首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salvage logging—the removal of dead trees in disturbed forest stands—has been controversially discussed. We investigated the impact of bark beetle attacks and subsequent salvage logging on insectivorous bats in a temperate mountain forest. We quantified bat activity (25,373?min counts; 32 plots) using batcorders during 221 all-night surveys in stands killed by bark beetles, with dead trees removed or not, and in vital, single- or multi-layered mature forest stands. We analysed the differences in activity of all bats in general and of bats of foraging guilds (open habitat, forest edge, closed habitat) in these habitats using a generalized linear Poisson mixed model, with plot and observation as random factors, and temperature and habitat as fixed factors. Only open-habitat foragers were slightly more active in salvage-logged stands than in bark-beetle-affected stands; they generally benefited from an open forest canopy, whereas closed-habitat foragers did not. Our results indicated that: (1) bats are less affected by salvage logging after a disturbance of a magnitude typical for European forests, probably because enough roosts are present in surrounding areas, (2) habitats for open foragers are improved by bark beetle infestation and (3) bats are poor bioindicators of negative impacts of salvage logging after natural disturbance in forests with a composition typical for Central Europe.  相似文献   

2.
ABSTRACT Creation and maintenance of forested corridors to increase landscape heterogeneity has been practiced for decades but is a new concept in intensively managed southern pine (Pinus spp.) forests. Additionally, more information is needed on bat ecology within such forest systems. Therefore, we examined summer roost-site selection by evening bats (Nycticeius humeralis) in an intensively managed landscape with forested corridors in southeastern South Carolina, USA, 2003–2006. We radiotracked 53 (26 M, 27 F) adult evening bats to 75 (31 M, 44 F) diurnal roosts. We modeled landscape-level roost-site selection with logistic regression and evaluated models using Akaike's Information Criterion for small samples. Model selection results indicated that mature (≥40 yr) mixed pine-hardwood stands were important roost sites for male and lactating female evening bats. Upland forested corridors, comprised of mature pine or mixed pine-hardwoods, were important roosting habitats for males and, to a lesser extent, lactating females. Male roosts were farther from open stands and lactating female roosts were farther from mid-rotation stands than randomly selected structures. Our results suggest roost structures (i.e., large trees and snags) in mature forests are important habitat components for evening bats. We recommend maintaining older (>40 yr old) stand conditions in the form of forest stands or corridors across managed landscapes to provide roosting habitat. Furthermore, our results suggest that an understanding of sex-specific roost-site selection is critical for developing comprehensive guidelines for creating and maintaining habitat features beneficial to forest bats.  相似文献   

3.
4.
Intensively managed forests are often seen as of low priority to preserve forest bats. The main conservation strategy recommended, i.e. saving unmanaged “habitat islands” from logging to preserve some suitable habitat, detracts conservationists’ attention from ameliorating conditions for bats in harvested sites. We studied the threatened bat Barbastella barbastellus, mostly roosting in snags, in two beech forests: an unmanaged forest—the main maternity site—and a nearby, periodically logged area. We compared roost availability, roost use, capture rates, food availability and movement between these areas. The managed forest had a greater canopy closure, fewer dead trees, a smaller tree diameter and trees bearing fewer cavities than the unmanaged one. These differences helped explain the larger number of bats recorded in the unmanaged forest, where the sex ratio was skewed towards females. Prey availability was similar in both areas. We radiotracked bats to 49 day roosts. Five individuals caught in the managed area roosted in the unmanaged one at 6.7–8.2 km from the capture site. Few bats roosted in the managed forest, but those doing so proved flexible, using live trees and even rock crevices. Therefore, bats utilise areas in the matrix surrounding optimal roosting sites and sometimes roost there, highlighting the conservation potential of harvested forests. Besides leaving unmanaged patches, at least small numbers of dead trees should be retained in logged areas to favour population expansion and landscape connectivity. Our findings also question the validity of adopting presence records as indicators of forest quality on a site scale.  相似文献   

