首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
In 1945, within the frame of the Uranium Project for the production of nuclear weapons, the Mayak nuclear facilities were constructed at the Lake Irtyash in the Southern Urals, Russia. The nuclear workers of the Mayak Production Association (MPA), who lived in the city of Ozyorsk, are the focus of epidemiological studies for the assessment of health risks due to protracted exposure to ionising radiation. Electron paramagnetic resonance measurements of absorbed dose in tooth enamel have already been used in the past, in an effort to validate occupational external doses that were evaluated in the Mayak Worker Dosimetry System. In the present study, 229 teeth of Ozyorsk citizens not employed at MPA were investigated for the assessment of external background exposure in Ozyorsk. The annually absorbed dose in tooth enamel from natural background radiation was estimated to be (0.7 ± 0.3) mGy. For citizens living in Ozyorsk during the time of routine noble gas releases of the MPA, which peaked in 1953, the average excess absorbed dose in enamel above natural background was (36 ± 29) mGy, which is consistent with the gamma dose obtained by model calculations. In addition, there were indications of possible accidental gaseous MPA releases that affected the population of Ozyorsk, during the early and late MPA operation periods, before 1951 and after 1960.  相似文献   

2.
High-frequency Q-band (37 GHz) electron paramagnetic resonance (EPR) dosimetry allows to perform fast (i.e., measurement time <15 min) dose measurements using samples obtained from tooth enamel mini-biopsy procedures. We developed and tested a new procedure for taking tooth enamel biopsy for such dose measurements. Recent experience with EPR dose measurements in Q-band using mini-probes of tooth enamel has demonstrated that a small amount of tooth enamel (2–10 mg) can be quickly obtained from victims of a radiation accident. Accurate dose assessments can further be carried out in a very short time to provide important information for medical treatment. Here, the Q-band EPR dose detection limit for 5 and 10 mg samples is estimated to be 367 and 248 mGy, respectively. These values are comparable to the critical parameters determined for conventional X-band EPR in tooth enamel.  相似文献   

3.
During 1949–1956, about 76 × 106 m3 of radioactive liquid waste containing a total activity of 1017 Bq was discharged into the Techa River by the first Russian industrial nuclear facility Mayak. As a consequence, the population living in the river valley received considerable internal and external radiation doses. The results of a first application of electron paramagnetic resonance (EPR) of tooth enamel for a retrospective individual dose evaluation of the residents of the Techa riverside are presented. Three main contributions to the dose absorbed in tooth enamel have been considered: external exposure mainly from the Techa River sediments, internal exposure mainly due to 90Sr; and background radiation including all other sources of exposure except the Techa River. The teeth of 86 inhabitants of the town Kamensk-Uralskii were analysed to determine the age-dependent contribution of the background radiation to the enamel dose. For 22 residents of the middle and lower Techa riverside, measurements of the 90Sr whole-body content and EPR measurements of the absorbed dose in enamel were used to establish a correlation between these two quantities. Finally, absorbed doses in the enamel of five residents of the upper Techa riverside were determined by the EPR method. Contributions of the background radiation and the internal 90Sr contamination were subtracted to determine the external exposure of the residents.  相似文献   

4.
In the present study naturally loose deciduous molars were investigated. The feasibility of separating enamel from small size molars was analysed. EPR spectrum parameters of whole molars and separated enamel only were evaluated before and after laboratory irradiation. The Electron paramagnetic resonance (EPR) signal amplitudes of CO 2 and native signals were determined by spectrum deconvolution, as a function of radiation dose in the range 0.1–10 Gy. A detection threshold of absorbed dose from deciduous molars of 198 and 21 mGy is estimated for massive (that contained both enamel and dentine) and grainy samples (that contained enamel only), respectively. The elimination of the organic material from the massive deciduous samples reduced the mean bias dose for the native signal from 90±18 to 34±13 mGy. A decay of the background signal within 2 weeks after irradiation was found, while the dosimetric signal was stable before and after the irradiation process. The presented results suggest deciduous teeth to be suitable for retrospective dose assessment. To get reasonable dose estimates, however, any organic material must be eliminated, and the measurements should be performed 2 weeks after the chemical and mechanical preparation and the irradiation process are done.N. El-Faramawy: On leave from Department of Physics, Faculty of Science, Ain Shams University, 65511 Abbassia, Cario, Egypt.  相似文献   

