首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Weak acids such as acetate and benzoate, which partially collapse the transmembrane proton gradient, not only mediate pH taxis but also impair the motility of Escherichia coli and Salmonella at an external pH of 5.5. In this study, we examined in more detail the effect of weak acids on motility at various external pH values. A change of external pH over the range 5.0 to 7.8 hardly affected the swimming speed of E. coli cells in the absence of 34 mM potassium acetate. In contrast, the cells decreased their swimming speed significantly as external pH was shifted from pH 7.0 to 5.0 in the presence of 34 mM acetate. The total proton motive force of E. coli cells was not changed greatly by the presence of acetate. We measured the rotational rate of tethered E. coli cells as a function of external pH. Rotational speed decreased rapidly as the external pH was decreased, and at pH 5.0, the motor stopped completely. When the external pH was returned to 7.0, the motor restarted rotating at almost its original level, indicating that high intracellular proton (H+) concentration does not irreversibly abolish flagellar motor function. Both the swimming speeds and rotation rates of tethered cells of Salmonella also decreased considerably when the external pH was shifted from pH 7.0 to 5.5 in the presence of 20 mM benzoate. We propose that the increase in the intracellular proton concentration interferes with the release of protons from the torque-generating units, resulting in slowing or stopping of the motors.  相似文献   

2.
Cytoplasmic pH and periplasmic pH of Escherichia coli cells in suspension were observed with 4-s time resolution using fluorimetry of TorA-green fluorescent protein mutant 3* (TorA-GFPmut3*) and TetR-yellow fluorescent protein. Fluorescence intensity was correlated with pH using cell suspensions containing 20 mM benzoate, which equalizes the cytoplasmic pH with the external pH. When the external pH was lowered from pH 7.5 to 5.5, the cytoplasmic pH fell within 10 to 20 s to pH 5.6 to 6.5. Rapid recovery occurred until about 30 s after HCl addition and was followed by slower recovery over the next 5 min. As a control, KCl addition had no effect on fluorescence. In the presence of 5 to 10 mM acetate or benzoate, recovery from external acidification was diminished. Addition of benzoate at pH 7.0 resulted in cytoplasmic acidification with only slow recovery. Periplasmic pH was observed using TorA-GFPmut3* exported to the periplasm through the Tat system. The periplasmic location of the fusion protein was confirmed by the observation that osmotic shock greatly decreased the periplasmic fluorescence signal by loss of the protein but had no effect on the fluorescence of the cytoplasmic protein. Based on GFPmut3* fluorescence, the pH of the periplasm equaled the external pH under all conditions tested, including rapid acid shift. Benzoate addition had no effect on periplasmic pH. The cytoplasmic pH of E. coli was measured with 4-s time resolution using a method that can be applied to any strain construct, and the periplasmic pH was measured directly for the first time.  相似文献   

3.
Pitting corrosion of aluminum 2024 in Luria Bertani medium was reduced by the secretion of anionic peptides by engineered and natural Bacillus biofilms and was studied in continuous reactors using electrochemical impedance spectroscopy. Compared to sterile controls, pitting was reduced dramatically by the presence of the biofilms. The secretion of a 20 amino acid polyaspartate peptide by an engineered Bacillus subtilis WB600/pBE92-Asp biofilm slightly reduced the corrosion rate of the passive aluminum alloy at pH 6.5; however, the secretion of gamma-polyglutamate by a Bacillus licheniformis biofilm reduced the corrosion rate by 90% (compared to the B. subtilis WB600/pBE92 biofilm which did not secrete polyaspartate or gamma-polyglutamate). The corrosion potential ( E(corr)) of aluminum 2024 was increased by about 0.15-0.44 V due to the formation of B. subtilis and B. licheniformis biofilms as compared to sterile controls. The increase of E(corr) and the observed prevention of pitting indicate that the pitting potential ( E(pit)) had increased. This result and the further decrease of corrosion rates for the passive aluminum alloy suggest that the rate of the anodic metal dissolution reaction was reduced by an inhibitor produced by the biofilms. Purified gamma-polyglutamate also decreased the corrosion rates of aluminum 2024.  相似文献   

