首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Phospholipases A(2) (PLA(2)) are multifunctional proteins which exhibit varied biological activities correlated to the structural diversities of the sub-classes. The crude aqueous extract from subterranean system of Mandevilla velutina, a plant found in Brazilian savanna, was assayed for its ability to inhibit biological activities of several snake venoms and isolated PLA(2)s. The extract induced total inhibition of the phospholipase activity of Crotalus durissus terrificus venom and only partial inhibition of Bothrops venoms. When assayed against purified toxins, the highest efficacy was detected against CB and crotoxin, while almost ineffective against PLA(2)s from the genus Bothrops. Although M. velutina crude extract significantly inhibited the myotoxic activity of C. d. terrificus venom and CB, it produced only partial inhibition of either Bothrops jararacussu venom or its main myotoxins BthTX-I (basic Lys49), BthTX-II (basic Asp49) and BthA-I-PLA(2) (acidic Asp49). The extract exhibited also full inhibition of hemorrhage caused by Bothrops alternatus, Bothrops moojeni and Bothrops pirajai snake venoms, but partial inhibition (90%) of that induced by B. jararacussu venom. The extract was ineffective to inhibit the fibrinogenolytic activity of B. moojeni, B. alternatus and B. pirajai crude venoms, while their caseinolytic activity was only partially inhibited. No inhibition of the anticoagulant activity, although partial reduction of the edema-inducing activity of C. d. terrificus and B. alternatus crude venoms, CB, PrTX-I, BthTX-I and crotoxin was observed. Besides extending survival of mice injected with lethal doses of C. d. terrificus and B. jararacussu venoms, M. velutina extract decreased to 50% the lethality of mice. Extracts of 18 month old micropropagated plants were able to partially neutralize the effect of the crude venoms and toxins.  相似文献   

2.
A protein, which neutralizes the enzymatic, toxic, and pharmacological activities of various basic and acidic phospholipases A(2) from the venoms of Bothrops moojeni, Bothrops pirajai, and Bothrops jararacussu, was isolated from B. moojeni snake plasma by affinity chromatography using immobilized myotoxins on Sepharose gel. Biochemical characterization of this myotoxin inhibitor protein (BmjMIP) showed it to be an oligomeric glycoprotein with a M(r) of 23,000-25,000 for the monomeric subunit. BmjMIP was stable in the pH range from 4.0 to 12.0, between 4 and 80 degrees C, even after deglycosylation. The role of the carbohydrate moiety was investigated and found not to affect the in vitro function of the inhibitor. The corresponding 500bp cDNA obtained by RT-PCR from the liver of the snake encodes a mature protein of 166 amino acid residues including a 19 amino acid signal peptide. The primary structure of BmjMIP showed a high similarity with other snake phospholipase A(2) inhibitors (PLIs) in which the carbohydrate recognition domain (CRD) and the glycosylation site (Asn103) are conserved. Circular dichroism spectroscopy indicated that no significant alterations in the secondary structure of either the BmjMIP or the target protein occur upon their interaction. BmjMIP has a wide range of inhibitory properties against basic and acidic PLA(2)s from Bothrops venoms (anti-enzymatic, anti-myotoxic, anti-edema inducing, anti-cytotoxic, anti-bactericidal, and anti-lethal). However, the inhibitor showed a reduced ability to neutralize the biological activities of crotoxin B (CB), the PLA(2) homologue associated with crotapotin in Crotalus durissus terrificus snake venom. Finally, the purified PLA(2) inhibitor was shown to protect in vivo against the toxic and pharmacological effects of a homologous PLA(2) enzyme, suggesting that PLIs or a corresponding derived peptide may prove useful in the treatment of snakebite victims or, more importantly, in the treatment of the many human diseases in which these enzymes have been implicated.  相似文献   

3.
Snake venom myotoxic phospholipases A(2) contribute to much of the tissue damage observed during envenomation by Bothrops asper, the major cause of snake bites in Central America. Several myotoxic PLA(2)s have been identified, but their mechanism of myotoxicity is still unclear. To aid in the molecular characterization of these venom toxins, the complete open reading frames encoding two Lys(49) and one Asp(49) basic PLA(2) myotoxins from the Central American snake B. asper (terciopelo) were obtained by cDNA cloning from venom gland poly-adenylated RNA. The amino acid sequence deduced from the myotoxins II and III open reading frames corresponded in each case to one of the reported amino acid sequence isoforms. The sequence of a new myotoxin IV-like sequence (MT-IVa) contains conservative Val-->Leu(18) and Ala-->Val(23) substitutions when compared with the reported N-terminus of the native myotoxin IV, suggesting minor isoform variations among specimens of a single species. Sequence alignment studies indicated significant (>75% sequence identity) identities with other crotalid venom Lys(49) PLA(2)s, particularly bothropstoxin I/Ia isoforms of B. jararacussu and myotoxin II of B. asper.  相似文献   