5.
6.
Currently, EPR measurements are based on the assumption that odontogenesis (the series of events between the bud formation stage until the complete maturation of the tooth) is finished as soon as the tooth erupts. Consequently, it is also assumed that the hydroxyapatite concentration of the enamel (source of free radicals) does not depend on tooth age. However, the present work provides evidence that odontogenesis does not end after tooth eruption but continues for several years after eruption. Fifty-nine molars and pre-molars were analyzed by EPR spectroscopy. Tooth enamel samples were irradiated with different doses of gamma radiation from a 60Co source. The resulting EPR signals were evaluated in terms of posteruption tooth age and tooth position. It was found that, except for wisdom teeth, the concentration of the dosimetric EPR free radicals increased with tooth age after eruption and became constant after a certain period. A mathematical equation was developed to describe this effect as a function of tooth age, tooth position and applied dose. The results suggest that EPR measurements obtained on young teeth should be interpreted carefully unless data are available that would allow one to describe the effect of posteruptive enamel maturation on the EPR estimated dose quantitatively. Little or no correction is needed for older teeth. Since only a limited number of young teeth were available for the present study, further studies are needed to clarify the situation and quantify this effect.  相似文献   

7.
Tooth enamel samples from molar teeth of camel were prepared using a combined procedure of mechanical and chemical tooth treatment. Based on electron paramagnetic resonance (EPR) spectroscopy, the dose response of tooth enamel samples was examined and compared to that of human enamel. The EPR dose response of the tooth enamel samples was obtained through irradiation to gamma doses from 1 Gy up to 100 kGy. It was found that the radiation-induced EPR signal increased linearly with gamma dose for all studied tooth enamel samples, up to about 15 kGy. At higher doses, the dose response curve leveled off. The results revealed that the location of the native signal of camel tooth enamel was similar to that of enamel from human molars at 2.00644, but different from that of enamel from cows and goats. In addition, the peak-to-peak width (ΔH pp) for human and camel molar teeth was similar. It was also found that the response of camel enamel to gamma radiation was 36% lower than that of human enamel. In conclusion, the results indicate the suitability of camel teeth for retrospective gamma dosimetry.  相似文献   

8.
Bone cancer mortality risks were evaluated in 11,000 workers who started working at the "Mayak" Production Association in 1948-1958 and who were exposed to both internally deposited plutonium and external gamma radiation. Comparisons with Russian and U.S. general population rates indicate excess mortality, especially among females, plutonium plant workers, and workers with external doses exceeding 1 Sv. Comparisons within the Mayak worker cohort, which evaluate the role of plutonium body burden with adjustment for cumulative external dose, indicate excess mortality among workers with burdens estimated to exceed 7.4 kBq (relative risk = 7.9; 95% CI = 1.6-32) and among workers in the plutonium plant who did not have routine plutonium monitoring data based on urine measurements (relative risk = 4.1; 95% CI = 1.2-14). In addition, analyses treating the estimated plutonium body burden as a continuous variable indicate increasing risk with increasing burden (P < 0.001). Because of limitations in current plutonium dosimetry, no attempt was made to quantify bone cancer risks from plutonium in terms of organ dose, and risk from external dose could not be reliably evaluated.  相似文献   

9.
Electron paramagnetic resonance (EPR) measurements of tooth enamel can be used as an individual biological dosimeter for external dose assessment. However, the presence of 90Sr in the tooth tissues makes the task of interpreting EPR tooth dosimetry more complicated. The determination of the dose contribution of incorporated 90Sr in calcified tissue to the total dose measured by EPR is one of the main aspects of correct interpretation of EPR tooth dosimetry. In this work, experimental and numerical calculations were performed to convert the measured beta-particle dose rate to 90Sr concentration in calcified tissue. The cumulative beta-particle dose was measured by exposing artificially contaminated dentin and enamel to thin-layer alpha-Al2O3:C detectors in two different exposure geometries. Numerical calculations were performed for experimental exposure conditions using calculations of electron transport and secondary photons [Monte Carlo n-Particle Transport code version 4C2 (MCNP)]. Numerical calculations were performed to optimize the sample size and exposure geometry. The applicability of two different exposure conditions to be used in routine analysis was tested. Comparison of the computational and experimental results demonstrated very good agreement.  相似文献   