4.
5.
6.
The ability of bacterial spores and vegetative cells to adhere to inert surfaces was investigated by means of the number of adherent spores (Bacillus cereus and Bacillus subtilis spores) and Escherichia coli cells and their resistance to cleaning or rinsing procedures (adhesion strength). Six materials (glass, stainless steel, polyethylene high density (PEHD), polyamide-6, polyvinyl chloride, and Teflon) were tested. Slight differences in the number of adherent spores (less than 1 log unit) were observed between materials, but a higher number of adherent E. coli cells was found on the hydrophobic materials PEHD and Teflon. Conversely, the resistance of both B. cereus and B. subtilis spores to a cleaning procedure was significantly affected by the material. Hydrophobic materials were harder to clean. The topography parameter derived from the Abbott-Firestone curve, RVK, and, to a lesser extent, the widely used roughness parameters RA (average roughness) and Rz (maximal roughness), were related to the number of adherent cells. Lastly, the soiling level as well as the adhesion strength were shown to depend largely on the microorganism. The number of adhering B. cereus hydrophobic spores and their resistance to a cleaning procedure were found to be 10 times greater than those of the B. subtilis hydrophilic spores. Escherichia coli was loosely bound to all the materials tested, even after 24 h biofilm formation.  相似文献   

7.
甜瓜幼苗生长及光合特性与育苗基质pH相关性研究   总被引:10,自引:0,他引:10  
以新疆厚皮甜瓜皇后为试材,在泥炭珍珠岩复合基质中,按一定比例加入CaCO3,构成pH梯度值分别为5.0、5.5、6.0、6.5、7.0、7.5和8.0的7种基质类型,研究了基质pH对甜瓜幼苗生长及其光合特性的影响。结果表明,基质酸碱性对甜瓜幼苗的光合特性、根系活力、单株叶面积、根系和地上部干物重都产生显著影响,酸性和微酸性基质(pH<6.0)时,幼苗叶片叶绿体超微结构发生降解,叶绿素堆积,叶片净光合速率下降,单株叶面积减小,根和地上部干重降低;pH为6.0~7.0的各处理在叶面积以及根和地上部干重指标上,F检验不显著;pH>7.0的微碱性和碱性基质虽然对幼苗产生不利影响,但与pH<6.0的处理比较,其影响要小些。鉴于此,甜瓜幼苗生长的基质pH范围为6.0~7.0,偏碱不会对幼苗产生严重的生理障碍。采用CaCO3调节基质pH时,最佳调节范围为pH6.0~6.5。  相似文献   

8.
The effect of variation of pH and temperature on the lectinophagocytosis of enteropathogenic Escherichia coli by polymorphonuclear leukocytes and macrophages elicited by thioglycolate medium was evaluated. The phagocytosis of enteropathogenic E. coli is dependent on pH, being maximal at pH 7.0 and reduced at pH 5.5 or 6.0. Mannan and mannose (as representative sugars that bind to phagocyte lectin receptors), are recognized by mannose receptors and reduced the phagocytic index at pH 7.0 (from 41.6 +/- 8.5 to 17.0 +/- 6.1) and at pH 6.0 (from 24.1 +/- 5.1 to 14.5 +/- 5.0), suggesting that mannose receptors, despite their reduced affinity for ligand at pH 6.0, also participate in phagocytosis of enteropathogenic E. coli. The inhibition of phagocytosis by anti-substance A antibody was also examined at pH 7.0 and at pH 6.0, decreasing (from 41.6 +/- 8.5 to 21.1 +/- 3.4) and (from 24.1 +/- 5.1 to 12.0 +/- 3.5), respectively. This antibody reduced the phagocytosis of enteropathogenic E. coli in phagocytic assays at 37 or 41 degrees C. These results suggest that the acidic pH decreased the affinity of mannose receptors to ligands on the surface of E. coli and also affected the binding of lectin from E. coli to N-acetylgalactosamine on phagocytes.  相似文献   

