首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Aspenwood chips were pretreated by steam explosion. The various wood fractions obtained were assayed for their ability to act as substrates for growth and cellulase production of different Trichoderma and Clostridium thermocellum species. Steam exploded aspenwood was as efficiently utilized as solka floc and correspondingly high cellulase activities were detected in the various culture filtrates. When T. harzianum E58 was grown on increasing concentrations of solka floc, highest cellulase and xylanase activities were detected at 1% substrate concentrations while high substrate concentrations (10-20%) inhibited growth and enzyme production. When the cellulosic substrates were supplemented with increasing amounts of glucose, cellulase and xylanase production were inhibited when the glucose concentration exceeded 0.1%. Highest xylanase activities were detected after growth of T. reesei C30 and T. harianum E58 on xylan and solka floc respectively. All of the steam exploded fractions were at least partially hydrolyzed by the T. harzianum E58 cellulase system. The extent of the pretreatment also influenced the ability of Zymomonas mobilis and Saccharomyces cerevisiae to ferment the liberated sugars to ethanol. About 85% of the theoretical yield of ethanol from cellulose could be obtained from the combined hydrolysis and fermentation of pretreated aspenwood.  相似文献   

2.
Culture filtrates from three mutant strains of Trichoderma reesei grown on lactose and on cellulose were compared under use conditions on four cellulose substrates. Cellulose culture filtrates contained five to six times as much cellulase as lactose culture filtrates. Unconcentrated cellulose culture filtrates produced up to 10% sugar solutions from 15% cellulose in 24 h. Specific activity in enzyme assays and efficiency in saccharification tests were low for enzymes from all the mutants. Over a wide range the percent saccharification of a substrate in a given times was directly proportional to the logarithm of the ratio of initial concentrations of enzyme and substrate. As a result of this, dilute enzyme is more efficient than concentrated enzyme, but if high sugar concentrations are desired, very large quantities of enzyme are required. Since the slopes of these plots varied, the relative activity of cellulase on different substrates may be affected by enzyme concentration.  相似文献   

3.
A comparison has been made between the 3,5-dinitrosalicylic acid (DNS) and alkaline copper methods of assaying for reducing sugars released during the enzymatic hydrolysis of cellulose by culture filtrates from Trichoderma harzianum E58. The DNS method was shown to be more readily influenced by the incubation conditions and by components derived from lignocellulosic substrates. The endo-1,4-β-d-glucanase [1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] values obtained with the DNS assay were always considerably higher than those obtained with the alkaline copper method and did not give reducing values that were proportional to the actual number of hemiacetal reducing groups. The alkaline copper assay was not affected by the degree of polymerization of the substrate. Although this latter method appeared to be superior to the DNS assay it was still affected by the incubation conditions, nature of the substrate and the influence of other cellulase components on each of the specific enzyme assays.  相似文献   

4.
Summary Various modes of substrate and enzyme addition were used to hydrolyze a 10% concentration (w/v) of steam-exploded, water-and-alkali extracted aspenwood withTrichoderma harzianum E58 cellulases. Although cellulose conversion was high (94–100%), enzyme recovery was low in all cases. Low enzyme recovery was due to a combination of thermal inactivation and adsorption of the cellulases onto the lignocellulosic residue. Enzyme recycle was not feasible as the activity of the recovered cellulases towards crystalline cellulose was low. However, the residual material from enzyme hydrolysis was a suitable carbon source for cellulase enzyme production byT. harzianum based on enzyme yield and hydrolytic potential. These residues could only be used up to a 1% substrate concentration, since at higher substrate loadings cellulase production was reduced, likely because of lignin inhibitors.  相似文献   

