首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《MABS-AUSTIN》2013,5(2):344-351
Serum albumin is the major determinant of blood colloidal osmotic pressure acting as a depot and distributor of compounds including drugs. In humans, serum albumin exhibits an unusually long half-life mainly due to protection from catabolism by neonatal Fc receptor (FcRn)-mediated recycling. These properties make albumin an attractive courier of therapeutically-active compounds. However, pharmaceutical research and development of albumin-based therapeutics has been hampered by the lack of appropriate preclinical animal models. To overcome this, we developed and describe the first mouse with a genetic deficiency in albumin and its incorporation into an existing humanized FcRn mouse model, B6.Cg-Fcgrttm1Dcr Tg(FCGRT)32Dcr/DcrJ (Tg32). Albumin-deficient strains (Alb-/-) were created by TALEN-mediated disruption of the albumin (Alb) gene directly in fertilized oocytes derived from Tg32 mice and its non-transgenic background control, C57BL/6J (B6). The resulting Alb-/- strains are analbuminemic but healthy. Intravenous administration of human albumin to Tg32-Alb-/- mFcRn-/- hFcRnTg/Tg) mice results in a remarkably extended human albumin serum half-life of ~24 days, comparable to that found in humans, and in contrast to half-lives of 2.6–5.8 d observed in B6, B6-Alb-/- and Tg32 strains. This striking increase can be explained by the absence of competing endogenous mouse albumin and the presence of an active human FcRn. These novel albumin-deficient models provide unique tools for investigating the biology and pathobiology of serum albumin and are a more appropriate rodent surrogates for evaluating human serum albumin pharmacokinetics and albumin-based compounds.  相似文献   

2.
The neonatal Fc receptor (FcRn) regulates the serum half-life of both IgG and albumin through a pH-dependent mechanism that involves salvage from intracellular degradation. Therapeutics and diagnostics built on IgG, Fc, and albumin fusions are frequently evaluated in rodents regarding biodistribution and pharmacokinetics. Thus, it is important to address cross-species ligand reactivity with FcRn, because in vivo testing of such molecules is done in the presence of competing murine ligands, both in wild type (WT) and human FcRn (hFcRn) transgenic mice. Here, binding studies were performed in vitro using enzyme-linked immunosorbent assay and surface plasmon resonance with recombinant soluble forms of human (shFcRnWT) and mouse (smFcRnWT) receptors. No binding of albumin from either species was observed at physiological pH to either receptor. At acidic pH, a 100-fold difference in binding affinity was observed. Specifically, smFcRnWT bound human serum albumin with a KD of ∼90 μm, whereas shFcRnWT bound mouse serum albumin with a KD of 0.8 μm. shFcRnWT ignored mouse IgG1, and smFcRnWT bound strongly to human IgG1. The latter pair also interacted at physiological pH with calculated affinity in the micromolar range. In all cases, binding of albumin and IgG from either species to both receptors were additive. Cross-species albumin binding differences could partly be explained by non-conserved amino acids found within the α2-domain of the receptor. Such distinct cross-species FcRn binding differences must be taken into consideration when IgG- and albumin-based therapeutics and diagnostics are evaluated in rodents for their pharmacokinetics.  相似文献   

3.
Transgenic mice expressing human neonatal Fc receptor (FcRn) instead of mouse FcRn are available for IgG antibody pharmacokinetic (PK) studies. Given the interest in a rodent model that offers reliable predictions of antibody PK in monkeys and humans, we set out to test whether the PK of IgG antibodies in such mice correlated with the PK of the same antibodies in primates. We began by using a single research antibody to study the influence of: (1) different transgenic mouse lines that differ in FcRn transgene expression; (2) homozygous vs. hemizygous FcRn transgenic mice; (3) the presence vs. absence of coinjected high-dose human intravenous immunoglobulin (IVIG), and (4) the presence vs. absence of coinjected high-dose human serum albumin (HSA). Results of those studies suggested that use of hemizygous Tg32 mice (Tg32 hemi) not treated with IVIG or HSA offered potential as a predictive model for PK in humans. Mouse PK studies were then done under those conditions with a panel of test antibodies whose PK in mice and primates is not significantly affected by target binding, and for which monkey or human PK data were readily available. Results from the studies revealed significant correlations between terminal half-life or clearance values observed in the mice and the corresponding values reported in humans. A significant relationship in clearance values between mice and monkeys was also observed. These correlations suggest that the Tg32 hemi mouse model, which is both convenient and cost-effective, can offer value in predicting antibody half-life and clearance in primates.  相似文献   