9.
Buffering capacity of bacilli that grow at different pH ranges.   总被引:10,自引:5,他引:5       下载免费PDF全文
Cytoplasmic buffering capacities and buffering by whole cells were examined in six bacterial species: Bacillus acidocaldarius, Bacillus stearothermophilus, Escherichia coli, Bacillus subtilis, Bacillus alcalophilus, and Bacillus firmus RAB. Acid-base titrations were conducted on whole cells and cells permeabilized with Triton X-100 or n-butanol. In all of the species examined, the buffering capacity of intact cells was generally a significant proportion of the total buffering capacity, but the magnitude of the buffering capacity varied from species to species. Over the entire range of pH values from 4 to 9.5, B. subtilis exhibited a cytoplasmic buffering capacity that was much higher than that of B. stearothermophilus, B. acidocaldarius, or E. coli. The latter three species had comparable cytoplasmic buffering capacities at pH 4 to 9.5, as long as optimal conditions for cell permeabilization were employed. All of the nonalkalophiles exhibited a decrease in cytoplasmic buffering capacity as the external pH increased from pH 5 to 7. At alkaline pH values, the two thermophiles in the study had particularly low cytoplasmic buffering capacities, and the two alkalophilic bacteria had appreciably higher cytoplasmic buffering capacities than any of the other species studied. Cytoplasmic buffering capacities as high as 1,100 nmol of H+ per pH unit per mg of protein were observed in alkalophilic B. firmus RAB. Since previous studies have shown that immediate cytoplasmic alkalinization occurs upon loss of the active mechanisms for pH homeostasis in the alkalophiles, the very high buffering capacities apparently offer no global protection of internal pH. Perhaps, the high buffering capacities reflect protective mechanisms for specific macromolecules or process rather than part of the mechanisms for bulk pH homeostasis.  相似文献   

10.
R.J. ROWBURY AND N.H. HUSSAIN. 1996. Escherichia coli transferred from pH 7.0 to pH 5.5 or 6.0 became alkali-sensitive by a rapidly induced phenotypic response. Alkali sensitization was reduced at pH 5.0 and virtually abolished at pH 6.5. The response was triggered by cytoplasmic rather than external or periplasmic acidification and de novo protein synthesis was needed. Alkali sensitivity failed to appear at pH 5.5 plus DNA gyrase inhibitors and was markedly reduced by himA, himD, hns, ompC and nhaA lesions. A tonB deletion mutant showed alkali sensitivity at pH 7.0. Alkali sensitivity induction was not subject to catabolite repression nor was it appreciably affected by a relA lesion. Acid-induced cells were more sensitive to alkali damage to both DNA and β-galactosidase and to alkali inhibition of β-galactosidase induction. Alkali sensitization induced at pH 5.5 may involve NhaB loss.  相似文献   

11.
Abstract The colonization of biofilms of a benzoate-degrading Gram-positive water bacterium, strain B4, by a pathogenic Escherichia coli was studied in a continuous flow reactor. E. coli added to a fixed bed reactor colonized by B4, was able to grow in the biofilms and subsequently re-enter the free water phase in high numbers. Mixed biofilms of strain B4 and E. coli were also grown on glass slides for detailed examination of the spatial order of the mixed population biofilm. Individual cells as well as microcolonies of E. coli were detected in the biofilms by hybridization with a fluorescently labeled 23S rRNA-targeted oligonucleotide probe. The spatial distribution of E. coli could be analyzed in all layers of even thick biofilms.  相似文献   