5.
Culture filtrates from Trichoderma harzianum E58, T. reesei CL 847 and Penicillium sp. C 462 were assayed for beta-glucosidase activity using a range of substrates and sugar analysis methods. Although sugar analyses by the dinitrosalicylic acid (DNS) and Nelson-Somogyi methods gave a similar profile, when increasing concentrations of salicin were assayed, considerably higher values were obtained with the DNS assay. The salicin concentration used for the assay greatly influenced the final beta-glucosidase values with higher values obtained for T. harzianum E58 and T. reesei CL 847 at substrate concentrations of 1 mg/mL while optimum values for Penicillium sp. C 462 were obtained at substrate concentrations greater than 3 mg/mL. Low concentrations of salicin and p-nitro-phenyl-beta-D-glucopyranoside (PNPG) gave the same response as cellobiose. Cellobiose should be used at concentrations greater than 3.74 mg/mL to avoid substrate limitation of the beta-glucosidase assay.  相似文献   

6.
Summary Growth of Trichoderma harzianum E58 on hemicellulose-rich media, both in batch and fermentor cultures, resulted in independent profiles for the production of xylanase and endoglucanase enzymes. Dramatic differences in the ratio of xylanase to endoglucanase activities were observed among cultures grown on cellulose-rich Solka Floc and xylan. These results indicated that the induction of xylanases and cellulases was likely to be under separate regulatory control. The specific activity and amount of xylanases produced were found to be dependent on the concentration of xylan in the growth media. Growth on oat spelts xylan or the hemicellulose-rich, water-soluble fraction from steam-treated aspenwood (SEA-WS) greatly enhanced the production of xylanases and xylosidase in the culture filtrates. Constitutive levels of xylanase and endoglucanase enzymes were detected during growth of the fungus on glucose.Offprint requests to: D. J. Senior  相似文献   

7.
The commercial production of chemicals and fuels from lignocellulosic residues by enzymatic means still requires considerable research on both the technical and economic aspects. Two technical problems that have been identified as requiring further research are the recycle of the enzymes used in hydrolysis and the reuse of the re calcitrant cellulose remaining after incomplete hydrolysis. Enzyme recycle is required to lower the cost of the enzymes, while the reuse of the spent cellulose will lower the feedstock cost. The conversion process studied was a combined enzymatic hydrolysis and fermentation (CHF) procedure that utilized the cellulolytic enzymes derived from the fungus Trichoderma harzianum E58 and the yeast Saccharomyces cerevisiae. The rate and extent of hydrolysis and ethanol production was monitored as was the activity and hydrolytic potential of the enzymes remaining in the filtrate after the hydrolysis period. When a commercial cellulose was used as the substrate for a routine 2-day CHF process, 60% of the original treated, water-extracted aspenwood was used as the substrate, only 13% of the original filter paper activity was detected after a similar procedure. The combination of 60% spent enzymes with 40% fresh enzymes resulted in the production of 30% less reducing sugars than the original enzyme mixture. Since 100% hydrolysis of the cellulose portion is seldom accomplished in an enzymatic hydrolysis pro cess, the residual cellulose was used as a substrate for the growth of T. harzianum E58 and production of celulolytic enzymes. The residue remaining after the CHF process was used as a substrate for the production of the cellulolytic enzymes. The production of enzymes from the residue of the Solka Floc hydrolysis was greater than the production of enzymes from the original Solka Floc.  相似文献   

8.
The bioconversion of cellulose and hemicellulose substrates to 2,3-butanediol by a sequential coculture approach was investigated with the cellulolytic fungus Trichoderma harzianum E58 and the fermentative bacterium Klebsiella pneumoniae. Vogel medium optimal for the production of the cellulolytic and xylanolytic enzymes of the fungus was found to be inhibitory to butanediol fermentation. This inhibition appeared to be due to a synergistic effect of various ingredients, particularly the salts, present in the fungal medium. The removal or replacement of such ingredients from Vogel medium led to the relief of fermentation inhibition, but the treatments also resulted in a significant decrease in fungal enzyme production. Resting cells of K. pneumoniae could be used for butanediol production in the fungal medium, indicating that the inhibitory effect on solvent production under such conditions was due to the indirect result of growth inhibition of the bacterial cells. The resting-cell approach could be combined with a fed-batch system for the direct conversion of 8 to 10% (wt/vol) of Solka-Floc or aspenwood xylan to butanediol at over 30% of the theoretical conversion efficiencies.  相似文献   

