首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To further characterize the human thromboxane A2 (TXA2)/prostaglandin H2 (PGH2) receptor, preparative isoelectric focusing (IEF) was performed on solubilized platelet membranes. TXA2/PGH2 receptors, assayed by specific binding of the TXA2/PGH2 antagonist [125I]PTA-OH, were electrofocused at pH 5.6. Scatchard analysis of IEF fraction pH 5.6 revealed a 180-fold concentration of TXA2/PGH2 receptors (Bmax = 3650 +/- 228 pM/mg focused, 19 +/- 4 pM/mg unfocused) with no change in binding affinity (Kd = 47 +/- 7 nM focused, 36 +/- 14 nM unfocused). SDS-polyacrylamide gel electrophoresis of photoaffinity-labelled electrofocused receptors revealed concentration of specifically labelled proteins having molecular masses of 49,000 and 27,000 Daltons. These results suggest that the human platelet TXA2/PGH2 receptor has a pI of 5.6, molecular mass of 49,000 Daltons, and may exist as a dimer. Preparative IEF should prove useful in the eventual purification of this receptor.  相似文献   

2.
The effects of changes in pH on the binding of agonists and antagonists to the human platelet thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptor were determined. Competition binding studies were performed with the TXA2/PGH2 mimetic [1S-1 alpha,2 beta (5Z), 3 alpha(1E,3R*),4 alpha)]-7-[3-(3-hydroxy-4'-iodophenoxy)-1-buteny) 7-oxabicyclo-[2.2.1]-heptan-2-yl]-5-heptenoic acid ([125I]BOP). The pH optimum for binding of [125I] BOP to washed human platelets was broad with a range of pH 4-6 in contrast to that of the TXA2/PGH2 receptor antagonist 9,11-dimethyl-methano-11,12-methano-16-(3-iodo-4-hydroxyl)-13-aza-15 alpha,beta-omega-tetranorthromboxane A2 ([125I]PTA-OH) which was 7.4. Scatchard analysis of [125I]BOP binding in washed platelets at pH 7.4, 6.0, and 5.0 revealed an increase in affinity (Kd = 1.16 +/- 0.06, 0.64 +/- 0.09, and 0.48 +/- 0.05 nM, respectively) and an increase in the number of receptors (Bmax = 2807 +/- 415, 5397 +/- 636, and 7265 +/- 753 sites/platelet, respectively). The potency of I-BOP to induce shape change in washed platelets at pH 6.0 was also significantly increased from an EC50 value of 0.34 +/- 0.016 nM at pH 7.4 to 0.174 +/- 0.014 nM at pH 6.0 (n = 6, p less than 0.05). In contrast, the EC50 value for thrombin was unaffected by the change in pH. In competition binding studies with [125I]BOP, the affinity of the agonists U46619 and ONO11113 were increased at pH 6.0 compared to 7.4. In contrast, the affinity of the TXA2/PGH2 receptor antagonists I-PTA-OH, SQ29548, and L657925 were either decreased or unchanged at pH 6.0 compared to 7.4. Diethyl pyrocarbonate and N-bromosuccinimide, reagents used to modify histidine residues, reversed the increase in affinity of [125I]BOP at pH 6.0 to values equivalent to those at pH 7.4. In solubilized platelet membranes, the effects of NBS were blocked by coincubation with the TXA2/PGH2 mimetic U46619. The results suggest that agonist and antagonist binding characteristics are different for the TXA2/PGH2 receptor and that histidine residue(s) may play an important role in the binding of TXA2/PGH2 ligands to the receptor.  相似文献   