4.
The phospholipase A2 (PLA2, E.C. 3.1.1.4) superfamily is defined by enzymes that catalyze the hydrolysis of the sn-2 bond of phosphoglycerides. Most PLA2s from the venom of Bothrops species are basic proteins, which have been well characterized both structurally and functionally, however, little is known about acidic PLA2s from this venom. Nevertheless, it has been demonstrated that they are non-toxic, with high catalytic and hypotensive activities and show the ability to inhibit platelet aggregation. To further understand the function of these proteins, we have isolated a cDNA that encodes an acidic PLA2 from a cDNA library prepared from the poly(A)+ RNA of venom gland of Bothrops jararacussu. The full-length nucleotide sequence of 366 base pairs encodes a predicted gene product with 122 amino acid with theoretical isoelectric point and size of 5.28 and 13,685 kDa, respectively. This acidic PLA2 sequence was cloned into expression vector pET11a (+) and expressed as inclusion bodies in Escherichia coli BL21(DE3)pLysS. The N-terminal amino acid sequence of the 14 kDa recombinant protein was determined. The recombinant acidic PLA2 protein was submitted to refolding and to be purified by RP-HPLC chromatography. The structure and function of the recombinant protein was compared to that of the native protein by circular dichroism (CD), enzymatic activity, edema-inducing, and platelet aggregation inhibition activities.  相似文献   

5.
6.
A thrombin-like enzyme, named BjussuSP-I, isolated from Bothrops jararacussu snake venom, is an acidic single-chain glycoprotein with M(r)=61,000, pI approximately 3.8 and 6% sugar. BjussuSP-I shows high proteolytic activity upon synthetic substrates, such as S-2238 and S-2288. It also shows procoagulant and kallikrein-like activity, but is unable to act on platelets and plasmin. These activities are inhibited by specific inhibitors of this class of enzymes. The complete cDNA sequence of BjussuSP-I with 696bp encodes open reading frames of 232 amino acid residues, which conserve the common domains of thrombin-like serine proteases. BjussuSP-I shows a high structural homology with other thrombin-like enzymes from snake venoms where common amino acid residues are identified as those corresponding to the catalytic site and subsites S1, S2 and S3 already reported. In this study, we also demonstrated the importance of N-linked glycans to improve thrombin-like activity of BjussuSP-I toxin.  相似文献   

7.
Cogo JC  Lilla S  Souza GH  Hyslop S  de Nucci G 《Biochimie》2006,88(12):1947-1959
Bothrops snake venoms contain a variety of phospholipases (PLA(2)), some of which are myotoxic. In this work, we used reverse-phase HPLC and mass spectrometry to purify and sequence two PLA(2) from the venom of Bothrops insularis. The two enzymes, designated here as BinTX-I and BinTx-II, were acidic (pI 5.05 and 4.49) Asp49 PLA(2), with molecular masses of 13,975 and 13,788, respectively. The amino acid sequence and molecular mass of BinTX-I were identical to those of a PLA(2) previously isolated from this venom (PA2_BOTIN, SwissProt accession number ) while those of BinTX-II indicated that this was a new enzyme. Multiple sequence alignments with other Bothrops PLA(2) showed that the amino acids His48, Asp49, Tyr52 and Asp99, which are important for enzymatic activity, were fully conserved, as were the 14 cysteine residues involved in disulfide bond formation, in addition to various other residues. A phylogenetic analysis showed that BinTX-I and BinTX-II grouped with other acidic Asp49 PLA(2) from Bothrops venoms, and computer modeling indicated that these enzymes had the characteristic structure of bothropic PLA(2) that consisted of three alpha-helices, a beta-wing, a short helix and a calcium-binding loop. BinTX-I (30 microg/paw) produced mouse hind paw edema that was maximal after 1h compared to after 3h with venom (10 and 100 microg/paw); in both cases, the edema decreased after 6h. BinTX-1 and venom (40 microg/ml each) produced time-dependent neuromuscular blockade in chick biventer cervicis preparations that reached 40% and 95%, respectively, after 120 min. BinTX-I also produced muscle fiber damage and an elevation in CK, as also seen with venom. These results indicate that BinTX-I contributes to the neuromuscular activity and tissue damage caused by B. insularis venom in vitro and in vivo.  相似文献   