5.
Logging is one of the greatest threats to global biodiversity, while forests are one of the most important habitats for bats. Bats that roost in tree cavities require a large number of potential roosts due to their frequent roost switching. However, the density of tree cavities and hollows sufficient to sustain large populations of bat species in forests is unknown. The fission-fusion dynamics of bat groups in forest environment is associated with ritualised dawn swarming behaviour at potential tree cavities that serves to exchange information in a non-centralised decision-making process. We used a computer model based on the swarm algorithm, SkyBat, that resembles this complex process and aimed to determine how population size changes over time when cavity trees are removed from roosting territory of the local population of Leisler's bats (Nyctalus leisleri), which inhabit a forest habitat in Central Europe. Simulations revealed that social bonds between bats, maintained by frequent switching among groups, play an important role in this highly dynamic system. When strong social contact was not considered, reducing the original number of trees with cavities (20 cavities × ha−1) to 50% was still acceptable to bats, but further interventions and/or increased demand for social contact would have led to local extinction of the species. Results suggest that potential bat roosts in mature forest stands should be preserved as much as possible and that non-intensive logging and management can be beneficial to tree-dwelling bats.  相似文献   

6.
Anthropogenic habitat modification often has a profound negative impact on the flora and fauna of an ecosystem. In parts of the Middle East, ephemeral rivers (wadis) are characterised by stands of acacia trees. Green, flourishing assemblages of these trees are in decline in several countries, most likely due to human-induced water stress and habitat changes. We examined the importance of healthy acacia stands for bats and their arthropod prey in comparison to other natural and artificial habitats available in the Arava desert of Israel. We assessed bat activity and species richness through acoustic monitoring for entire nights and concurrently collected arthropods using light and pit traps. Dense green stands of acacia trees were the most important natural desert habitat for insectivorous bats. Irrigated gardens and parks in villages and fields of date palms had high arthropod levels but only village sites rivalled acacia trees in bat activity level. We confirmed up to 13 bat species around a single patch of acacia trees; one of the richest sites in any natural desert habitat in Israel. Some bat species utilised artificial sites; others were found almost exclusively in natural habitats. Two rare species (Barbastella leucomelas and Nycteris thebaica) were identified solely around acacia trees. We provide strong evidence that acacia trees are of unique importance to the community of insectivorous desert-dwelling bats, and that the health of the trees is crucial to their value as a foraging resource. Consequently, conservation efforts for acacia habitats, and in particular for the green more densely packed stands of trees, need to increase to protect this vital habitat for an entire community of protected bats.  相似文献   

7.
Abandoned pollard beech forests are particular habitats that may require special conservation efforts to preserve the endangered beetle Rosalia alpina, a model species whose protection may perpetuate the habitat of many other saproxylic species. Forest use can determine the tree selection and population size of R. alpina, variables previously not researched in pollard forests. Selected tree traits and population size, indicated by presence of adult specimens and recent exit holes, were determined in a pollard beech forest before the implementation of habitat manipulations targeted to preserve the species. Multivariate analysis showed tree condition (living, snag, fallen) and clearing size and aspect as influential variables, with the former explaining more variance than the latter. R. alpina positively selected pollard snags and trees located in big and dry clearings, avoiding those in small clearings or shaded areas. Snags showed most adults (90 %) and recent emergence holes (84 %). Distance to the nearest occupied tree, trunk diameter, bark thickness and presence of sap leaks had no effect on the occurrence of R. alpina. Population size was estimated in 0.1 individuals day?1 ha?1, and 38 % of available habitat trees showed exit holes, values lower than those observed in other European countries. These results show the need to start re-pollardings in the forest to extend pollard standing life and enhance exposure to sunlight. Pinpointing pollard snags and clearing the surrounding vegetation are recommended as the first measures to be taken in order to favor R. alpina populations on pollard stands with closed canopies.  相似文献   

8.
Forest roosting bats use a variety of ephemeral roosts such as snags and declining live trees. Although conservation of summer maternity habitat is considered critical for forest-roosting bats, bat response to roost loss still is poorly understood. To address this, we monitored 3 northern long-eared bat (Myotis septentrionalis) maternity colonies on Fort Knox Military Reservation, Kentucky, USA, before and after targeted roost removal during the dormant season when bats were hibernating in caves. We used 2 treatments: removal of a single highly used (primary) roost and removal of 24% of less used (secondary) roosts, and an un-manipulated control. Neither treatment altered the number of roosts used by individual bats, but secondary roost removal doubled the distances moved between sequentially used roosts. However, overall space use by and location of colonies was similar pre- and post-treatment. Patterns of roost use before and after removal treatments also were similar but bats maintained closer social connections after our treatments. Roost height, diameter at breast height, percent canopy openness, and roost species composition were similar pre- and post-treatment. We detected differences in the distribution of roosts among decay stages and crown classes pre- and post-roost removal, but this may have been a result of temperature differences between treatment years. Our results suggest that loss of a primary roost or ≤ 20% of secondary roosts in the dormant season may not cause northern long-eared bats to abandon roosting areas or substantially alter some roosting behaviors in the following active season when tree-roosts are used. Critically, tolerance limits to roost loss may be dependent upon local forest conditions, and continued research on this topic will be necessary for conservation of the northern long-eared bat across its range.  相似文献   