4.
The neonatal FcR (FcRn) regulates IgG and albumin homeostasis, mediates maternal IgG transport, takes active part in phagocytosis, and delivers Ag for presentation. We have previously shown that overexpression of FcRn in transgenic (Tg) mice extends the half-life of mouse IgG by reducing its clearance. In this paper, we demonstrate that immunization of these mice with OVA and trinitrophenyl-conjugated human IgG results in a 3- to 10-fold increase of Ag-specific IgM and IgG in serum. The IgM increase was unexpected because FcRn does not bind IgM. Our results showed that the affinity of the Ag-specific IgG was at least as good in Tg mice as in the wild-type (wt) controls, implying appropriate affinity maturation in both groups. Influenza vaccination produced a 2-fold increase in the amount of virus-specific Ab in Tg animals, which proved twice as efficient in a hemagglutination inhibition assay as was the case in wt controls. After immunization, Tg mice displayed significantly larger spleens containing a higher number of Ag-specific B cells and plasma cells, as well as many more granulocytes and dendritic cells, analyzed by ELISPOT and flow cytometric studies. The neutrophils from these Tg mice expressed the Tg FcRn and phagocytosed IgG immune complexes more efficiently than did those from wt mice. These results show that FcRn overexpression not only extends the IgG half-life but also enhances the expansion of Ag-specific B cells and plasma cells. Although both effects increase the level of Ag-specific IgG, the increase in immune response and IgG production seems to be more prominent compared with the reduced IgG clearance.  相似文献   

5.
We generated an anti-albumin antibody, CA645, to link its Fv domain to an antigen-binding fragment (Fab), thereby extending the serum half-life of the Fab. CA645 was demonstrated to bind human, cynomolgus, and mouse serum albumin with similar affinity (1–7 nM), and to bind human serum albumin (HSA) when it is in complex with common known ligands. Importantly for half-life extension, CA645 binds HSA with similar affinity within the physiologically relevant range of pH 5.0 – pH 7.4, and does not have a deleterious effect on the binding of HSA to neonatal Fc receptor (FcRn). A crystal structure of humanized CA645 Fab in complex with HSA was solved and showed that CA645 Fab binds to domain II of HSA. Superimposition with the crystal structure of FcRn bound to HSA confirmed that CA645 does not block HSA binding to FcRn. In mice, the serum half-life of humanized CA645 Fab is 84.2 h. This is a significant extension in comparison with < 1 h for a non-HSA binding CA645 Fab variant. The Fab-HSA structure was used to design a series of mutants with reduced affinity to investigate the correlation between the affinity for albumin and serum half-life. Reduction in the affinity for MSA by 144-fold from 2.2 nM to 316 nM had no effect on serum half-life. Strikingly, despite a reduction in affinity to 62 µM, an extension in serum half-life of 26.4 h was still obtained. CA645 Fab and the CA645 Fab-HSA complex have been deposited in the Protein Data Bank (PDB) with accession codes, 5FUZ and 5FUO, respectively.  相似文献   

6.
The neonatal Fc receptor (FcRn) is a homeostatic receptor responsible for prolonging immunoglobulin G (IgG) half-life by protecting it from lysosomal degradation and recycling it to systemic circulation. Tissue-specific FcRn expression is a critical parameter in physiologically-based pharmacokinetic (PBPK) modeling for translational pharmacokinetics of Fc-containing biotherapeutics. Using online peptide immuno-affinity chromatography coupled with high resolution mass spectrometry, we established a quantitative FcRn tissue protein expression profile in human FcRn (hFcRn) transgenic mice, Tg32 homozygous and hemizygous strains. The concentration of hFcRn across 14 tissues ranged from 3.5 to 111.2 pmole per gram of tissue. Our hFcRn quantification data from Tg32 mice will enable a more refined PBPK model to improve the accuracy of human PK predictions for Fc-containing biotherapeutics.  相似文献   