8.
Myonecrosis, in addition to edema and other biological manifestations, are conspicuous effects of Bothrops snake venoms, some of them caused by phospholipases A(2) (PLA(2)s). Asp49-PLA(2)s are catalytically active, whereas Lys49-PLA(2)s, although highly toxic, have little or no enzymatic activity upon artificial substrates, due to a substitution of lysine for aspartic acid at position 49. Crotapotin (CA), the acidic counterpart of crotoxin PLA(2) (CB), is a PLA(2)-like protein from Crotalus durissus terrificus snake venom, and is considered a chaperone protein for CB, able to increase its lethality about ten fold, but to inhibit the formation of the rat paw edema induced by carrageenin and by snake venoms. In this study, we demonstrate that CA significantly inhibits the edema induced by BthTX-I (23% inhibition), BthTX-II (27%), PrTX-I (25%), PrTX-III (35%) and MjTX-II (10%) on the mouse paw. CK levels evoked by isolated Asp49 or Lys49-PLA(2)s were reduced by 40% to 54% in the presence of CA and, in all cases, the membrane damaging activity of the toxins was also reduced. Circular dichroism spectra of the PLA(2)s in the presence and absence of CA showed that there was not any detectable secondary structural modification due to association between CA and the myotoxins. However, Fourier Transformed Infrared (FT-IR) analysis indicated that ionic and hydrophobic contacts contributed to stabilize this interaction.  相似文献   

9.
This paper reports the purification and biochemical/pharmacological characterization of two myotoxic phospholipases A(2) (PLA(2)s) from Bothrops brazili venom, a native snake from Brazil. Both myotoxins (MTX-I and II) were purified by a single chromatographic step on a CM-Sepharose ion-exchange column up to a high purity level, showing M(r) approximately 14,000 for the monomer and 28,000Da for the dimer. The N-terminal and internal peptide amino acid sequences showed similarity with other myotoxic PLA(2)s from snake venoms, MTX-I belonging to Asp49 PLA(2) class, enzymatically active, and MTX-II to Lys49 PLA(2)s, catalytically inactive. Treatment of MTX-I with BPB and EDTA reduced drastically its PLA(2) and anticoagulant activities, corroborating the importance of residue His48 and Ca(2+) ions for the enzymatic catalysis. Both PLA(2)s induced myotoxic activity and dose-time dependent edema similar to other isolated snake venom toxins from Bothrops and Crotalus genus. The results also demonstrated that MTXs and cationic synthetic peptides derived from their 115-129 C-terminal region displayed cytotoxic activity on human T-cell leukemia (JURKAT) lines and microbicidal effects against Escherichia coli, Candida albicans and Leishmania sp. Thus, these PLA(2) proteins and C-terminal synthetic peptides present multifunctional properties that might be of interest in the development of therapeutic strategies against parasites, bacteria and cancer.  相似文献   

10.
11.
To investigate the geographic variations in venoms of two medically important pitvipers, we have purified and characterized the phospholipases A2 (PLA2s) from the pooled venoms of Calloselasma rhodostoma from Malaysia, Thailand, Indonesia, and Vietnam, as well as the individual venom of Trimeresurus mucrosquamatus collected from both North and South Taiwan. Enzymatic and pharmacological activities of the purified PLA2s were also investigated. The complete amino acid sequences of the purified PLA2s were determined by sequencing the corresponding cDNAs from the venom gland and shown to be consistent with their molecular weight data and the N-terminal sequences. All the geographic venom samples of C. rhodostoma contain a major noncatalytic basic PLA2-homolog and two or three acidic PLA2s in different proportions. These acidic PLA2s contain Glu6-substitutions and show distinct inhibiting specificities toward the platelets from human and rabbit. We also found that the T. mucrosquamatus venoms from North Taiwan but not those from South Taiwan contain an Arg6-PLA2 designated as TmPL-III. Its amino acid sequence is reported for the first time. This enzyme is structurally almost identical to the low- or nonexpressed Arg6-PLA2 from C. rhodostoma venom gland, and thus appears to be a regressing venom component in both of the Asian pitvipers.  相似文献   