12.
Under certain kinds of cytoplasmic stress, Escherichia coli selectively reproduce by distributing the newer cytoplasmic components to new-pole cells while sequestering older, damaged components in cells inheriting the old pole. This phenomenon is termed polar aging or cell division asymmetry. It is unknown whether cell division asymmetry can arise from a periplasmic stress, such as the stress of extracellular acid, which is mediated by the periplasm. We tested the effect of periplasmic acid stress on growth and division of adherent single cells. We tracked individual cell lineages over five or more generations, using fluorescence microscopy with ratiometric pHluorin to measure cytoplasmic pH. Adherent colonies were perfused continually with LBK medium buffered at pH 6.00 or at pH 7.50; the external pH determines periplasmic pH. In each experiment, cell lineages were mapped to correlate division time, pole age and cell generation number. In colonies perfused at pH 6.0, the cells inheriting the oldest pole divided significantly more slowly than the cells inheriting the newest pole. In colonies perfused at pH 7.50 (near or above cytoplasmic pH), no significant cell division asymmetry was observed. Under both conditions (periplasmic pH 6.0 or pH 7.5) the cells maintained cytoplasmic pH values at 7.2–7.3. No evidence of cytoplasmic protein aggregation was seen. Thus, periplasmic acid stress leads to cell division asymmetry with minimal cytoplasmic stress.  相似文献   

13.
The Bacillus subtilis pss gene encoding phosphatidylserine synthase was cloned by its complementation of the temperature sensitivity of an Escherichia coli pssA1 mutant. Nucleotide sequencing of the clone indicated that the pss gene encodes a polypeptide of 177 amino acid residues (deduced molecular weight of 19,613). This value agreed with the molecular weight of approximately 18,000 observed for the maxicell product. The B. subtilis phosphatidylserine synthase showed 35% amino acid sequence homology to the yeast Saccharomyces cerevisiae phosphatidylserine synthase and had a region with a high degree of local homology to the conserved segments in some phospholipid synthases and amino alcohol phosphotransferases of E. coli and S. cerevisiae, whereas no homology was found with that of the E. coli counterpart. A hydropathy analysis revealed that the B. subtilis synthase is very hydrophobic, in contrast to the hydrophilic E. coli counterpart, consisting of several strongly hydrophobic segments that would span the membrane. A manganese-dependent phosphatidylserine synthase activity, a characteristic of the B. subtilis enzyme, was found exclusively in the membrane fraction of E. coli (pssA1) cells harboring a B. subtilis pss plasmid. Overproduction of the B. subtilis synthase in E. coli cells by a lac promoter system resulted in an unusual increase of phosphatidylethanolamine (up to 93% of the total phospholipids), in contrast to gratuitous overproduction of the E. coli counterpart. This finding suggested that the unusual cytoplasmic localization of the E. coli phosphatidylserine synthase plays a role in the regulation of the phospholipid polar headgroup composition in this organism.  相似文献   

14.
AIMS: The aim of the study was to evaluate the effect of habituation at different pH conditions on the acid resistance of Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella enterica serotype Typhimurium, and to identify potential differences between the adaptive responses of the three pathogens. METHODS: Stationary phase cells of L. monocytogenes, E. coli O157:H7 and S. Typhimurium, grown in glucose-free media, were exposed to pH 3.5 broth directly or after habituation for 90 min at various pH conditions from 4.0 to 6.0. Survivors at pH 3.5 were determined by plating on tryptic soy agar and incubating at 30 degrees C for 48 h. The kinetics (death rate) of the pathogens at pH 3.5 was calculated by fitting the data to an exponential model. RESULTS: Habituation to acidic environments provided protection of the pathogens against lethal acid conditions. This acid protection, however, was found to be pH dependent. For example, for E. coli O157:H7 an increased acid resistance was observed after habituation at a pH range from 4.0 to 5.5, while the maximum acid tolerance was induced at pH 5.0. Furthermore, the effect of low pH habituation was different among pathogens. For L. monocytogenes, E. coli O157:H7 and S. Typhimurium, the pH range within which habituation resulted to increased acid resistance was 5.0-6.0, 4.0-5.5 and 4.0-5.0, respectively, while the maximum acid tolerance was induced after habituation at pH 5.5, 5.0 and 4.5, respectively. SIGNIFICANCE: Acid stress conditions are common within current food processing technologies. The information on adaptive responses of L. monocytogenes, E. coli O157:H7 and S. Typhimurium after habituation to different pH environments provided in the present study, could lead to a more realistic evaluation of food safety concerns and to a better selection of processes in order to avoid adaptation phenomena and to minimize the potential for food safety risks.  相似文献   