3.
The binding of the competitive thromboxane A2/prostaglandin H2 (TXA2/PGH2) antagonist (9,11-dimethylmethano-11, 12-methano-16-(3-aza-15 alpha beta-omega-tetranor-TXA2) ([125I]PTA-OH) to membranes prepared from human platelets was characterized. [125I]PTA-OH binding to membranes from human platelets was saturable, displaceable, and dependent on protein concentration. Scatchard analysis of equilibrium binding carried out at 30 degrees C revealed one class of binding sites with a Kd of 30 +/- 4 nM and a Bmax of 1.8 +/- 0.3 pmol/mg of protein (n = 5). Kinetic analysis of the binding of [125I]PTA-OH at 0 degrees C yielded a k1 of 1.35 X 10(6) M-1 min-1 and a k-1 of 0.032 min-1, Kd = k-1/k1 = 24 nM. The potencies of a series of TXA2/PGH2 antagonists as inhibitors of [125I]PTA-OH binding was correlated with their potencies as inhibitors of platelet aggregation induced by the TXA2/PGH2 mimetic, U46619 (1 microM) (r = 0.93, p less than 0.01). A series of TXA2/PGH2 mimetics also displaced [125I]PTA-OH from its binding site, and their potencies as inhibitors of [125I]PTA-OH binding were correlated with their potencies as stimulators of platelet aggregation (r = 0.91, p less than 0.05). The IC50 values for displacement of [125I]PTA-OH by PGF2 alpha, PGD2, and the stable PGI2 analog Iloprost were greater than 25 microM, suggesting that [125I]PTA-OH does not bind to other known platelet prostaglandin receptors. These data are consistent with the notion that this binding site may represent the platelet TXA2/PGH2 receptor.  相似文献   

4.
A Masuda  P V Halushka 《Life sciences》1991,48(25):2391-2395
The influence of cell density on the binding characteristics of thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptors in rat aortic vascular smooth muscle cells in culture were determined using [1S- (1 alpha, 2 beta (5Z), 3a (1E, 3R*), 4 alpha)]- 7 -[3- (3-hydroxy -4- (4'-iodophenoxy)-1-butenyl)-7-oxabicyclo-[2.2.1]heptan- 2yl]-5-heptenoic acid (125I-BOP). The Bmax for 125I-BOP was 5,430 +/- 139 sites/cell (26.9 +/- 5.7 fmoles/mg protein) for cells cultured in 1% fetal calf serum and 2809 +/- 830 sites/cell (13.1 +/- 2.2 fmoles/mg protein) for cells cultured in 10% fetal calf serum. Cells were allowed to grow to varying densities and then harvested for assay. There was a negative correlation between the Bmax and the cell density per flask. The Kd for I-BOP did not significantly vary in any of the studies. The results demonstrate that cell density plays an important role in influencing the expression of vascular TXA2/PGH2 receptors.  相似文献   

5.
Thromboxane (TX) A2 effects in the kidneys include contraction of glomerular mesangial cells and intrarenal vascular tissue. A kidney cDNA encoding a TX receptor expressed in rat renal glomeruli and rat renal arterial smooth muscle cells has been reported. However, TXA2 receptors in human kidneys have not been documented. The purpose of this study was to identify and characterize TXA2 receptors in glomeruli and intrarenal arteries isolated from human kidneys. Normal kidneys, not used for transplant because of technical reasons, were kept at -70 degrees C and used for research purposes. The glomeruli and intrarenal arteries were isolated from renal cortical tissue by a mechanical sieving technique. The equilibrium dissociation constant and receptor number were determined by nonlinear analysis of binding inhibition data. The data were generated in radioreceptor assays using [125I]-BOP, a stable analog of TXA2. The dissociation constants (mean +/- SEM) for binding of I-BOP to human glomeruli and intrarenal arterial membranes were 6.6 +/- 1.1 nM (n = 7) and 20 +/- 6 nM (n = 7), respectively (p < 0.05). The receptor number was 311 +/- 91 fmol/mg protein (n = 7) in glomeruli and 74 +/- 16 fmol/mg protein (n = 7) in intrarenal arterial membranes (p < 0.04). The order of specificity of TXA2 analogs for [125I]-BOP binding sites was similar in glomeruli and in arterial membranes and was I-BOP > or = U46619 > or = pinane TXA2 > or = carbocyclic TXA2 > or = PGH2. These findings provide direct evidence for the presence of specific, high-affinity [125I]-BOP binding sites in human renal glomeruli and extraglomerular vascular tissue. These data also indicate that the human binding sites have higher affinity for the TXA2 agonist I-BOP than for PGH2.  相似文献   