7.
Cover Image     
The immunoglobulin G (IgG) molecule has a long circulating serum half-life (~3 weeks) through pH- dependent FcRn binding-mediated recycling. To hijack the intracellular trafficking and recycling mechanism of IgG as a way to extend serum persistence of non-antibody therapeutic proteins, we have evolved the ectodomain of a low-affinity human FcγRIIa for enhanced binding to the lower hinge and upper CH2 region of IgG, which is very far from the FcRn binding site (CH2–CH3 interface). High-throughput library screening enabled isolation of an FcγRIIa variant (2A45.1) with 32-fold increased binding affinity to human IgG1 Fc (equilibrium dissociation constant: 9.04 × 10−7 M for wild type FcγRIIa and 2.82 × 10−8 M for 2A45.1) and significantly improved affinity to mouse serum IgG compared to wild type human FcγRIIa. The in vivo pharmacokinetic profile of PD-L1 fused with engineered FcγRIIa (PD-L1–2A45.1) was compared with that of PD-L1 fused with wild type FcγRIIa (PD-L1–wild type FcγRIIa) and human PD-L1 in mice. PD-L1–2A45.1 showed 11.7- and 9.7-fold prolonged circulating half-life (t1/2) compared to PD-L1 when administered intravenously and intraperitoneally, respectively. In addition, the AUCinf of PD-L1–2A45.1 was two-fold higher compared to that of PD-L1–wild type FcγRIIa. These results demonstrate that engineered FcγRIIa fusion offers a novel and successful strategy for prolonging serum half-life of therapeutic proteins.  相似文献   

8.
The MHC class I-like Fc receptor (FcRn) is an intracellular trafficking Fc receptor that is uniquely responsible for the extended serum half-life of antibodies of the IgG subclass and their ability to transport across cellular barriers. By performing these functions, FcRn affects numerous facets of antibody biology and pathobiology. Its critical role in controlling IgG pharmacokinetics has been leveraged for the design of therapeutic antibodies and related biologics. FcRn also traffics serum albumin and is responsible for the enhanced pharmacokinetic properties of albumin-conjugated therapeutics. The understanding of FcRn and its therapeutic applications has been limited by a paucity of reliable serological reagents against human FcRn. Here, we describe the properties of a new panel of highly specific monoclonal antibodies (mAbs) directed against human FcRn with diverse epitope specificities. We show that this antibody panel can be used to study the tissue expression pattern of human FcRn, to selectively block IgG and serum albumin binding to human FcRn in vitro and to inhibit FcRn function in vivo. This mAb panel provides a powerful resource for probing the biology of human FcRn and for the evaluation of therapeutic FcRn blockade strategies.Key words: FcRn, IgG, monoclonal antibody, albumin, therapy  相似文献   

9.
Albumin has a serum half-life of 3 weeks in humans. This has been utilized to extend the serum persistence of biopharmaceuticals that are fused to albumin. In light of the fact that the neonatal Fc receptor (FcRn) is a key regulator of albumin homeostasis, it is crucial to address how fusion of therapeutics to albumin impacts binding to FcRn. Here, we report on a detailed molecular investigation on how genetic fusion of a short peptide or an single-chain variable fragment (scFv) fragment to human serum albumin (HSA) influences pH-dependent binding to FcRn from mouse, rat, monkey, and human. We have found that fusion to the N- or C-terminal end of HSA only slightly reduces receptor binding, where the most noticeable effect is seen after fusion to the C-terminal end. Furthermore, in contrast to the observed strong binding to human and monkey FcRn, HSA and all HSA fusions bound very poorly to mouse and rat versions of the receptor. Thus, we demonstrate that conventional rodents are limited as preclinical models for analysis of serum half-life of HSA-based biopharmaceuticals. This finding is explained by cross-species differences mainly found within domain III (DIII) of albumin. Our data demonstrate that although fusion, particularly to the C-terminal end, may slightly reduce the affinity for FcRn, HSA is versatile as a carrier of biopharmaceuticals.  相似文献   