9.
Wildlife response to natural disturbances such as fire is of conservation concern to managers, policy makers, and scientists, yet information is scant beyond a few well-studied groups (e.g., birds, small mammals). We examined the effects of wildfire severity on bats, a taxon of high conservation concern, at both the stand (<1 ha) and landscape scale in response to the 2002 McNally fire in the Sierra Nevada region of California, USA. One year after fire, we conducted surveys of echolocation activity at 14 survey locations, stratified in riparian and upland habitat, in mixed-conifer forest habitats spanning three levels of burn severity: unburned, moderate, and high. Bat activity in burned areas was either equivalent or higher than in unburned stands for all six phonic groups measured, with four groups having significantly greater activity in at least one burn severity level. Evidence of differentiation between fire severities was observed with some Myotis species having higher levels of activity in stands of high-severity burn. Larger-bodied bats, typically adapted to more open habitat, showed no response to fire. We found differential use of riparian and upland habitats among the phonic groups, yet no interaction of habitat type by fire severity was found. Extent of high-severity fire damage in the landscape had no effect on activity of bats in unburned sites suggesting no landscape effect of fire on foraging site selection and emphasizing stand-scale conditions driving bat activity. Results from this fire in mixed-conifer forests of California suggest that bats are resilient to landscape-scale fire and that some species are preferentially selecting burned areas for foraging, perhaps facilitated by reduced clutter and increased post-fire availability of prey and roosts.  相似文献   

10.
We studied the roosting ecology of the long-tailed bat (Chalinolobus tuberculatus) during the springautumn months from 1998–2002 at Hanging Rock in the highly fragmented landscape of South Canterbury, South Island, New Zealand. We compared the structural characteristics and microclimates of roost sites used by communally and solitary roosting bats with those of randomly available sites, and roosts of C. tuberculatus occupying unmodified Nothofagus forest in the Eglinton Valley, Fiordland. Roosting group sizes and roost residency times were also compared. We followed forty radio-tagged bats to 94 roosts (20% in limestone crevices, 80% in trees) at Hanging Rock. Roosts were occupied for an average of 1 day and 86% were only used once during the study period. Colony size averaged 9.8 ± 1.1 bats (range 2–38) and colonies were dominated by breeding females and young. Indigenous forest, shrubland remnants and riparian zones were preferred roosting habitats. Communally roosting bats selected roosts in split trunks of some of the largest trees available. Selection of the largest available trees as roost sites is similar to behaviour of bat species occupying unmodified forested habitats. Temperatures inside 12 maternity roosts measured during the lactation period were variable. Five roosts were well insulated from ambient conditions and internal temperatures were stable, whereas the temperatures inside seven roosts fluctuated in parallel with ambient temperature. Tree cavities used by bats at Hanging Rock were significantly nearer ground level, had larger entrance dimensions, were less well insulated, and were occupied by fewer bats than roosts in the Eglinton Valley. These characteristics appear to expose their occupants to unstable microclimates and to a higher risk of threats such as predation. We suggest that roosts at Hanging Rock are of a lower quality than those in the Eglinton Valley, and that roost quality may be one of the contributory factors in the differential reproductive fitness observed in the two bat populations. The value of introduced willows (especially Salix fragilis) as bat roosts should be acknowledged. We recommend six conservation measures to mitigate negative effects of deterioration of roosting habitat: protection and enhancement of the quality of existing roosts, replanting within roosting habitat, provision of high quality artificial roosts, predator control, and education of landowners and statutory bodies.  相似文献   