10.
Incidence and mortality from cerebrovascular diseases (CVD) (430–438 ICD-9 codes) have been studied in a cohort of 18,763 workers first employed at the Mayak Production Association (Mayak PA) in 1948–1972 and followed up to the end of 2005. Some of the workers were exposed to external gamma-rays only while others were exposed to a mixture of external gamma-rays and internal alpha-particle radiation due to incorporated 239Pu. After adjusting for non-radiation factors, there were significantly increasing trends in CVD incidence with total absorbed dose from external gamma-rays and total absorbed dose to liver from internal alpha radiation. The CVD incidence was statistically significantly higher among workers with total absorbed external gamma-ray doses greater than 0.20 Gy compared to those exposed to lower doses; the data were consistent with a linear trend in risk with external dose. The CVD incidence was statistically significantly higher among workers with total absorbed internal alpha-radiation doses to liver from incorporated 239Pu greater than 0.025 Gy compared to those exposed to lower doses. There was no statistically significant trend in CVD mortality risk with either external gamma-ray dose or internal alpha-radiation dose to liver. The risk estimates obtained are generally compatible with those from other large occupational studies, although the incidence data point to higher risk estimates compared to those from the Japanese A-bomb survivors. Further studies of the unique cohort of Mayak workers chronically exposed to external and internal radiation will allow improving the reliability and validating the radiation safety standards for occupational and public exposure.  相似文献   

11.
Background radiation dose is used in dosimetry for estimating occupational doses of radiation workers or determining radiation dose of an individual following accidental exposure. In the present study, the absorbed dose and the background radiation level are determined using the electron spin resonance (ESR) method on tooth samples. The effect of using different tooth surfaces and teeth exposed with single medical X-rays on the absorbed dose are also evaluated. A total of 48 molars of position 6–8 were collected from 13 district hospitals in Peninsular Malaysia. Thirty-six teeth had not been exposed to any excessive radiation, and 12 teeth had been directly exposed to a single X-ray dose during medical treatment prior to extraction. There was no significant effect of tooth surfaces and exposure with single X-rays on the measured absorbed dose of an individual. The mean measured absorbed dose of the population is 34 ± 6.2 mGy, with an average tooth enamel age of 39 years. From the slope of a regression line, the estimated annual background dose for Peninsular Malaysia is 0.6 ± 0.3 mGy y−1. This value is slightly lower than the yearly background dose for Malaysia, and the radiation background dose is established by ESR tooth measurements on samples from India and Russia.  相似文献   

12.
Electron spin resonance (ESR, or electron paramagnetic resonance, EPR) analysis of tooth enamel is an effective method for the retrospective estimation of individual radiation doses. One problem with this technique is that the observed ESR signal may include a contribution from ultraviolet (UV) light exposure from sunlight, especially in front teeth. Thus there has been a need to find ways to estimate the UV-light effect in the total signal so that the net ESR dose from ionizing radiation can be determined. To examine this issue, we measured 96 teeth of various types, but with buccal and lingual parts measured separately, from a control group of atomic bomb survivors (estimated dose <5 mGy). We found that, except for molars, the mean ESR-estimated dose for the buccal halves was, on average, nearly twice that from the lingual side, which indicates that the UV-light-induced lingual dose equals the difference between the two halves. Using these corrections for UV-light exposure to front teeth that had been exposed to both ionizing radiation and UV light, it was found that the estimated radiation doses closely approximated the previously estimated ESR dose to molars from the same donors or the estimated dose arrived at with cytogenetic methods. We concluded that, when using ESR to estimate radiation dose, measuring molars is the first choice, but if only front teeth are available, separate measurements to the buccal and lingual parts can provide an estimation of the mean UV-light contribution to the ESR-determined dose.  相似文献   

13.
A critical survey of all published measurements made so far aimed at retrospective biological dosimetry using fluorescence in situ hybridisation (FISH) techniques on some workers at the Mayak reprocessing plant and on members of the Techa River cohort is given. Each individual has a recorded dose derived from personal monitoring measurements, usually external gamma-rays for Mayak workers or from reconstruction techniques, usually internally derived for the Techa River cohort. From the person's age, which affects the control level, and the stated dose, an expected number of translocations is calculated for each individual and comparisons made to the observed numbers of translocations. From this, an assessment of how well FISH studies can help to validate existing estimates of dose is made. This varies from study to study. Good agreement is generally obtained for the Techa River cohort and lower doses of the Mayak cohort. Rather poorer agreement applies to the more highly exposed Mayak workers. Some of the discrepancy could be because the FISH painting technique was new and was applied to populations before a proper investigation on how to use it for retrospective biological dosimetry had taken place. In addition, too few cells were generally scored per individual so that statistical uncertainties were large.  相似文献   