10.
Mice genetically engineered to express human FcRn are valuable models for the evaluation of therapeutic antibodies in the context of human FcRn in vivo. However, only limited clinical chemistry information on these mouse strains is available. Thus, we have compared 30 clinical chemical parameters of C57BL/6J wild-type mice, murine FcRn-knockout mice, and two human FcRn transgenic mouse strains expressing human FcRn in the absence of murine FcRn. Since FcRn-mediated recycling prevents albumin and IgG from intracellular degradation, significant differences for both proteins were observed in the murine FcRn-knockout mice. Mice lacking FcRn show lower IgG and albumin levels compared to wild-type mice. The most prominent differences in clinical chemical parameters can be explained by secondary effects of the altered albumin levels of murine FcRn-knockout mice on liver metabolism, as similar tendencies have been observed in analbuminemic Nagase rats and hypoalbuminemic human patients, showing an overall increased liver metabolism. Both human FcRn transgenic strains show clinical chemical parameters similar to those found for wild-type mice, with the exception of endogenous IgG levels, which are greatly reduced in these mice.  相似文献   

11.

Background

Bam32, a 32 kDa adaptor molecule, plays important role in B cell receptor signalling, T cell receptor signalling and antibody affinity maturation in germinal centres. Since antibodies against trypanosome variant surface glycoproteins (VSG) are critically important for control of parasitemia, we hypothesized that Bam32 deficient (Bam32-/-) mice would be susceptible to T. congolense infection.

Methodology/Principal Findings

We found that T. congolense-infected Bam32-/- mice successfully control the first wave of parasitemia but then fail to control subsequent waves and ultimately succumb to their infection unlike wild type (WT) C57BL6 mice which are relatively resistant. Although infected Bam32-/- mice had significantly higher hepatomegaly and splenomegaly, their serum AST and ALT levels were not different, suggesting that increased liver pathology may not be responsible for the increased susceptibility of Bam32-/- mice to T. congolense. Using direct ex vivo flow cytometry and ELISA, we show that CD4+ T cells from infected Bam32-/- mice produced significantly increased amounts of disease-exacerbating proinflammatory cytokines (including IFN-γ, TNF-α and IL-6). However, the percentages of regulatory T cells and IL-10-producing CD4+ cells were similar in infected WT and Bam32-/- mice. While serum levels of parasite-specific IgM antibodies were normal, the levels of parasite-specific IgG, (particularly IgG1 and IgG2a) were significantly lower in Bam32-/- mice throughout infection. This was associated with impaired germinal centre response in Bam32-/- mice despite increased numbers of T follicular helper (Tfh) cells. Adoptive transfer studies indicate that intrinsic B cell defect was responsible for the enhanced susceptibility of Bam32-/- mice to T. congolense infection.

Conclusions/Significance

Collectively, our data show that Bam32 is important for optimal anti-trypanosome IgG antibody response and suppression of disease-promoting proinflammatory cytokines and its deficiency leads to inability to control T. congolense infection in mice.  相似文献   

12.
The specificity of the mouse class I-specific antibody COB6-3 was examined in detail. It was found to react with the mouse class I molecules H-2Db, Kd, and Qa-2, and with human HLA-A, –B, –C antigens. The specificity pattern of COB6-3, despite its different origin, was similar to that of the monomorphic HLA class I-specific antibody W6/32. Cross-inhibition studies show that on human cells the antigenic determinants recognized by the two antibodies are situated close together and may be identical. On mouse cells, reactivity of both antibodies was generated upon replacement of mouse beta-2 microglobulin (B2m) with its bovine counterpart, but differences in specificity were observed using human B2m.Abbreviations used in this paper B2m beta-2 microglobulin - BSA bovine serum albumin - FCS fetal calf serum - FITC fluorescein isothiocyanate - MHC major histocompatibility complex - PBL peripheral blood lymphocytes - PBS phosphate-buffered saline - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