11.
Roosting information is crucial to guiding bat conservation and bat‐friendly forestry practices. The Ryukyu tube‐nosed bat Murina ryukyuana (Endangered) and Yanbaru whiskered bat Myotis yanbarensis (Critically Endangered) are forest‐dwelling bats endemic to the central Ryukyu Archipelago, Japan. Despite their threatened status, little is known about the roosting ecology of these species and the characteristics of natural maternity roosts are unknown. To inform sustainable forestry practices and conservation management, we radio‐tracked day roosts of both species in the subtropical forests of Okinawa''s Kunigami Village District. We compared roost and roost site characteristics statistically between M. ryukyuana nonmaternity roosts (males or nonreproductive females), maternity roosts, and all M. yanbarensis roosts. Generalized linear models were used to investigate roost site selection by M. ryukyuana irrespective of sex and age class. Lastly, we compiled data on phenology from this and prior studies. Nonreproductive M. ryukyuana roosted alone and primarily in understory foliage. Murina ryukyuana maternity roosts were limited to stands >50 years old, and ~60% were in foliage. Myotis yanbarensis roosted almost entirely in cavities along gulch bottoms and only in stands >70 years old (~1/3 of Kunigami''s total forest area). Murina ryukyuana maternity roosts were higher (4.3 ± 0.6 m) than conspecific nonmaternity roosts (2.3 ± 0.5 m; p < .001) and M. yanbarensis roosts (2.7 ± 0.5 m; not significant). Model results were inconclusive. Both species appear to be obligate plant roosters throughout their life cycle, but the less flexible roosting preferences of M. yanbarensis may explain its striking rarity. To conserve these threatened bats, we recommend the following forestry practices: (a) reduce clearing of understory vegetation, (b) refrain from removing trees along streams, (c) promote greater tree cavity densities by protecting old‐growth forests and retaining snags, and (d) refrain from removing trees or understory between April and July, while bats are pupping.  相似文献   

12.
We used capture (mist‐netting) and acoustic methods to compare the species richness, abundance, and composition of a bat assemblage in different habitats in the Western Ghats of India. In the tropics, catching bats has been more commonly used as a survey method than acoustic recordings. In our study, acoustic methods based on recording echolocation calls detected greater bat activity and more species than mist‐netting. However, some species were detected more frequently or exclusively by capture. Ideally, the two methods should be used together to compensate for the biases in each. Using combined capture and acoustic data, we found that protected forests, forest fragments, and shade coffee plantations hosted similar and diverse species assemblages, although some species were recorded more frequently in protected forests. Tea plantations contained very few species from the overall bat assemblage. In riparian habitats, a strip of forested habitat on the river bank improved the habitat for bats compared to rivers with tea planted up to each bank. Our results show that shade coffee plantations are better bat habitat than tea plantations in biodiversity hotspots. However, if tea is to be the dominant land use, forest fragments and riparian corridors can improve the landscape considerably for bats. We encourage coffee growers to retain traditional plantations with mature native trees, rather than reverting to sun grown coffee or coffee shaded by a few species of timber trees.  相似文献   

13.
ABSTRACT In Arizona, USA, Allen's lappet-browed bat (Idionycteris phyllotis) forms maternity colonies in ponderosa pine (Pinus ponderosa) snags. There is little information on the roosting habitat of males. We used radiotelemetry to locate 16 maternity, 3 postlactating, and 2 bachelor roosts and combined data with unpublished data for maternity roosts (n = 11) located in 1993–1995. Most (96%) maternity roosts were in large-diameter ( ± SE: 64 ± 2.7 cm) ponderosa pine snags under sloughing bark. Models that best predicted the probability of a snag's use as a maternity roost indicated bats selected taller snags closer to forest roads than comparison snags. Maternity roosts averaged 11 bats per roost (SE = 2, n = 15; from exit counts) and were an average distance of 1.6 km from capture sites (SE = 0.3, n = 17). Bachelor roosts were in vertical sandstone cliff faces in pinyon-juniper (Pinus edulis-Juniperus spp.) woodlands approximately 12 km from capture sites; these and other capture records in Arizona indicated sexual segregation may have occurred during the maternity season. Of 11 maternity snag roosts located in 1993–1995, only one continued to function as a roost. Resource managers should maintain patches of large-diameter ponderosa pine snags with peeling bark to provide maternity roosting habitat for Allen's lappet-browed bat.  相似文献   

14.
In summer, many temperate bat species use daytime torpor, but breeding females do so less to avoid interferences with reproduction. In forest‐roosting bats, deep tree cavities buffer roost microclimate from abrupt temperature oscillations and facilitate thermoregulation. Forest bats also switch roosts frequently, so thermally suitable cavities may be limiting. We tested how barbastelle bats (Barbastella barbastellus), often roosting beneath flaking bark in snags, may thermoregulate successfully despite the unstable microclimate of their preferred cavities. We assessed thermoregulation patterns of bats roosting in trees in a beech forest of central Italy. Although all bats used torpor, females were more often normothermic. Cavities were poorly insulated, but social thermoregulation probably overcomes this problem. A model incorporating the presence of roost mates and group size explained thermoregulation patterns better than others based, respectively, on the location and structural characteristics of tree roosts and cavities, weather, or sex, reproductive or body condition. Homeothermy was recorded for all subjects, including nonreproductive females: This probably ensures availability of a warm roosting environment for nonvolant juveniles. Homeothermy may also represent a lifesaver for bats roosting beneath loose bark, very exposed to predators, because homeothermic bats may react quickly in case of emergency. We also found that barbastelle bats maintain group cohesion when switching roosts: This may accelerate roost occupation at the end of a night, quickly securing a stable microclimate in the newly occupied cavity. Overall, both thermoregulation and roost‐switching patterns were satisfactorily explained as adaptations to a structurally and thermally labile roosting environment.  相似文献   

