首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
利用1,6-己二硫醇作为联结剂将纳米金颗粒修饰到金盘电极上,再以L-半胱氨酸为修饰剂使纳米金颗粒功能化并进一步与漆酶充分作用,制备了固定漆酶的纳米金颗粒修饰金盘电极并以循环伏安法测试了其对氧还原的催化性能。实验结果表明:O2在该电极上还原电位约为-0.26 V(vs SCE),氧还原峰电流为3.0 uA(25℃),较文献[7]报导的固酶聚异丙基丙烯酰胺(PNIPAM)水凝胶修饰ITO电极的氧还原催化性能要优。(氧气还原电位:-0.26 V,vs NHE,峰电流:0.47 uA)进一步研究表明:本文制备的修饰电极稳定性好,适于长期使用而且热稳定性优于文献[7]报道的固酶聚异丙基丙烯酰胺水凝胶修饰ITO电极:50℃时在本文制备的纳米金修饰电极上氧还原峰电流仍保持为25℃时修饰电极上氧还原峰电流的40%左右。  相似文献   

2.
目的:获取电流耦合型人体通信的人体信道衰减特性。方法:采用前期设计并验证的人体通信原理实验装置开展多名志愿者的人体实验。结果:对人体输入不同大小安全电流,产生的电位衰减近似相同;理疗电极较心电电极具有更小的信号衰减;发送电极面积越大信号衰减越小;接收电极的差异对信号检测效果影响较小;直径较粗的人体部位具有较小的信号衰减;信号衰减率随收发电极距离的增大而减小。结论:人体是安全电流激励的线性响应系统;发送电极与人体的接触阻抗越小越利于信号传输;肌肉是体内电流传输的主要路径;输入电流产生的耦合电位在发送电极附近急速衰减,约20cm后以近似稳定的电位传遍全身。  相似文献   

3.
苯醌修饰葡萄糖氧化酶电极   总被引:2,自引:0,他引:2  
本文用苯醌作为电子传递介体,石墨电极为基础电极。葡萄糖氧化酶和苯醌吸附在石墨电极表面,再用戊二醛交联固定。制成的酶电极以电流法测定底物葡萄糖浓度,其线性响应范围为(0-15mmol/L)。本工作测定了介体改良酶电极对葡萄糖的响应值,酶电极的pH范围,介体的循环伏安图谱,以及温度对酶电极的影响。  相似文献   

4.
在长方形光脉冲光照下,菌紫质(bacteriorhodopsin,BR)干膜组装成夹层光电池具有微分光电流响应.在氧化铟锡(ITO)导电玻璃/BR膜/封口膜/不锈钢形成的干膜电池下可观察到整流特性,而在不锈钢/BR膜/封口膜/ITO导电玻璃形成的干膜电池下则观察不到整流特性,这说明是电极介导的整流.平衡电压测定表明:工作电极/BR膜表面与对电极/BR膜表面有不同的性质,电极的界面效应控制了BR的取向.酸与碱产生的瞬间电流极性也证实了电极整流行为的存在.这些结果将有助于了解BR膜的微分光电响应.  相似文献   

5.
Nafion膜固定的亚甲基蓝为介体的生物传感器   总被引:3,自引:0,他引:3  
制成了以亚甲基蓝为介体的电流型过氧化氢生物传感器,通过离子交换牢固地固定在Nafion膜中的亚甲基蓝,能有效地在辣根过氧化物酶和玻碳电极之间传递电子.探讨了pH值、温度、工作电位和抗坏血酸等物质对此传感器生物电催化还原H2O2的影响.此生物传感器选择性好、灵敏度高,对H2O2线性响应范围为5.0×10-7~2×10-4 mol/L,响应时间少于30 s.  相似文献   

6.
环糊精交联固定酶的生物传感器及临床应用   总被引:6,自引:0,他引:6  
通过交联方式将辣根过氧化物酶固定在Eastman-AQ-N-甲基吩嗪修饰电极上,制备成过氧化氢生物传感器.通过循环伏安法和计时电流法证明固定在Eastman-AQ阳离子交换树脂中的N-甲基吩嗪有效地在辣根过氧化物酶和玻碳电极之间传递电子.由于该生物传感器对过氧化氢具有良好的生物电催化还原的功能,所以将它与葡萄糖氧化酶和半乳糖苷酶结合,制备成双酶和三酶体系的生物传感器,用于葡萄糖和乳糖的测定.该生物传感器具有灵敏度高、响应快、响应范围宽及选择性好等优点.对糖尿病患者的血糖测定结果与采用葡萄糖氧化酶和辣根过氧化物酶的分光光度法的结果一致.  相似文献   