13.
Albumin is an abundant blood protein that acts as a transporter of a plethora of small molecules like fatty acids, hormones, toxins, and drugs. In addition, it has an unusual long serum half-life in humans of nearly 3 weeks, which is attributed to its interaction with the neonatal Fc receptor (FcRn). FcRn protects albumin from intracellular degradation via a pH-dependent cellular recycling mechanism. To understand how FcRn impacts the role of albumin as a distributor, it is of importance to unravel the structural mechanism that determines pH-dependent binding. Here, we show that although the C-terminal domain III (DIII) of human serum albumin (HSA) contains the principal binding site, the N-terminal domain I (DI) is important for optimal FcRn binding. Specifically, structural inspection of human FcRn (hFcRn) in complex with HSA revealed that two exposed loops of DI were in proximity with the receptor. To investigate to what extent these contacts affected hFcRn binding, we targeted selected amino acid residues of the loops by mutagenesis. Screening by in vitro interaction assays revealed that several of the engineered HSA variants showed decreased binding to hFcRn, which was also the case for two missense variants with mutations within these loops. In addition, four of the variants showed improved binding. Our findings demonstrate that both DI and DIII are required for optimal binding to FcRn, which has implications for our understanding of the FcRn-albumin relationship and how albumin acts as a distributor. Such knowledge may inspire development of novel HSA-based diagnostics and therapeutics.  相似文献   

14.
The neonatal Fc receptor (FcRn) is expressed by cells of epithelial, endothelial and myeloid lineages and performs multiple roles in adaptive immunity. Characterizing the FcRn/IgG interaction is fundamental to designing therapeutic antibodies because IgGs with moderately increased binding affinities for FcRn exhibit superior serum half-lives and efficacy. It has been hypothesized that 2 FcRn molecules bind an IgG homodimer with disparate affinities, yet their affinity constants are inconsistent across the literature. Using surface plasmon resonance biosensor assays that eliminated confounding experimental artifacts, we present data supporting an alternate hypothesis: 2 FcRn molecules saturate an IgG homodimer with identical affinities at independent sites, consistent with the symmetrical arrangement of the FcRn/Fc complex observed in the crystal structure published by Burmeister et al. in 1994. We find that human FcRn binds human IgG1 with an equilibrium dissociation constant (KD) of 760 ± 60 nM (N = 14) at 25°C and pH 5.8, and shows less than 25% variation across the other human subtypes. Human IgG1 binds cynomolgus monkey FcRn with a 2-fold higher affinity than human FcRn, and binds both mouse and rat FcRn with a 10-fold higher affinity than human FcRn. FcRn/IgG interactions from multiple species show less than a 2-fold weaker affinity at 37°C than at 25°C and appear independent of an IgG''s variable region. Our in vivo data in mouse and rat models demonstrate that both affinity and avidity influence an IgG''s serum half-life, which should be considered when choosing animals, especially transgenic systems, as surrogates.  相似文献   

15.
The neonatal Fc receptor (FcRn) is a major histocompatibility complex class I-related molecule that regulates the half-life of IgG and albumin. In addition, FcRn directs the transport of IgG across both mucosal epithelium and placenta and also enhances phagocytosis in neutrophils. This new knowledge gives incentives for the design of IgG and albumin-based diagnostics and therapeutics. To study FcRn in vitro and to select and characterize FcRn binders, large quantities of soluble human FcRn are needed. In this report, we explored the impact of two free cysteine residues (C48 and C251) of the FcRn heavy chain on the overall structure and function of soluble human FcRn and described an improved bacterial production strategy based on removal of these residues, yielding approximately 70 mg.L(-1) of fermentation of refolded soluble human FcRn. The structural and functional integrity was proved by CD, surface plasmon resonance and MALDI-TOF peptide mapping analyses. The strategy may generally be translated to the large-scale production of other major histocompatibility complex class I-related molecules with nonfunctional unpaired cysteine residues. Furthermore, the anti-FcRn response in goats immunized with the FcRn heavy chain alone was analyzed following affinity purification on heavy chain-coupled Sepharose. Importantly, purified antibodies blocked the binding of both ligands to soluble human FcRn and were thus directed to both binding sites. This implies that the FcRn heavy chain, without prior assembly with human beta2-microglobulin, contains the relevant epitopes found in soluble human FcRn, and is therefore sufficient to obtain binders to either ligand-binding site. This finding will greatly facilitate the selection and characterization of such binders.  相似文献   