6.
To characterize the thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptor on baboon platelets the binding of [125I]BOP was studied. [125I]BOP bound to washed baboon platelets in a saturable manner. Scatchard analysis of binding isotherms revealed a Kd of 1.12 +/- 0.08 nM and a binding capacity of 54 +/- 5 fmoles/10(8) platelets (326 sites/platelet). Several TXA2/PGH2 agonists and antagonists displaced [125I]BOP from its baboon platelet binding site with a rank order of potency similar to human platelets: I-BOP greater than SQ29548 greater than U46619 = I-PTA-OH greater than PTA-OH. I-BOP aggregated washed baboon platelets with an EC50 of 10 +/- 4 nM. The results indicate that [125I]BOP binds to the TXA2/PGH2 receptor on baboon platelets and that this receptor is similar to its human counterpart.  相似文献   

7.
The diazonium salt of 9,11-dimethylmethano-11,12-methano-16-(4-aminophenoxy)13,14- dihydro-13-aza-15 alpha beta-omega-tetranor TXA2 (PTA-POA) was synthesized and used as a photoaffinity ligand for the putative human platelet TXA2/PGH2 receptor. Incubation of human platelet membranes with the diazonium salt of PTA-POA followed by photolysis at 290 nm(hv) resulted in a 40% decrease in the specific binding of [125I]PTA-OH as measured in the radioligand binding assay. Co-incubation with a TXA2/PGH2 agonist followed by photolysis resulted in no decrease in specific binding. Incubation of the diazonium salt of PTA-POA with solubilized platelet membranes without photolysis followed by Scatchard analysis resulted in no change in the Kd for [125I]PTA-OH (38 nM) and the preparation which was incubated with the diazonium salt (42 nM). However, the Bmax for [125I]PTA-OH binding was reduced from 2.4 pmole/mg protein for control to 1.4 pmole/mg protein. These studies show that the diazonium salt of PTA-POA may be a useful photoaffinity ligand for human platelet TXA2/PGH2 receptors.  相似文献   

8.
In patients with myeloproliferative disorders (MPD) an altered sensitivity of platelets to antiaggregatory prostaglandins and to the endoperoxide analogue U 46619 has been found. In this study we examined U 46619-induced platelet aggregation and binding of the endoperoxide/thromboxane A2 (TXA2) receptor antagonist SQ 29548 in 11 patients with MPD and 11 healthy controls. Although platelet responsiveness to U 46619 was significantly enhanced (p less than 0.05) in MPD, binding affinity and binding capacity of the corresponding endoperoxide/TXA2 receptor were not altered (Bmax 0.67 +/- 0.20 vs. 0.58 +/- 0.14 pmol/10(9) platelets, Kd 0.41 +/- 0.11 vs. 0.55 +/- 0.09 nM). These data exclude the possibility that changes in the presentation of endoperoxide/TXA2 receptors are responsible for the enhanced platelet sensitivity to endoperoxides found in MPD.  相似文献   

9.
The binding characteristics of [3H]U46619 to washed human platelets were studied. [3H]U46619 binding to washed human platelets was saturable and displaceable. Kinetic studies yielded a Kd of 11 +/- 4 nM (n = 4). Scatchard analysis of equilibrium binding studies revealed one class of high affinity binding sites with a Kd of 20 +/- 7 nM and a Bmax of 9.1 +/- 2.3 fmole/10(7) platelets (550 +/- 141 binding sites per platelet) (n = 4). A number of compounds that act as either agonists or antagonists of the TXA2/PGH2 receptor were tested for their ability to inhibit the binding of [3H]U46619 to washed human platelets. The Kds of the agonists and antagonists were similar to their potencies to induce or inhibit platelet aggregation. These data provide some evidence that [3H]U46619 binds to the putative human platelet TXA2/PGH2 receptor.  相似文献   