7.
本文介绍了从紫色非硫光合细菌Rhodopseudomonas capsulata分离纯化的铁氧还蛋白,经固体硫酸铵分级盐析沉淀和透析进一步纯化的样品,通过循环伏安法检测其对温度的敏感性,所引起的蛋白变性;然后应用定电位电量法和电位阶跃电量法,研究它的电量-电位关系,根据Nernst公式进而计算铁氧还蛋白的中点电位分别为-378mV和-375mV,在其参与氧化-还原反应时,每分子铁氧还蛋白传递电子数目≈2。并对不同菌种来源的铁氧还蛋白的标准氧化-还原电位及其传递电子数目进行了讨论。  相似文献   

8.
本文介绍了从紫色非硫光合细菌Rhodopseudomanas capsulata 分离纯化的铁氧还蛋白,经固体硫酸铵分级盐析沉淀和透析进一步纯化的样品,通过循环伏安法检测其对温度的敏感性,所引起的蛋白变性;然后应用定电位电量法和电位阶跃电量法,研究它的电量-电位关系,根据Nernst 公式进而计算铁氧还蛋白的中点电位分别为-378mV 和-375mV,在其参与氧化-还原反应时,每分子铁氧还蛋白传递电子数目≈2。并对不同菌种来源的铁氧还蛋白的标准氧化-还原电位及其传递电子数目进行了讨论。  相似文献   

9.
胡军   《微生物学通报》1991,18(1):38-40
采用四氰对醌(TCNQ)修饰石墨碳电极,葡萄糖氧化酶被吸附固定在电极表面。构成的酶电极以电流法测定底物葡萄糖,其浓度线性响应范围为0—40mmol/L。研究了媒介电极对葡萄糖的响应,TCNQ的电化学性质,温度和pH对酶电极的影响。讨论了氧对媒介修饰电极的竞争作用以及媒介修饰酶电极的稳定性。  相似文献   

10.
吕红  张欣  周杨  周集体 《微生物学通报》2020,47(10):3419-3430
氧化还原介体能够加速有毒环境污染物的厌氧生物转化。黄素类化合物是一类微生物自身合成分泌的氧化还原介体,其应用可有效地避免外源性介体带来的成本较高及造成二次污染的问题,因此引起了广泛的关注。研究表明,细菌合成的微量黄素类化合物不仅能够作为黄素蛋白的辅酶因子参与偶氮染料、铬酸盐和硝基芳烃等污染物的厌氧生物转化,并且还可以分泌到胞外将电子传递给固态电子受体如含铁矿物和电极等来参与生物修复过程。根据黄素类化合物的功能,本文综述了黄素类化合物的合成与分泌,及其介导的胞内外电子传递和对环境污染物厌氧生物转化的影响,以促进其在实际环境污染物处理中的应用。  相似文献   

11.
Studies on biological photovoltaics based on intact organisms are challenging and in most cases include diffusing mediators to facilitate electrochemical communication with electrodes. However, using such mediators is impractical. Instead, surface confined Os‐polymers have been successfully used in electrochemical studies including oxidoreductases and bacterial cells but not with algae. Photoelectrogenic activity of a green alga, Paulschulzia pseudovolvox, immobilized on graphite or Os‐polymer modified graphite is demonstrated. Direct electron transfer is revealed, when no mediator is added, between algae and electrodes with electrons emerging from photolysis of water via the cells to the electrode exhibiting a photocurrent density of 0.02 μA cm?2. Os‐polymers with different redox potentials and structures are used to optimize the energy gap between the photosynthetic complexes of the cells and the Os‐polymers and those of greater solubility, better accessibility with membranes, and relatively higher potentials yielded a photocurrent density of 0.44 μA cm?2. When benzoquinone is included to the electrolyte, the photocurrent density reaches 6.97 μA cm?2. The photocurrent density is improved to 11.50 μA cm?2, when the cells are protected from reactive oxygen species when either superoxide dismutase or catalase is added. When adding an inhibitor specific for photosystem II, diuron, the photocurrent is decreased by 50%.  相似文献   