12.
A thrombin-like enzyme named BjussuSP-I, isolated from B. jararacussu snake venom, is an acidic single chain glycoprotein with approximately 6% sugar, Mr=61,000 under reducing conditions and pI approximately 3.8, representing 1.09% of the chromatographic A(280) recovery. BjussuSP-I is a glycosylated serine protease containing both N-linked carbohydrates and sialic acid in its structure. BjussuSP-I showed a high clotting activity upon human plasma, which was inhibited by PMSF, leupeptin, heparin and 1,10-phenantroline. This enzyme showed high stability regarding coagulant activity when analyzed at different temperatures (-70 to 37 degrees C), pHs (4.5 to 8.0), and presence of two divalent metal ions (Ca(2+) and Mg(2+)). It also displayed TAME esterase and proteolytic activities toward natural (fibrinogen and fibrin) and synthetic (BAPNA) substrates, respectively, being also inhibited by PMSF and leupeptin. BjussuSP-I can induce production of polyclonal antibodies able to inhibit its clotting activity, but unable to inhibit its proteolytic activity on fibrinogen. The enzyme also showed crossed immunoreactivity against 11 venom samples of Bothrops, 1 of Crotalus, and 1 of Calloselasma snakes, in addition of LAAO isolated from B. moojeni venom. It displayed neither hemorrhagic, myotoxic, edema-inducing profiles nor proteolytic activity on casein. BjussuSP-I showed an N-terminal sequence (VLGGDECDINEHPFLA FLYS) similar to other thrombin-like enzymes from snake venoms. Based on its biochemical, enzymatic and pharmacological characteristics, BjussuSP-I was identified as a new thrombin-like enzyme isoform from Bothrops jararacussu snake venom.  相似文献   

13.
In the present study, an acidic PLA(2), designated Bl-PLA(2), was isolated from Bothrops leucurus snake venom through two chromatographic steps: ion-exchange on CM-Sepharose and hydrophobic chromatography on Phenyl-Sepharose. Bl-PLA(2) was homogeneous on SDS-PAGE and when submitted to 2D electrophoresis the molecular mass was 15,000Da and pI was 5.4. Its N-terminal sequence revealed a high homology with other Asp49 acidic PLA(2)s from snake venoms. Its specific activity was 159.9U/mg and the indirect hemolytic activity was also higher than that of the crude venom. Bl-PLA(2) induced low myotoxic and edema activities as compared to those of the crude venom. Moreover, the enzyme was able to induce increments in IL-12p40, TNF-α, IL-1β and IL-6 levels and no variation of IL-8 and IL-10 in human PBMC stimulated in vitro, suggesting that Bl-PLA(2) induces proinflammatory cytokine production by human mononuclear cells. Bothrops leucurus venom is still not extensively explored and knowledge of its components will contribute for a better understanding of its action mechanism.  相似文献   

14.
Bothrops snake venoms are known to induce local tissue damage such as hemorrhage and myonecrosis. The opossum Didelphis marsupialis is resistant to these snake venoms and has natural venom inhibitors in its plasma. The aim of this work was to clone and study the chemical, physicochemical and biological properties of DM64, an antimyotoxic protein from opossum serum. DM64 is an acidic protein showing 15% glycosylation and with a molecular mass of 63 659 Da when analysed by MALDI-TOF MS. It was cloned and the amino acid sequence was found to be homologous to DM43, a metalloproteinase inhibitor from D. marsupialis serum, and to human alpha1B-glycoprotein, indicating the presence of five immunoglobulin-like domains. DM64 neutralized both the in vivo myotoxicity and the in vitro cytotoxicity of myotoxins I (mt-I/Asp49) and II (mt-II/Lys49) from Bothrops asper venom. The inhibitor formed noncovalent complexes with both toxins, but did not inhibit the PLA2 activity of mt-I. Accordingly, DM64 did not neutralize the anticoagulant effect of mt-I nor its intracerebroventricular lethality, effects that depend on its enzymatic activity, and which demonstrate the dissociation between the catalytic and toxic activities of this Asp49 myotoxic PLA2. Furthermore, despite its similarity with metalloproteinase inhibitors, DM64 presented no antihemorrhagic activity against Bothrops jararaca or Bothrops asper crude venoms, and did not inhibit the fibrinogenolytic activity of jararhagin or bothrolysin. This is the first report of a myotoxin inhibitor with an immunoglobulin-like structure isolated and characterized from animal blood.  相似文献   