14.
The method of electron spin resonance (ESR) dosimetry has been applied to human tooth enamel, to obtain individual absorbed doses of residents of settlements in vicinity of Ust-Kamenogorsk city, Kazakhstan (located about 400 km to the east from the epicenter of explosion at the Semipalatinsk Nuclear Test Site, SNTS). This region developed as a major mining and metallurgical center during the Soviet period (uranium production). Most of the investigated settlements (Ust-Kamenogorsk city, Glubokoe, Tavriya, Gagarino) are located near the central axis of the radioactive fallout trace that originated from the surface nuclear test on 24 August 1956, while the Kokpekty settlement (located 400 km to the Southeast from SNTS) was chosen as a control because it was not subjected to any radioactive contamination. In total, 44 samples were measured. It was found that the excess doses obtained after subtraction of natural background radiation ranged up to about 114 mGy for residents of Ust-Kamenogorsk city, whose tooth enamel was formed before 1956. For residents of Gagarino, excess doses did not exceed 47 mGy for all ages. For residents of Tavriya, the maximum excess dose was 54 mGy, while for residents of Glubokoe it was about 58 mGy. For the population of the Shemonaikha settlements located at a distance of about 70 km from the central axis of the radioactive fallout trace, highest excess doses were 110 mGy. These high doses may be due to the influence of uranium enterprises located in that region, but probably not due to dental X-ray irradiation. For a final conclusion on the radiological situation in this region, the number of samples was too small and, therefore, more work is required to obtain representative results.  相似文献   

15.
Liver cancer mortality risks were evaluated in 11,000 workers who started working at the "Mayak" Production Association in 1948-1958 and who were exposed to both internally deposited plutonium and external gamma radiation. Comparisons with Russian liver cancer incidence rates indicate excess risk, especially among those with detectable plutonium body burdens and among female workers in the plutonium plant. Comparisons within the Mayak worker cohort which evaluate the role of plutonium body burden with adjustment for cumulative external dose indicate excess risk among workers with burdens estimated to exceed 7.4 kBq (relative risk = 17; 95% CI = 8. 0-36) and among workers in the plutonium plant who did not have routine plutonium monitoring data based on urine measurements (relative risk = 2.8; 95% CI = 1.3-6.2). In addition, analyses treating the estimated plutonium body burden as a continuous variable indicate increasing risk with increasing burden (P < 0.001). Relative risks tended to be higher for females than for males, probably because of the lower baseline risk and the higher levels of plutonium measured in females. Because of limitations in current plutonium dosimetry, no attempt was made to quantify liver cancer risks from plutonium in terms of organ dose, and risk from external dose could not be reliably evaluated.  相似文献   

16.
Recently discovered historical documents indicate that large releases of noble gases (mainly 41Ar and radioactive isotopes of Kr and Xe) from the Mayak Production Association (MPA) over the period from 1948 to 1956 may have caused considerable external exposures of both, inhabitants of Ozyorsk and former inhabitants of villages at the upper Techa River. To quantify this exposure, seven brick samples from three buildings in Ozyorsk, located 8–10 km north-northwest from the radioactive gas release points, were taken. The absorbed dose in brick was measured in a depth interval of 3–13 mm below the exposed surface of the bricks by means of the thermoluminescence (TL) and the optically stimulated luminescence (OSL) method. Generally, luminescence properties using TL were more favorable for precise dose determination than using OSL, but within their uncertainties the results from both methods agree well with each other. The absorbed dose due to natural radiation was assessed and subtracted under the assumption of the bricks to be completely dry. The weighted average of the anthropogenic dose for all samples measured by TL and OSL is 10 ± 9 and 1 ± 9 mGy, respectively. An upper limit for a possible anthropogenic dose in brick that would not be detected due to the measurement uncertainties is estimated at 24 mGy. This corresponds to an effective dose of about 21 mSv. A similar range of values is obtained in recently published dispersion calculations that were based on reconstructed MPA releases. It is concluded that the release of radioactive noble gases from the radiochemical and reactor plants at Mayak PA did not lead to a significant external exposure of the population of Ozyorsk. In addition, the study demonstrates the detection limit for anthropogenic doses in ca. 60-year-old bricks to be about 24 mGy, if luminescence methods are used.  相似文献   

17.
In this paper, we report results of radiation dose measurements in fingernails of a worker who sustained a radiation injury to his right thumb while using 130 kVp X-ray for nondestructive testing. Clinically estimated absorbed dose was about 20–25 Gy. Electron paramagnetic resonance (EPR) dose assessment was independently carried out by two laboratories, the Naval Dosimetry Center (NDC) and French Institut de Radioprotection et de Sûreté Nucléaire (IRSN). The laboratories used different equipments and protocols to estimate doses in the same fingernail samples. NDC used an X-band transportable EPR spectrometer, e-scan produced by Bruker BioSpin, and a universal dose calibration curve. In contrast, IRSN used a more sensitive Q-band stationary spectrometer (EMXplus) with a new approach for the dose assessment (dose saturation method), derived by additional dose irradiation to known doses. The protocol used by NDC is significantly faster than that used by IRSN, nondestructive, and could be done in field conditions, but it is probably less accurate and requires more sample for the measurements. The IRSN protocol, on the other hand, potentially is more accurate and requires very small amount of sample but requires more time and labor. In both EPR laboratories, the intense radiation-induced signal was measured in the accidentally irradiated fingernails and the resulting dose assessments were different. The dose on the fingernails from the right thumb was estimated as 14 ± 3 Gy at NDC and as 19 ± 6 Gy at IRSN. Both EPR dose assessments are given in terms of tissue kerma. This paper discusses the experience gained by using EPR for dose assessment in fingernails with a stationary spectrometer versus a portable one, the reasons for the observed discrepancies in dose, and potential advantages and disadvantages of each approach for EPR measurements in fingernails.  相似文献   