10.
Both thromboxane A2 (TXA2) and its precursor prostaglandin H2 (PGH2) are labile and share a common receptor. The affinities of these two compounds for their putative common receptor are unknown. We compared the potencies of TXA2 and PGH2 to aggregate human platelets and bind to the TXA2/PGH2 receptor. TXA2 was more potent than PGH2 in initiating aggregation in platelet-rich plasma, EC50 of 66 +/- 15 nM and 2.5 +/- 1.3 microM, respectively. In washed platelets, however, PGH2 was more potent than TXA2 with EC50 values of 45 +/- 2 nM and 163 +/- 21 nM, respectively. The affinity of these two compounds in washed platelets was determined in radioligand competition binding assays employing [125I]-PTA-OH. The Kd values for PGH2 and TXA2 were 43 nM and 125 nM, respectively. The results demonstrate that the affinity of PGH2 for the platelet TXA2/PGH2 receptor is greater than previously thought. The data raise the possibility that PGH2 may significantly contribute to the responses attributed to TXA2 in vivo.  相似文献   

11.
We have demonstrated specific, high affinity binding of a biologically active Tyr23-monoiodinated derivative of ACTH, [125I][Phe2,Nle4]ACTH 1-24, in rat brain homogenates. Similarly, in metabolically inhibited and noninhibited rat whole brain slices there is a specific "binding-sequestration" process that is dependent on time, protein concentration, and pH. In homogenates, binding curves were best described by a two-site model and provided the following parameters: Kd1 = 0.65 +/- 0.47 nM, Bmax1 = 21 +/- 41 fmol/mg protein; Kd2 = 97 +/- 48 nM, Bmax2 = 3.5 +/- 1.8 pmol/mg protein. In metabolically viable brain slices, concentration-competition curves of [125I][Phe2,Nle4]ACTH 1-24 binding-sequestration can be described by three components (Kd1 = 14 +/- 24 nM, Bmax1 = 50 +/- 95 fmol/mg protein; Kd2 = 2.4 +/- 1.9 microM, Bmax2 = 44 +/- 49 pmol/mg protein; Kd3 = 0.16 +/- 1.0 mM, Bmax3 = 5.3 +/- 54 nmol/mg protein). Metabolic inhibition, by removal of glucose and addition of 100 microM ouabain, abolishes the lowest affinity, highest capacity binding-sequestrian component only (Kd1 = 7.1 +/- 14 nM, Bmax1 = 8.7 +/- 16 fmol/mg protein; Kd2 = 7.4 +/- 4.49 microM, Bmax2 = 37 +/- 27 pmol/mg protein). The two binding-sequestration parameter estimates obtained from metabolically inhibited tissue slices are not significantly different from those of the two higher affinity components obtained with noninhibited tissue. Thus, metabolic inhibition permits demonstration of ACTH receptor binding only, unconfounded by sequestration or internalization of ligand:receptor complexes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Methimazole (MMI) and propylthiouracil (PTU) are widely used for the treatment of Graves' disease. However, no studies have been reported on the action of these drugs on binding of L-triiodothyronine (T3) to the nuclear receptor. T3 receptors of rat liver nuclei, prepared by differential centrifugation, were extracted with 0.4 M KCl and 5 mM dithiothreitol (DTT). In the assessment of T3 binding to the DTT-reduced receptor, the hepatic nuclear extract was chromatographed on Superose 6 to remove DTT and isolate proteins of relative mass approximately 50,000 (chromatographed nuclear receptors (CNRs)), prior to the addition of [125I]T3 of high specific activity (3300 microCi/micrograms; 1 Ci = 37 GBq). MMI or PTU at 2 mM reduced specific T3 binding to CNR by 84% and 85%, respectively. The inhibitory effects of these reagents and 2 mM sodium arsenite (which complexes dithiols) were additive. Scatchard analyses indicated that neither MMI nor PTU (at 2 mM) significantly altered the affinity constant (Ka) (from 2.41 x 10(9) to 1.74 x 10(9) M-1 for PTU and 1.79 x 10(9) M-1 for MMI), while