15.
Bothrops moojeni crude venom (MjCV) and its two major toxins, namely myotoxin I (MjTX-I) and myotoxin II (MjTX-II) were alkylated by p-bromophenacyl bromide (BPB). After alkylation the i.p. LD(50) (mice) of MjCV and MjTX-I/II increased from 6.0 to 15.7mg/kg and from 8.0 to 45.0mg/kg, respectively. In addition, doses of 5x LD(50) of alkylated MjTX-I did not cause a single death in mice and no myonecrosis was detected for the alkylated toxins, although both proteins still induced edema. Antibodies to native and modified crude venom or myotoxins cross-reacted with 12 purified class II myotoxic phospholipases A(2) found in snake venoms of the genus Bothrops. Myotoxic PLA(2)s from class I and class III were not recognized by the above antibodies. These results suggest that the overall antigenic structure is conserved among class II myotoxic PLA(2)s, despite differences in their amino acid sequences. Anti-MjTX-I-BPB and anti-MjTX-II-BPB rabbit serum, obtained against the modified myotoxins, were apparently more efficient than those obtained against the native myotoxins. In neutralization experiments, pre-incubation of crude venom or isolated myotoxins with antibodies raised against the native or modified toxins inhibited their PLA(2) and myotoxic activities. Therefore, alkylation of His48 by BPB strongly reduces the local tissue damage induced by B. moojeni venom or isolated myotoxins while retaining antigenicity, which suggests a promising procedure for an enhanced antiophidian serum production for practical purposes.  相似文献   

16.
The crude aqueous extract from the leaves of Casearia sylvestris, a plant found in Brazilian open pastures, was assayed for its ability to inhibit phospholipase A2 (PLA2) activity and some biological activities of bee and several snake venoms, and of a number of isolated PLA2s. The extract induced partial inhibition of the PLA2 activity of venoms containing class I, II and III PLA2s. When tested against the purified toxins, it showed the highest efficacy against class II PLA2s from viperid venoms, being relatively ineffective against the class I PLA2 pseudexin. In addition, C. sylvestris extract significantly inhibited the myotoxic activity of four Bothrops crude venoms and nine purified myotoxic PLA2s, including Lys-49 and Asp-49 variants. The extract was able to inhibit the anticoagulant activity of several isolated PLA2s, with the exception of pseudexin. Moreover, it partially reduced the edema-inducing activity of B. moojeni and B. jararacussu venoms, as well as of myotoxins MjTX-II and BthTX-I. The extract also prolonged the survival time of mice injected with lethal doses of several snake venoms and neutralized the lethal effect induced by several purified PLA2 myotoxins. It is concluded that C. sylvestris constitutes a rich source of PLA2 inhibitors.  相似文献   

17.
An l-amino acid oxidase (Bp-LAAO) from Bothrops pauloensis snake venom was highly purified using sequential chromatography steps on CM-Sepharose, Phenyl-Sepharose CL-4B, Benzamidine Sepharose and C18 reverse-phase HPLC. Purified Bp-LAAO showed to be a homodimeric acidic glycoprotein with molecular weight around 65 kDa under reducing conditions in SDS-PAGE. The best substrates for Bp-LAAO were l-Met, l-Leu, l-Phe and l-Ile and the enzyme showed a strong reduction of its catalytic activity upon l-Met and l-Phe substrates at extreme temperatures. Bp-LAAO showed leishmanicidal, antitumoral and bactericidal activities dose dependently. Bp-LAAO induced platelet aggregation in platelet-rich plasma and this activity was inhibited by catalase. Bp-LAAO-cDNA of 1548 bp codified a mature protein with 516 amino acid residues corresponding to a theoretical isoelectric point and molecular weight of 6.3 and 58 kDa, respectively. Additionally, structural and phylogenetic studies identified residues under positive selection and their probable location in Bp-LAAO and other snake venom LAAOs (svLAAOs). Structural and functional investigations of these enzymes can contribute to the advancement of toxinology and to the elaboration of novel therapeutic agents.  相似文献   