15.
The Baixo Vouga Lagunar (BVL) landscape, in the Portuguese central-west coast, harbours a mosaic of wetland habitat types, interspersed by intensive and extensive agricultural fields, pastures, production forests and urban areas. In this study, we aimed to determine the species composition and the structure of the bat assemblages of the different habitats that constitute this heterogeneous landscape and to investigate seasonal changes in the patterns of bat diversity and activity across habitats. We acoustically sampled bats across 24 sampling sites representative of the eight main habitat types that shape the landscape—Bocage, forests, maize fields, marshlands, reed beds, rice fields, sea rushes and urban settlements. We compared bat richness, diversity and evenness across habitat types and seasons. We analysed habitat-specific and season-specific overall bat activity, and because habitat selection by bats is known to reflect morphological characters, foraging strategies and echolocation call structures, we also analysed the activity of individual species and of eco-morphological guilds. From 1,544 bat-passes recorded, we identified 12 species. Pipistrellus pygmaeus, Pipistrellus pipistrellus and Eptesicus serotinus/Eptesicus isabellinus were the most frequently recorded. Species composition and activity were similar across habitats, whilst exhibiting strong seasonal dynamics within habitats. Our results suggest that the mosaicism of the landscape provides several opportunities for bats, enabling them to explore different resources in distinct habitat patches. However, it may also reflect a forced exploitation of less optimal habitats and resources by bats, due to the scarcity of opportunities provided by fragmented landscapes.  相似文献   

16.
Ectoparasitism in bats seems to be influenced strongly by the type of roost preferred by the hosts, and group size; however, the effect of habitat loss and fragmentation on the prevalence of ectoparasites in bats has scarcely been studied. In northeastern Yucatan, Mexico, we estimated the prevalence of infestation by Streblidae flies in three phyllostomid bat species with different roost preferences (caves, trees, or both) in two types of landscape matrices (tropical semi‐deciduous forest and man‐made pastures) that differed in area of forest cover and the number of forest fragments. Habitat fragmentation and the presence of a contrasting matrix may limit the availability of roosts (trees) and the movement of bats across the landscape. Accordingly, we hypothesized higher prevalence of Streblidae infestation in the pasture matrix and in the group of bats that roost in trees. Bat abundance was higher in the pasture matrix; however, the prevalence of infestation was significantly higher in the continuous forest matrix and in bats that roosted in caves. The prevalence of some species of Streblidae was affected by habitat fragmentation in species that roost in caves, such as Desmodus rotundus, as well as those using foliage and caves, such as Artibeus jamaicensis. Our results provide evidence that some species of Streblidae may respond differently to habitat fragmentation than their hosts, generating changes to bat‐ectoparasite interactions in fragmented areas. Environmental variations involving roosts, not evaluated in this study, may influence our results, since these factors affect ectoparasite abundance and reproduction.  相似文献   

17.
Abstract: Several species of bats in the Pacific Northwest of the United States, including long-legged myotis (Myotis volans), are dependent on snags in coniferous forests during summer for roosting and rearing young. Thus, data on roosting preferences of this species are needed to integrate their habitat requirements into shifting plans for management of forests in this region. Therefore, from 2001 to 2006, we radiotracked adult female long-legged myotis (n = 153) to day roosts (n = 395) across 6 watersheds in Washington, Oregon, and Idaho, USA, and compared characteristics associated with roosting sites to those of random snags (n = 260) sampled in the same watersheds using use-availability logistic regression and an information-theoretic approach. Model rankings varied among geographic locations, with quantity of stem surface for roosting the best model for explaining roost-site selection of long-legged myotis in both Washington and Oregon. Model rankings for populations of bats in Idaho found stand- and landscape-scale features to be important in roost-site selection, with a habitat fragmentation model and a foraging habitat quality model both demonstrating strong support as best model. Choice of day roosts by long-legged myotis was associated with snags that were taller, intact at the top of the stem, possessing a greater amount of exfoliating bark, in stands with a larger basal area of dead stems, and in landscapes that were unfragmented (i.e., supporting lesser amounts of edge). Results indicate that roost-site selection of bats in western coniferous forests, particularly long-legged myotis, is likely to be region-specific. We encourage land managers to consider importance of geographic variation in intraspecific habitat use in forest-dwelling bats when implementing silvicultural systems to promote biological diversity in actively managed forests of the Pacific Northwest region.  相似文献   