15.
The xylanase gene of Bacillus circulans Teri-42 was cloned in both B. subtilis and Escherichia coli. The enzyme activity was almost 87% higher in B. subtilis (pBA7) than in E. coli (pAQ4). No cellulase activity was detected in the clones, B. subtilis (pBA7) and E. coli (pAQ4). Approximately 1120 U (80%) of the xylanase was secreted extracellularly by the clone B. subtilis (pBA7) as compared to 79 U (88%) excreted in E. coli (pAQ4). In B. subtilis (pBA7) the optimal xylanase activity was at pH 7.0 and 50 degrees C, which was the same as that of the parent B. circulans Teri-42. The recombinant xylanase in B. subtilis was more stable at higher temperatures than the parent B. circulans Teri-42. Purification of xylanase from the clone B. subtilis (pBA7) showed a 71 kDa polypeptide similar to that observed in B. circulans Teri-42.  相似文献   

16.
The construction and some properties of new hybrid plasmids which are able to replicate in both Escherichia coli and Bacillus subtilis are presented. A 5.5 Md hybrid plasmid pJP9 was constructed from pBR322 (Tc, Ap) and pUB110 (Nm) plasmids. pIM1 (7.0 Md) and pIM3 (7.7 Md) plasmids are its different erythromycin resistant derivatives. Tetracycline, ampicillin, neomycin and possibly erythromycin resistance genes are expressed in E. coli while neomycin and erythromycin resistance genes are expressed in B. subtilis. Insertional inactivation of only one gene is possible using the pJP9 plasmid as a vector in B. subtilis. However, insertional inactivation of at least two different genes can be achieved and monitored in E. coli and B. subtilis transformants in cloning experiments with PIM1 and pIM3 plasmids. Insertional inactivation of antibiotic resistance genes present in pJP9 plasmid was achieved by cloning of Streptococcus sanguis DNA fragments generated by appropriate restriction endonucleases. The pJP9 plasmid and its derivatives were found to be stable in both hosts cells.  相似文献   

17.
This work was performed to establish a model describing bacterial surface structures involved in biofilm development, in curli-overproducing Escherichia coli K-12 strains, at 30°C, and in minimal growth medium. Using a genetic approach, in association with observations of sessile communities by light and electron microscopic techniques, the role of protein surface structures, such as flagella and curli, and saccharidic surface components, such as the E. coli exopolysaccharide, colanic acid, was determined. We show that, in the context of adherent ompR234 strains, (i) flagellar motility is not required for initial adhesion and biofilm development; (ii) both primary adhesion to inert surfaces and development of multilayered cell clusters require curli synthesis; (iii) curli display direct interactions with the substratum and form interbacterial bundles, allowing a cohesive and stable association of cells; and (iv) colanic acid does not appear critical for bacterial adhesion and further biofilm development but contributes to the biofilm architecture and allows for the formation of voluminous biofilms.  相似文献   