they both decreased (p less than 0.02) maximal binding capacity (from 0.36 +/- 0.02 to 0.19 +/- 0.02 pmol/mg protein for MMI and 0.17 +/- 0.02 pmol/mg protein for PTU). Dose-response curves showed that 50% inhibition was attained at 0.6 mM PTU or 1.0 mM MMI with approximately 25% inhibition by both at 0.1 mM. Artefactual binding effects by MMI and PTU on [125I]T3 were excluded by chromatography experiments. Similar results were obtained using nuclear receptors prepared from livers of hyperthyroid rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The effects of Mg2+ or ethylenediaminetetraacetic acid (EDTA) on 125I-glucagon binding to rat liver plasma membranes have been characterized. In the absence of guanosine 5'-triphosphate (GTP), maximal binding of 125I-glucagon occurs in the absence of added Mg2+. Addition of EDTA or Mg2+ diminishes binding in a dose-dependent manner. In the presence of GTP, maximal binding occurs in the presence of 2.5 mM Mg2+ (EC50 = 0.3 mM) while EDTA or higher concentrations of Mg2+ diminish binding. Response to exogenous Mg2+ or EDTA depends on the concentration of Mg2+ in the membranes and may vary with the method used for membrane isolation. Solubilized 125I-glucagon-receptor complexes fractionate on gel filtration columns as high molecular weight, GTP-sensitive complexes in which receptors are coupled to regulatory proteins and lower molecular weight, GTP-insensitive complexes in which receptors are not coupled to other components of the adenylyl cyclase system. In the absence of GTP, 40 mM Mg2+ or 5 mM EDTA diminishes receptor affinity for hormone (from KD = 1.2 +/- 0.1 nM to KD = 2.6 +/- 0.3 nM) and the fraction of 125I-glucagon in high molecular weight receptor-Ns complexes without affecting site number (Bmax = 1.8 +/- 0.1 pmol/mg of protein). Thus, while GTP promotes disaggregation of receptor-Ns complexes, Mg2+ or EDTA diminishes the affinity with which these species bind hormone. In the presence of GTP, hormone binds to lower affinity (KD = 9.0 +/- 3.0 nM), low molecular weight receptors uncoupled from Ns.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
A M Poon  S F Pang 《Life sciences》1992,50(22):1719-1726
2-[125I]Iodomelatonin was found to bind specifically to the membrane preparations of the spleens of guinea pigs with high affinity. The binding was rapid, stable, saturable and reversible. Scatchard analysis of the binding assays revealed an equilibrium dissociation constant (Kd) of 49.8 +/- 4.12 pmol/l and binding site density (Bmax) of 0.69 +/- 0.082 fmol/mg protein at mid-light (n = 10). There was no significant change in the Kd (41.8 +/- 3.16 pmol/l) or the Bmax (0.58 +/- 0.070 fmol/mg protein) at mid-dark (n = 10). Kinetic analysis showed a Kd of 23.13 +/- 4.81 pmol/l (mean +/- SE, n = 4), in agreement to that derived from the saturation studies. The 2-[125I]iodomelatonin binding sites have the following order of potency: 2-iodomelatonin greater than melatonin greater than 6-chloromelatonin much greater than N-acetylserotonin, 6-hydroxymelatonin greater than 5-methoxytryptamine, 5 methoxytryptophol greater than serotonin, 5-methoxyindole-3-acetic acid greater than 5-hydroxytryptophol, 3-acetylindole, 1-acetylindole-3-carboxyaldehyde, L-tryptophan greater than tryptamine, 5-hydroxyindole-3-acetic acid. Differential centrifugation studies showed that the binding sites are localized mainly in the nuclear fraction (65.5%), the rest are distributed in the microsomal fraction (17.4%), mitochondrial fraction (14.7%) and cytosolic fraction (0.3%). The demonstration of 2-[125I]iodomelatonin binding sites in the spleen suggests the presence of melatonin receptors and a direct mechanism of action of melatonin on the immune system.  相似文献   

