia lunata. The antimicrobial activity of these endophytic microorganisms could be exploited in the biotechnological, medicinal, and agricultural industries.  相似文献   

20.
    
Plants are colonized by fungal endophytes. In this study we tested the hypothesis that endophyte communities in mountain plants changes along the elevation gradient. We identified fungal endophytes in aboveground parts and seeds of five plant species at altitudes of 1000–1750 m in the Tatra National Park. Endophytes isolated from them were grouped into morphotypes on the basis of macroscopic features, such as mycelium shape and colour. Isolates representing individual morphotypes were identified using molecular markers ITS1 and ITS2. When comparing species composition, we used Bray-Curtis distance matrices, calculated on the basis of frequency of the given fungal species. We identified 16 species of fungal endophytes. Five taxa were absent from seeds in spite of their occurrence in mother plant leaves. Differences in altitude were not significantly correlated with fungal species composition observed at a given sampling site. There was also no significant correlation between the species composition of leaf and seed mycobiota. This suggests imperfect vertical transmission in the studied plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号