18.
Following a radiological or nuclear emergency event, there is a need for quick and reliable dose estimations of potentially exposed people. In situations where dosimeters are not readily available, the dose estimations must be carried out using alternative methods. In the present study, the optically stimulated luminescence (OSL) properties of tooth enamel and different dental repair materials have been examined. Specimens of the materials were exposed to gamma and beta radiation in different types of liquid environments to mimic the actual irradiation situation in the mouth. Measurements were taken using a Ris? TL/OSL reader, and irradiations were made using a 90Sr/90Y source and a linear accelerator (6 MV photons). Results show that the OSL signal from tooth enamel decreases substantially when the enamel is kept in a wet environment. Thus, tooth enamel is not reliable for retrospective dose assessment without further studies of the phenomenon. Dental repair materials, on the other hand, do not exhibit the same effect when exposed to liquids. In addition, dose–response and fading measurements of the dental repair materials show promising results, making these materials highly interesting for retrospective dosimetry. The minimum detectable dose for the dental repair materials has been estimated to be 20–185?mGy.  相似文献   

19.
The yield of chromosome aberrations induced by gamma-radiation of 60Co in human blood lymphocytes in vitro at low doses (30 divided by 600 mGy) and low dose rates (0.70, 5.05, 59.2 mGy/min) was investigated. It was found that the observed level of chromosomal aberrations induced by gamma-irradiation was unaffected by the value of the dose rate when using constant dose rate and obtaining different doses by altering the exposure time. However, a relatively enhanced level of chromatid aberrations was found at 5.05 and 59.2 mGy/min dose rates in the dose range less than 250 mGy. We have found that the observed level of the sum of chromosomal aberrations induced by gamma-irradiation at doses less than 250 mGy and a dose rate of 59.2 mGy/min was essentially larger compared with the level extrapolated from high doses (above 300 mGy) using a linear-quadratic dose curve. This complied with our previous finding in 1976, 1977 when the enhanced level of dicentrics was only found at a high dose rate approximately 500 mGy/min. Such a non-linear cytogenetic effect does not manifest itself statistically significantly at dose rates of 0.70 and 5.05 mGy/min for the sum of chromosomal aberrations and does not manifest itself at all for dicentrics at all the examined dose rates.  相似文献   

20.
In the aftermath of a major radiological accident, the medical management of overexposed individuals will rely on the determination of the dose of ionizing radiations absorbed by the victims. Because people in the general population do not possess conventional dosimeters, after the fact dose reconstruction methods are needed. Free radicals are induced by radiations in the tooth enamel of victims, in direct proportion to dose, and can be quantified using Electron Paramagnetic Resonance (EPR) spectrometry, a technique that was demonstrated to be very appropriate for mass triage. The presence of dimethacrylate based restorations on teeth can interfere with the dosimetric signal from the enamel, as free radicals could also be induced in the various composites used. The aim of the present study was to screen irradiated composites for a possible radiation-induced EPR signal, to characterize it, and evaluate a possible interference with the dosimetric signal of the enamel. We investigated the most common commercial composites, and experimental compositions, for a possible class effect. The effect of the dose was studied between 10 Gy and 100 Gy using high sensitivity X-band spectrometer. The influence of this radiation-induced signal from the composite on the dosimetric signal of the enamel was also investigated using a clinical L-Band EPR spectrometer, specifically developed in the EPR center at Dartmouth College. In X-band, a radiation-induced signal was observed for high doses (25-100 Gy); it was rapidly decaying, and not detected after only 24h post irradiation. At 10 Gy, the signal was in most cases not measurable in the commercial composites tested, with the exception of 3 composites showing a significant intensity. In L-band study, only one irradiated commercial composite influenced significantly the dosimetric signal of the tooth, with an overestimation about 30%. In conclusion, the presence of the radiation-induced signal from dental composites should not significantly influence the dosimetry for early dose assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号