9.
10.
The bioconversion of cellulose and hemicellulose substrates to 2,3-butanediol by a sequential coculture approach was investigated with the cellulolytic fungus Trichoderma harzianum E58 and the fermentative bacterium Klebsiella pneumoniae. Vogel medium optimal for the production of the cellulolytic and xylanolytic enzymes of the fungus was found to be inhibitory to butanediol fermentation. This inhibition appeared to be due to a synergistic effect of various ingredients, particularly the salts, present in the fungal medium. The removal or replacement of such ingredients from Vogel medium led to the relief of fermentation inhibition, but the treatments also resulted in a significant decrease in fungal enzyme production. Resting cells of K. pneumoniae could be used for butanediol production in the fungal medium, indicating that the inhibitory effect on solvent production under such conditions was due to the indirect result of growth inhibition of the bacterial cells. The resting-cell approach could be combined with a fed-batch system for the direct conversion of 8 to 10% (wt/vol) of Solka-Floc or aspenwood xylan to butanediol at over 30% of the theoretical conversion efficiencies.  相似文献   

11.
Over 100 strains of wood-rotting fungi were compared for their ability to degrade wood blocks. Some of these strains were then assayed for extracellular cellulase [1,4-(1,3;1,4)-β- -glucan 4-glucanohydrolase, EC 3.2.1.4] activity using a variety of different solid media containing carboxymethyl cellulose or acid swollen cellulose. The diameter of clearing on these plates gave an approximate indication of the order of cellulase activities obtained from culture filtrates of these strains. Trichoderma strains grown on Vogels medium gave the highest cellulase yields. The cellulase enzyme production of T. reesei C30 and QM9414 was compared with that of eight other Trichoderma strains. Trichoderma strain E58 had comparable endoglucanase and filter paper activities with the mutant strains while the β- -glucosidase [β- -glucoside glucohydrolase, EC 3.2.1.21] activity was approximately six to nine times greater.  相似文献   

12.
A study was carried out using simple laboratory techniques to examine the influence of the antagonistic isolates of Trichoderma harzianum, T. viride, Bacillius subtilis and Pseudomons flourescence and their culture filtrates on selected soil-borne root rot pathogens Rhizoctonia solani and Fusarium solani. Testing procedures were standardised using two different methods. The experiments were based on the principle of dual culture and agar diffusion techniques. The experiment involved the recording of the percentage of reduction in growth and inhibition zones formed by various filtrates of antagonistic culture growth. The results showed that the antagonists tested had the ability to reduce the linear growth of fungal pathogens. Also, the cultures filtrates of antagonists had antifungal activities by forming inhibition zones. Culture filtrates have shown a strong clear inhibition zone which increases in diameter as the incubation period of antagonists increases. This observation was related to the increase in the activity of chitinolytic enzymes as secondary metabolic compounds produced in growth media by prolonging the period of incubation. The study has proved that such enzymes can be effectively used for suppression of soil-borne pathogens and that it can evolve as a potential biocide.  相似文献   

13.
Production of enzymes in the cellulolytic complex was determined in culture filtrates of six fungal isolates grown on chemically treated or gamma-irradiated bagasse. The enzymatic activities of the filtrates were determined by measurement of glucose release from cotton, filter paper, carboxymethylcellulose, cellobiose, and cellobiose octaacetate. Cultures grown on base-treated and gamma-irradiated plus acid-treated bagasse provided culture filtrates with the highest enzymatic activities whereas alpha-cellulose, untreated, and acid-treated bagasse were the poorest substrates for enzyme production. Filtrates of Trichoderma reesei QM 9414 yielded the highest cellulolytic activity in all test media. The largest accumulation of fungal-derived, extracellular protein was observed in media containing gamma-irradiated bagasse as the carbon substrate.  相似文献   