16.
Immunodeficient mice are widely used for pre-clinical studies to understand various human diseases. Here, we report the generation of four immunodeficient mouse models using CRISPR/Cas9 system without inserting any foreign gene sequences such as NeoR cassettes and their characterization. By eliminating any possible effects of adding a NeoR cassette, our mouse models may allow us to better elucidate the in vivo functions of each gene. Our FVB-Rag2?/?, B6-Rag2?/?, and BALB/c-Prkdc?/? mice showed phenotypes similar to those of the earlier immunodeficient mouse models, including a lack of mature B cells and T cells and an increase in the number of CD45+DX-5+ natural killer cells. However, B6-Il2rg?/? mice had a unique phenotype, with a lack of mature B cells, increased number of T cells, and decreased number of natural killer cells. Additionally, serum immunoglobulin levels in all four immunodeficient mouse models were significantly reduced when compared to those in wild-type mice with the exception of IgM in B6-Il2rg?/? mice. These results indicate that our immunodeficient mouse models are a robust tool for in vivo studies of the immune system and will provide new insights into the variation in phenotypic outcomes resulting from different gene-targeting methodologies.  相似文献   

17.
A major challenge for the therapeutic use of many peptides and proteins is their short circulatory half-life. Albumin has an extended serum half-life of 3 weeks because of its size and FcRn-mediated recycling that prevents intracellular degradation, properties shared with IgG antibodies. Engineering the strictly pH-dependent IgG-FcRn interaction is known to extend IgG half-life. However, this principle has not been extensively explored for albumin. We have engineered human albumin by introducing single point mutations in the C-terminal end that generated a panel of variants with greatly improved affinities for FcRn. One variant (K573P) with 12-fold improved affinity showed extended serum half-life in normal mice, mice transgenic for human FcRn, and cynomolgus monkeys. Importantly, favorable binding to FcRn was maintained when a single-chain fragment variable antibody was genetically fused to either the N- or the C-terminal end. The engineered albumin variants may be attractive for improving the serum half-life of biopharmaceuticals.  相似文献   