15.
Four new monochain phospholipases were purified from the Oxyuranus scutellatus (taipan) venom. Three of them were highly toxic when injected into mice brain. One of these neurotoxic phospholipases, OS2, was iodinated and used in binding experiments to demonstrate the presence of two families of specific binding sites in rat brain synaptic membranes. The affinities were exceptionally high, Kd1 = 1.5 +/- 0.5 pM and Kd2 = 45 +/- 10 pM, and the maximal binding capacities were Bmax 1 = 1 +/- 0.4 and Bmax 2 = 3 +/- 0.5 pmol/mg of protein. Both binding sites were sensitive to proteolysis and demonstrated to be located on proteins of Mr 85,000-88,000 and 36,000-51,000 by cross-linking and photoaffinity labeling techniques. The binding of 125I-OS2 to synaptic membranes was dependent on Ca2+ ions and enhanced by Zn2+ ions which inhibit phospholipase activity. Competition experiments have shown that, except for beta-bungarotoxin, a number of known toxic snake or bee phospholipases have very high affinities for the newly identified binding sites. A good correlation (r = 0.80) was observed between toxicity and affinity but not between phospholipase activity and affinity.  相似文献   

16.
The human platelet contains a functional 5-hydroxytryptamine (5-HT) receptor that appears to resemble the 5-HT2 subtype. In this study, we have used the iodinated derivative [125I]iodolysergic acid diethylamide ([125I]iodoLSD) in an attempt to label 5-HT receptors in human platelet and frontal cortex membranes under identical assay conditions to compare the sites labelled in these two tissues. In human frontal cortex, [125I]iodoLSD labelled a single high-affinity site (KD = 0.35 +/- 0.02 nM). Displacement of specific [125I]iodoLSD binding indicated a typical 5-HT2 receptor inhibition profile, which demonstrated a significant linear correlation (r = 0.97, p less than 0.001, n = 17) with that observed using [3H]ketanserin. However, [125I]iodoLSD (Bmax = 136 +/- 7 fmol/mg of protein) labelled significantly fewer sites than [3H]ketanserin (Bmax = 258 +/- 19 fmol/mg of protein) (p less than 0.001, n = 6). In human platelet membranes, [125I]iodoLSD labelled a single site with affinity (KD = 0.37 +/- 0.03 nM) similar to that in frontal cortex. The inhibition profile in the platelet showed significant correlation with that in frontal cortex (r = 0.96, p less than 0.001, n = 16). We conclude that the site labelled by [125I]iodoLSD in human platelet membranes is biochemically similar to that in frontal cortex and most closely resembles the 5-HT2 receptor subtype, although the discrepancy in binding capacities of [125I]iodoLSD and [3H]ketanserin raises a question about the absolute nature of this receptor.  相似文献   

17.
The characteristics of the binding sites labeled by the radioligand 2-[125I]iodomelatonin were compared in chicken neuronal retina and retinal pigment epithelium (RPE). Specific binding of 2-[125I]iodomelatonin in both sites was stable, saturable, reversible, and of high affinity. Scatchard analysis revealed an affinity constant (KD) of 446 +/- 55 pM and a total number of binding sites (Bmax) of 25.4 +/- 2.2 fmol/mg of protein for neuronal retina. For RPE the KD was 34.1 +/- 2.2 pM and the Bmax 59.5 +/- 5.2 fmol/mg of protein. Competition experiments with various melatonin analogues gave the following order of affinities: 2-iodomelatonin greater than 2-chloromelatonin greater than melatonin greater than 6-chloromelatonin greater than 6-hydroxymelatonin greater than N-acetylserotonin greater than 6-methoxyharmalan greater than 5-hydroxytryptamine. Linear regression of log Ki values from neuronal retina and RPE gave a highly significant correlation (r = 0.994, n = 8; p less than 0.001). GTP inhibited specific binding to RPE membranes in a concentration-dependent manner, but not in neuronal retinal membranes. The present results strongly suggest that a single type of melatonin receptor is found in neuronal retina and RPE, and that the site in RPE is coupled to a guanine nucleotide-binding regulatory protein (G protein), but that in neuronal retina is not.  相似文献   