14.
Summary Enzymatic conversion of lignocellulosic material to fuels and chemicals depends on a initial pretreatment to render the cellulose more susceptible to enzymatic attack. Biological delignification of aspenwood with the fungus Phlebia tremellosus was compared to steaming as a pretreatment method.The biologically delignified aspenwood (BDA) had a high pentosan content and did not contain inhibitors of enzymatic hydrolysis or subsequent fermentation. In contrast, the steamed aspenwood required a water extraction step to remove the inhibitory material and this step also removed most of the pentosan. The yield of treated material was 90% from biological delignification and 70% from steaming.The cellulose in the BDA was less accessible to the cellulase enzymes than the steamed aspenwood. Combined hydrolysis and fermentation with Saccharomyces cerevisiae gave a lower yield of ethanol from BDA than from the steamed aspenwood, but the yields based on the weight of substrate before pretreatment were comparable. Combined hydrolysis and fermentation with Klebsiella pneumoniae gave higher yields of butanediol from BDA than from steamed aspenwood, because Klebsiella can ferment the xylose which was present in the biologically treated aspenwood. Trichoderma harzianum produced lower levels of cellulase enzymes when grown on BDA than when grown on steamed aspenwood and this was related to the xylan found in the biologically treated material.Abbreviations BDA biologically delignified aspenwood - SEA-WI steam-exploded, water-extracted aspenwood - AI-SEA-WI acid-impregnated, steam-exploded, water-extracted aspenwood - CHF combined hydrolysis and fermentation - FP filter paper  相似文献   

15.
Outlook for cellulase improvement: screening and selection strategies   总被引:46,自引:0,他引:46  
Cellulose is the most abundant renewable natural biological resource, and the production of biobased products and bioenergy from less costly renewable lignocellulosic materials is important for the sustainable development of human beings. A reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. Here, we review quantitative cellulase activity assays using soluble and insoluble substrates, and focus on their advantages and limitations. Because there are no clear relationships between cellulase activities on soluble substrates and those on insoluble substrates, soluble substrates should not be used to screen or select improved cellulases for processing relevant solid substrates, such as plant cell walls. Cellulase improvement strategies based on directed evolution using screening on soluble substrates have been only moderately successful, and have primarily targeted improvement in thermal tolerance. Heterogeneity of insoluble cellulose, unclear dynamic interactions between insoluble substrate and cellulase components, and the complex competitive and/or synergic relationship among cellulase components limit rational design and/or strategies, depending on activity screening approaches. Herein, we hypothesize that continuous culture using insoluble cellulosic substrates could be a powerful selection tool for enriching beneficial cellulase mutants from the large library displayed on the cell surface.  相似文献   

16.
A process has been developed for the bulk purification of cellulase-free beta-1,4-D-xylanase from the fungus Trichoderma harzianum E58. The process involved the primary step of ultrafiltering the culture filtrate via a 10,000-molecular-weight cut-off membrane to separate the cellulase (retentate) and xylanase (permeate) fractions. The cellulase component was concentrated by 40- to 60-fold, resulting in an enzyme complex that could effectively hydrolyze high concentrations of cellulose and xylan to glucose and xylose. The xylanase was concentrated and solvent exchanged by adsorption to a cationic exchanger, SP-ZetaPrep 250, followed by elution with a pH change in the buffer to give a purified and concentrated xylanase complex dissolved in a low-salt buffer. The resultant xylanase system was pure by the criteria of sodium dodecyl sulfate polyacrylamide electrophoresis, had a very high specific activity of 2400 IU/mg protein, was virtually free of filter paper activity, and had a ratio of contaminating filter paper activity of 2 x 10(-6) (0.009% endoglucanase activity). Approximately 3.3 g protein, which contained in excess of 7 x 10(6) IU xylanase activity, was obtained from 17 L original culture filtrate. The process scheme was designed to facilitate scale-up to an industrial level of production.  相似文献   