18.
Roost requirements of most North American forest bats are well-documented, but questions remain regarding the ultimate mechanisms underlying roost selection. Hypotheses regarding roost selection include provision of a stable microclimate, space for large colonies, protection from predators, and proximity to foraging habitat, among others. Although several hypotheses have been proposed, specific mechanisms likely vary by species and geographic region. Rafinesque's big-eared bat (Corynorhinus rafinesquii) commonly roosts in trees with large basal hollows in the Coastal Plain of the southeastern United States. Our objective was to weigh evidence for hypotheses regarding selection of diurnal summer roosts by Rafinesque's big-eared bat at 8 study sites across the Coastal Plain of Georgia, USA. We used transect searches and radiotelemetry to locate roosts and measured 22 characteristics of trees, tree cavities, and surrounding vegetation at all occupied roosts and for randomly selected unoccupied trees. We evaluated 10 hypotheses using single-season occupancy models and used Akaike's information criterion to select the most parsimonious models. We located 170 tree roosts containing approximately 870 bats for our analysis. The best supported model predicted bat presence from cavity size, interior wall texture, and number of entrances. Because large cavities allow bats to fly and smooth walls impede attacks by terrestrial predators, our results are consistent with the hypothesis that bats select roosts that allow them to evade predators. However, data on predation rates are needed for a conclusive determination. Because trees suitable as roosts for Rafinesque's big-eared bat are rare in the landscape, protection of suitable forested wetland habitat is essential to provide current and long-term roost tree availability. © 2012 The Wildlife Society.  相似文献   

19.
Many European migratory bat species hibernate in large hollow trees, a decreasing resource in present day silviculture. Here, we report on the importance of man-made hibernacula to support trans-boundary populations of noctule bats (Nyctalus noctula), a species that performs seasonal long distance movements throughout Europe. In winter, we surveyed nine bat roosts (eight artificial and one natural) in Germany and collected small tufts of fur from a total of 608 individuals. We then measured the stable isotope ratios of the non-exchangeable hydrogen in fur keratin and estimated the origin of migrants using a refined isoscape origin model that included information on expected flight distances and migration directions. According to the stable isotope signature, 78 % of hibernating bats originated from local populations. The remaining 22 % of hibernacula occupants originated from distant populations, mostly from places in northern or eastern countries such as Sweden, Poland and Baltic countries. Our results confirm that many noctule bats cross one or several political borders during migration. Data on the breeding origin of hibernating noctule bats also suggest that artificial roosts may not only be important for local but also for distant populations. Protection of natural and artificial hibernacula in managed forests may support the trans-boundary populations of migratory bats when hollow trees are scarce in managed forests.  相似文献   

20.
We know little about how forest bats, which are cryptic and mobile, use roosts on a landscape scale. For widely distributed species like the endangered Indiana bat Myotis sodalis, identifying landscape-scale roost habitat associations will be important for managing the species in different regions where it occurs. For example, in the southern Appalachian Mountains, USA, M. sodalis roosts are scattered across a heavily forested landscape, which makes protecting individual roosts impractical during large-scale management activities. We created a predictive spatial model of summer roosting habitat to identify important predictors using the presence-only modeling program MaxEnt and an information theoretic approach for model comparison. Two of 26 candidate models together accounted for >0.93 of AICc weights. Elevation and forest type were top predictors of presence; aspect north/south and distance-to-ridge were also important. The final average best model indicated that 5% of the study area was suitable habitat and 0.5% was optimal. This model matched our field observations that, in the southern Appalachian Mountains, optimal roosting habitat for M. sodalis is near the ridge top in south-facing mixed pine-hardwood forests at elevations from 260–575 m. Our findings, coupled with data from other studies, suggest M. sodalis is flexible in roost habitat selection across different ecoregions with varying topography and land use patterns. We caution that, while mature pine-hardwood forests are important now, specific areas of suitable and optimal habitat will change over time. Combining the information theoretic approach with presence-only models makes it possible to develop landscape-scale habitat suitability maps for forest bats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号