18.
Polymorphonuclear leukocytes obtained from sterile peritoneal exudates in rabbits contain two phospholipid-splitting activities (phosphatidylacylhydrolases EC 3.1.1.4), one most active at pH 5.5 and the other between pH 7.2 and 9.0. Hydrolysis of phospholipid was demonstrated using Escherichia coli labeled during growth with [1-(14)C]oleate and then autoclaved to inactivate E. coli phospholipases and to increase the accessibility of the microbial phospholipid substrates. The acid and alkaline phospholipase activities are both membrane bound, calcium dependent, and heat stable, and they appear to be specific for the 2-acyl position of phospholipids. Evidence was also obtained suggesting that the E. coli envelope phospholipids with oleate in position 2 are more readily degraded than those with palmitate. The two activities are associated with azurophilic as well as specific granules (obtained by zonal centrifugation) and with phagosomes (isolated after ingestion of paraffin particles by the granulocytes). Phospholipase A activities at pH 5.5 and pH 7.5 degrade the two major phospholipids of E. coli, phosphatidylethanolamine and phosphatidylglycerol, to the same extent, but the phospholipase activity at acid pH does not hydrolyze micellar dispersions of phosphatidylethanolamine. By contrast, phospholipase A(2) activity at pH 7.5 degrades both types of phosphatidylethanolamine substrates. Heparin and chondroitin sulfate inhibit phospholipase activity at pH 5.5 but have little effect on activity at pH 7.5. All detergents tested inhibited phospholipase activity, and both activities are inhibited by reaction products, free fatty acid and lysophosphatidylethanolamine. This product inhibition is only partially prevented by addition of albumin. Supernatant fractions of granulocyte homogenates contain a heat-labile inhibitor of granule phospholipase activity at pH 7.5. Boiling the fraction not only removes the inhibition but actually results in stimulation of hydrolysis at pH 7.5 as well as pH 5.5. These granule-associated phospholipase A activities of polymorphonuclear leukocytes differ in several of their properties from granule or lysosomal phospholipases of other phagocytic cells.  相似文献   

19.
Biofilms are structured communities of bacteria that are held together by an extracellular matrix consisting of protein and exopolysaccharide. Biofilms often have a limited lifespan, disassembling as nutrients become exhausted and waste products accumulate. D-amino acids were previously identified as a self-produced factor that mediates biofilm disassembly by causing the release of the protein component of?the matrix in Bacillus subtilis. Here we report that?B.?subtilis produces an additional biofilm-disassembly factor, norspermidine. Dynamic light scattering and scanning electron microscopy experiments indicated that norspermidine interacts directly and specifically with exopolysaccharide. D-amino acids and norspermidine acted together to break down existing biofilms and mutants blocked in the production of both factors formed long-lived biofilms. Norspermidine, but not closely related polyamines, prevented biofilm formation by B.?subtilis, Escherichia coli, and Staphylococcus aureus.  相似文献   

20.
克隆嗜热枯草芽孢杆菌WY-34普鲁兰酶基因并在大肠杆菌中进行表达,对重组酶进行纯化和酶学性质研究,根据枯草芽孢杆菌的普鲁兰酶蛋白序列,设计PCR引物对WY-34的普鲁兰酶基因进行克隆及异源表达.对表达蛋白的最适pH、pH稳定性及最适温度、温度稳定性等特性进行研究,并测定重组普鲁兰酶的底物特异性.将普鲁兰酶基因pluA克隆及分析序列后,发现基因长度为2.2 kb,编码718个氨基酸,在大肠杆菌中异源表达.通过Ni-IDA亲和层析一步纯化得到比活力为93.2 U/mg的纯酶,SDS-PAGE和凝胶层析测定的分子量分别为76.2 kD和74.3 kD.酶学性质研究表明,该酶的最适温度为40℃,在温度不高于45℃条件下稳定;最适pH为6.0,同一温度下pH 6.0-9.0范围内处理30 min可以保持80%以上的酶活力,此酶对普鲁兰糖有很强的底物特异性.此重组普鲁兰酶的酶学性质表明此酶具有一定的工业化应用价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号