18.
Small recombinant antibody molecules such as bispecific single-chain diabodies (scDb) possessing a molecular mass of ∼55 kDa are rapidly cleared from circulation. We have recently extended the plasma half-life of scDb applying various strategies including PEGylation, N-glycosylation and fusion to an albumin-binding domain (ABD) from streptococcal protein G. Here, we further analyzed the influence of these modifications on the biodistribution of a scDb directed against carcinoembryonic antigen (CEA) and CD3 capable of retargeting T cells to CEA-expressing tumor cells. We show that a prolonged circulation time results in an increased accumulation in CEA+ tumors, which was most pronounced for scDb-ABD and PEGylated scDb. Interestingly, tumor accumulation of the scDb-ABD fusion protein was ∼2-fold higher compared with PEGylated scDb, although both molecules exhibit similar plasma half-lives and similar affinities for CEA. Comparing half-lives in neonatal Fc receptor (FcRn) wild-type and FcRn heavy chain knock-out mice the contribution of the FcRn to the long plasma half-life of scDb-ABD was confirmed. The half-life of scDb-ABD was ∼2-fold lower in the knock-out mice, while no differences were observed for PEGylated scDb. Binding of the scDb derivatives to target and effector cells was not or only marginally affected by the modifications, although, compared with scDb, a reduced cytotoxic activity was observed for scDb-ABD, which was further reduced in the presence of albumin. In summary, these findings demonstrate that the extended half-life of a bispecific scDb translates into improved accumulation in antigen-positive tumors but that modifications might also affect scDb-mediated cytotoxicity.Bispecific single-chain diabodies (scDb)2 are recombinant molecules composed of the variable heavy and light chain domains of two antibodies connected by three linkers in the order VHA-VLB-VHB-VLA (1). These domains assemble into molecules with a compact structure and molecular masses of ∼55 kDa. Bispecific single-chain diabodies have been developed for various applications including the retargeting of cytotoxic T lymphocytes to tumor cells for cellular cancer therapy (2).Although scDb are capable of efficiently retargeting effector cells to tumor cells the small size leads to their rapid elimination after i.v. injection. The terminal half-life of these molecules in mice is only in the range of 5–6 h, compared with several days for whole IgG molecules (3, 4). The fast clearance of such small molecules from circulation hampers therapeutic applications, e.g. requiring infusions or repeated injections to maintain a therapeutically effective dose over a prolonged period of time (5). For example, a bispecific tandem scFv directed against CD19 and CD3 (blinatumomab) having a similar size as an scDb molecule had to be given as an 8-week infusion (maximum dose 60 μg/m2 per day) in a clinical phase I trial for the treatment of B cell lymphoma patients (6).To extend plasma half-lives of therapeutic proteins and thus to improve pharmacokinetics and pharmacodynamics, several strategies can be applied (7). Strategies such as conjugation of polyethylene glycol chains (PEGylation) or production of hyperglycosylated variants through introduction of additional N-glycosylation sites primarily aim at increasing the hydrodynamic volume of the molecule, thus reducing renal filtration and degradation. Some of these strategies further implement FcRn-mediated recycling processes, e.g. fusion to the IgG Fc region and fusion or binding to serum albumin.We recently applied several of these strategies to improve the plasma half-life of a scDb molecule. These strategies included site-directed conjugation of a 40-kDa PEG chain (PEGylated scDb, scDb-A′-PEG40k), production of N-glycosylated scDb variants possessing 3, 6, or 9 N-glycosylation sites (scDb-ABC1–7), a scDb-human serum albumin fusion protein (scDb-HSA), and a scDb fused to an albumin-binding domain from streptococcal protein G (scDb-ABD) (3, 4, 8). In these studies we showed that N-glycosylation only moderately increased half-life, while a strong improvement was observed for the PEGylated scDb, scDb-HSA, and scDb-ABD.In the present study we further analyzed the biodistribution of unmodified scDb as well as three of the scDb derivatives (PEGylated scDb, N-glycosylated scDb, scDb-ABD) in tumor-bearing mice. We show that the modified scDb molecules exhibit a reduced renal clearance and that an extended half-life leads to an increased accumulation in antigen-positive tumors. The strongest improvement was observed for scDb-ABD. Using FcRn knock-out mice we confirmed that FcRn-mediated recycling contributes to the long half-life of scDb-ABD. Affinities of the scDb derivatives for target and effector cells were not or only marginally affected by the modifications, although, compared with scDb, a reduced cytotoxic activity was observed for scDb-ABD, which was further reduced in the presence of albumin. These findings demonstrate that half-life extension of scDb results in increased tumor accumulation but that modifications might also affect scDb-mediated cytotoxicity.  相似文献   

19.
The Fc domain of IgG has been the target of multiple mutational studies aimed at altering the pH-dependent IgG/FcRn interaction to modulate IgG pharmacokinetics. These studies have yielded antibody variants with disparate pharmacokinetic characteristics, ranging from extended in vivo half-life to those exhibiting extremely rapid clearance. To better understand pH-dependent binding parameters that govern these outcomes and limit FcRn-mediated half-life extension, we generated a panel of novel Fc variants with high affinity binding at acidic pH that vary in pH 7.4 affinities and assessed pharmacokinetic outcomes. Pharmacokinetic studies in human FcRn transgenic mice and cynomolgus monkeys showed that multiple variants with increased FcRn affinities at acidic pH exhibited extended serum half-lives relative to the parental IgG. Importantly, the results reveal an underappreciated affinity threshold of neutral pH binding that determines IgG recycling efficiency. Variants with pH 7.4 FcRn affinities below this threshold recycle efficiently and can exhibit increased serum persistence. Increasing neutral pH FcRn affinity beyond this threshold reduced serum persistence by offsetting the benefits of increased pH 6.0 binding. Ultra-high affinity binding to FcRn at both acidic and neutral pH leads to rapid serum clearance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号