18.
19.
A1 adenosine receptors and guanine nucleotide-binding proteins (G proteins) solubilized with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate have been co-purified from bovine cerebral cortex. A portion of solubilized receptors which displays high affinity GTP-sensitive agonist binding (40-50%) adheres tightly to agonist affinity columns composed of N6-aminobenzyladenosine-agarose. A1 adenosine receptors and G proteins are rapidly and selectively coeluted from agonist columns by the addition of 8-p-sulfophenyltheophylline, but only in combination with Mg2+-GTP or N-ethylmaleimide, agents which lower the affinity of receptors for agonists. Purified receptors and G protein alpha-subunits can be detected with the potent A1-selective antagonist radioligand, [125I]3-(4-amino-3-iodo)phenethyl-1-propyl-8-cyclopentylxanthine (125I-BW-A844U) and [35S]guanosine 5'-3-O-(thio)triphosphate [( 35S]GTP gamma S), respectively. Pretreatment of solubilized receptors with 0.1 mM N-ethylmaleimide or 0.1 mM R-phenylisopropyladenosine abolishes adsorption of receptors and G proteins to affinity columns. Following removal of 8-p-sulfophenyltheophylline and GTP, purified receptors bind agonists (2 sites) and antagonists (1 site) with affinities similar to crude soluble receptors and typical of A1 receptors. Some receptors may be denatured as a result of purification since only 23% of the radioligand binding sites which adhere to the affinity column can be detected in the eluate. The Bmax of purified receptors, 820 +/- 100 pmol/mg protein (n = 3) is 1800-fold higher than crude soluble receptors. The specific activity of [35S]GTP gamma S binding sites in affinity column eluates is 4640 pmol/mg protein. Assuming a 1:1 stoichiometry, this specific activity indicates that receptor-G protein complexes are greater than 50% pure following affinity chromatography. The photoaffinity labeled purified receptor was identified by polyacrylamide gel electrophoresis as a single band with a molecular mass of 35 kDa which when deglycosylated undergoes a characteristic shift in molecular mass to a sharp band at 32 kDa. In addition to the receptor, silver staining revealed polypeptides with molecular masses of 39 and 41 kDa, which are ADP-ribosylated by pertussis toxin, and 36 kDa corresponding to G protein beta-subunits.  相似文献   

20.
We characterized thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptors and histamine H1 receptors in Guinea-pig cultured tracheal smooth-muscle cells (TSMC). [3H]SQ 29,548 (a TXA2 antagonist)-binding sites were saturable and a high affinity with a dissociation constant of 6.2 +/- 0.60 nM (mean +/- S.E.) and a receptor density of 46 +/- 4.6 fmol/10(6) cells. [3H]SQ 29548 binding was completely inhibited by TXA2 mimetics or antagonists. Intracellular calcium concentration ([Ca2+]i) in TSMC was increased with U46619 stimulation and the increase was attenuated by TXA2 antagonists, the potencies of which correlated with those inhibiting the activities of the [3H]SQ 29548 binding. [3H]Mepyramine (a H1 antagonist)-binding sites were also present in TSMC. [3H]Mepyramine had a single class of low-affinity-binding sites with a dissociation constant of 2.6 +/- 0.081 microM and a receptor density of 10.6 +/- 0.11 nmol/mg protein. [3H]Mepyramine binding in TSMC membrane was inhibited by H1 antagonists, but not by H2 antagonists. The inhibition constants of mepyramine in TSMC were 910-times lower than those in tracheal membranes. In contrast, the histamine-induced increase in [Ca2+]i in TSMC was inhibited in the presence of low concentrations of H1 antagonists. All these observations provide evidence that TXA2/PGH2 receptors, mepyramine-binding sites and/or H1 receptors are expressed in cultured TSMC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号