18.
The complete nucleotide sequence of a nerve growth factor precursor from Bothrops jararacussu snake (Bj-NGF) was determined by DNA sequencing of a clone from cDNA library prepared from the poly(A) + RNA of the venom gland of B. jararacussu. cDNA encoding Bj-NGF precursor contained 723 bp in length, which encoded a prepro-NGF molecule with 241 amino acid residues. The mature Bj-NGF molecule was composed of 118 amino acid residues with theoretical pI and molecular weight of 8.31 and 13,537, respectively. Its amino acid sequence showed 97%, 96%, 93%, 86%, 78%, 74%, 76%, 76% and 55% sequential similarities with NGFs from Crotalus durissus terrificus, Agkistrodon halys pallas, Daboia (Vipera) russelli russelli, Bungarus multicinctus, Naja sp., mouse, human, bovine and cat, respectively. Phylogenetic analyses based on the amino acid sequences of 15 NGFs separate the Elapidae family (Naja and Bungarus) from those Crotalidae snakes (Bothrops, Crotalus and Agkistrodon). The three-dimensional structure of mature Bj-NGF was modeled based on the crystal structure of the human NGF. The model reveals that the core of NGF, formed by a pair of beta-sheets, is highly conserved and the major mutations are both at the three beta-hairpin loops and at the reverse turn.  相似文献   

19.
BnSP-7, a Lys49 myotoxic phospholipase A(2) homologue from Bothrops neuwiedi pauloensis venom, was structurally and functionally characterized. Several biological activities were assayed and compared with those of the chemically modified toxin involving specific amino acid residues. The cDNA produced from the total RNA by RT-PCR contained approximately 400 bp which codified its 121 amino acid residues with a calculated pI and molecular weight of 8.9 and 13,727, respectively. Its amino acid sequence showed strong similarities with several Lys49 phospholipase A(2) homologues from other Bothrops sp. venoms. By affinity chromatography and gel diffusion, it was demonstrated that heparin formed a complex with BnSP-7, held at least in part by electrostatic interactions. BnSP-7 displayed bactericidal activity and promoted the blockage of the neuromuscular contraction of the chick biventer cervicis muscle. In addition to its in vivo myotoxic and edema-inducing activity, it disrupted artificial membranes. Both BnSP-7 and the crude venom released creatine kinase from the mouse gastrocnemius muscle and induced the development of a dose-dependent edema. His, Tyr, and Lys residues of the toxin were chemically modified by 4-bromophenacyl bromide (BPB), 2-nitrobenzenesulfonyl fluoride (NBSF), and acetic anhydride (AA), respectively. Cleavage of its N-terminal octapeptide was achieved with cyanogen bromide (CNBr). The bactericidal action of BnSP-7 on Escherichia coli was almost completely abolished by acetylation or cleavage of the N-terminal octapeptide. The neuromuscular effect induced by BnSP-7 was completely inhibited by heparin, BPB, acetylation, and CNBr treatment. The creatine kinase releasing and edema-inducing effects were partially inhibited by heparin or modification by BPB and almost completely abolished by acetylation or cleavage of the N-terminal octapeptide. The rupture of liposomes by BnSP-7 and crude venom was dose and temperature dependent. Incubation of BnSP-7 with EDTA did not change this effect, suggesting a Ca(2+)-independent membrane lytic activity. BnSP-7 cross-reacted with antibodies raised against B. moojeni (MjTX-II), B. jararacussu (BthTX-I), and B. asper (Basp-II) myotoxins as well as against the C-terminal peptide (residues 115-129) from Basp-II.  相似文献   

20.
A basic, dimeric myotoxic protein, myotoxin II, purified from Bothrops asper venom has a similar molecular weight and is immunologically cross-reactive with antibodies raised to previously isolated B. asper phospholipases A2, except that it shows only 0.1% of the phospholipase activity against L-alpha-phosphatidylcholine in the presence of Triton X-100. Its 121 amino acid sequence, determined by automated Edman degradation, clearly identifies it as a Lys-49 phospholipase A2. Key amino acid differences between myotoxin II and phospholipase active proteins in the Ca2(+)-binding loop region, include Lys for Asp-49, Asn for Tyr-28, and Leu for Gly-32. The latter substitution has not previously been seen in Lys-49 proteins. Other substitutions near the amino terminus (Leu for Phe-5 and Gln for several different amino acids at position 11) may prove useful for identifying other Lys-49 proteins in viperid and crotalid venoms. Myotoxin II shows greater sequence identity with other Lys-49 proteins from different snake venoms (Agkistrodon piscivorus piscivorus, Bothrops atrox, and Trimeresurus flavoviridis) than with another phospholipase A2 active Asp-49 molecule isolated from the same B. asper venom. This work demonstrates that phospholipase activity per se, is not required in phospholipase molecules for either myotoxicity or edema inducing activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号