17.
Summary A sequential co-culture approach was investigated for the conversion of lignocellulosic substrates to butanediol and ethanol. Growth of Clostridium thermocellum on solka floc and aspenwood xylan resulted in the release of extracellular endoglucanase and xylanase enzymes into the culture medium. Low levels of fermentation products were formed and unutilized sugars accumulated in the medium. Inoculation of Klebsiella pneumoniae as a sequential culture resulted in the rapid utilization of the accumulated sugars and the formation of additional fermentation products, including butanediol, ethanol, and acetoin. This approach was applicable to the use of mixed cellulose and hemicellulose substrates, including steam-exploded aspenwood. Further improvement in solvent production from steam-exploded substrates could be obtained by using a fed-batch approach to circumvent the problem of inhibitors associated with the natural substrates.  相似文献   

18.
Growth and maintenance parameters μmax, Ks, m, and Ym for cellulase biosynthesis on lactose by T. reesei-C5 were estimated and compared with published data on other soluble substrates and mutant strains of T. reesei in continuous culture. Growth was favored at higher feed lactose but cellulase productivities did not increase proportionally, suggesting that a degree of inhibition and/or catabolic repression within the strain is possible. The estimated values of growth kinetics and maintenance parameters varied little but were within a reasonable range of published data on other soluble substrates and mutant strains of T. reesei in continuous cultures.  相似文献   

19.
An endogenous cellulase gene (CfEG3a) of Coptotermes formosanus, an economically important pest termite, was cloned and overexpressed in both native form (nCfEG) and C-terminal His-tagged form (tCfEG) in Escherichia coli. Both forms of recombinant cellulases showed hydrolytic activity on cellulosic substrates. The nCfEG was more active and stable than tCfEG even though the latter could be purified to near homogeneity with a simple procedure. The differential activities of nCfEG and tCfEG were also evidenced by hydrolytic products they produced on different substrates. On CMC, both acted as an endoglucanase, randomly hydrolyzing internal β-1,4-glycosidic bonds and resulting in a smear of polymers with different lengths, although cellobiose, cellotriose, and cellotetraose equivalents were noticeable. The hydrolytic products of tCfEG were one unit sugar less than those produced by nCfEG. Using filter paper as substrate, however, the major hydrolytic products of nCfEG were cellobiose, cellotriose and trace of glucose; those of tCfEG were cellobiose, cellotriose and trace of cellotetraose, indicating a property similar to that of cellobiohydrolase, an exoglucanase. The results presented in this report uncovered the biochemical properties of the recombinant cellulase derived from the intact gene of Formosan subterranean termites. The recombinant cellulase would be useful in designing cellulase-inhibiting termiticides and incorporating into a sugar-based biofuel production program.  相似文献   

20.
Two filamentous fungi, the white-rot fungus Trametes versicolor and the soil fungus and potential biocontrol organism Trichoderma harzianum, have been grown in pure and mixed cultures on low-N (0.4 mM) and high-N (4 mM) defined synthetic media to determine the activities of selected wood-degrading enzymes such as cellobiase, cellulase, laccase, and peroxidases. Growth characteristics and enzyme activities were examined for potential correlations. Such correlations would allow the use of simple enzyme assays for measuring biomass development and would facilitate predictions about competitiveness of species in mixed fungal cultures. Our results show that while laccase and Poly Red-478 peroxidase activities indicate survival of the decay fungus, none of the monitored extracellular enzymes can serve as a quantitative indicator for biomass accumulation. As expected, the level of available nitrogen affected the production of the enzymes monitored: in low-N media, specific cellobiase, specific cellulase, and peroxidase activities were enhanced, while laccase activities were reduced. Most importantly, laccase activities of Trametes versicolor, and to a smaller extent, cellobiase activities of both fungi, were significantly induced in mixed cultures of Trametes versicolor and Trichoderma harzianum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号