12.
Laccases have low redox potentials limiting their environmental and industrial applications. The use of laccase mediators has proven to be an effective approach for overcoming the low redox potentials. However, knowledge about the role played by the mediator cocktails in such a laccase-mediator system (LMS) is scarce. Here, we assembled different dual-agent mediator cocktails containing 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS), vanillin, and/or acetovanillone, and compared their mediating capabilities with those of each individual mediator alone in oxidation of pentachlorophenol (PCP) by Ganoderma lucidum laccase. Cocktails containing ABTS and either vanillin or acetovanillone strongly promoted PCP removal compared to the use of each mediator alone. The removal enhancement was correlated with mediator molar ratios of the cocktails and incubation times. Analysis of the kinetic constants for each mediator compound showed that G. lucidum laccase was very prone to react with ABTS rather than vanillin and acetovanillone in the cocktails. Moreover, the presence of the ABTS radical (ABTS+•) and vanillin or acetovanillone significantly enhanced PCP removal concomitant with electron transfer from vanillin or acetovanillone to ABTS+•. These results strongly suggest that vanillin and acetovanillone mediate the reaction between ABTS and PCP via multiple sequential electron transfers among laccase and its mediators.  相似文献   

13.
Cells undergo dynamic remodeling of the cytoskeleton during adhesion and migration on various extracellular matrix (ECM) substrates in response to physiological and pathological cues. The major mediators of such cellular responses are the heterodimeric adhesion receptors, the integrins. Extracellular or intracellular signals emanating from different signaling cascades cause inside-out signaling of integrins via talin, a cystokeletal protein that links integrins to the actin cytoskeleton. Various integrin subfamilies communicate with each other and growth factor receptors under diverse cellular contexts to facilitate or inhibit various integrin-mediated functions. Since talin is an essential mediator of integrin activation, much of the integrin crosstalk would therefore be influenced by talin. However, despite the existence of an extensive body of knowledge on the role of talin in integrin activation and as a stabilizer of ECM-actin linkage, information on its role in regulating inter-integrin communication is limited. This review will focus on the structure of talin, its regulation of integrin activation and discuss its potential role in integrin crosstalk. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.  相似文献   

14.
We have studied the glucose oxidase immobilized carbon paste electrodes in the presence and absence of small mediator molecules. We have used p-benzoquinone and riboflavin as mediators in our studies. The effect of mediator molecules on the electron transfer between the enzyme redox centre and the electrode surface was explained from the cyclic voltammograms and rotating disk electrode data. In the absence of oxygen, we have noted that the mediators play a central role in the electron transfer. We have also proposed a possible mechanism for the electron transfer from enzyme active site to the electrode surface via mediators, based on our observations. Dedicated to the memory of Professor J Das  相似文献   

15.
The objective of this study was to investigate ruminal fermentation and the nutritional value of different microalgae products (MAP) for ruminants, including inter‐ and intra‐genera variability. Furthermore, the effect of mechanical cell disruption was also evaluated. Cell‐disrupted and nondisrupted MAP of four genera were investigated using the Hohenheim Gas Test. The investigations included characterization of gas production (GP), production of volatile fatty acids (VFA) and methane, organic matter digestibility, and energetic value as well as utilizable crude protein at the duodenum and ruminally undegradable crude protein (RUP). Furthermore, a three‐step enzymatic in vitro system was used to estimate intestinal digestibility of RUP (IDP). Ruminal fermentation was low for all investigated microalgae genera, as indicated by overall low GP, low production of VFA, and low ruminal protein degradation. Nevertheless, all microalgae genera were characterized by high RUP concentrations (236–407 g/kg dry matter; passage rate = 8% hr?1), indicating that microalgae might be a promising protein source for high‐performing ruminants. Low IDP (26%–49% of RUP) considerably contradicted this potential. Mechanical cell disruption in general enhanced the extent of ruminal fermentation of MAP but, as RUP was decreased and IDP was hardly affected, mechanical cell disruption appears not to be necessary when microalgae are intended for application as a protein source for ruminants. Because of the high variability in the characteristics of the nutritional value, general means are inappropriate to characterize the nutritional value of MAP. In conclusion, suitability of microalgae as a protein source for ruminants might be limited because of low IDP, although further studies are necessary to prove these findings in vivo.  相似文献   

16.
Comparing the catalytic efficiency of some mediators of laccase   总被引:4,自引:0,他引:4  
The mechanism of oxidation of non-phenolic substrates by laccase/mediators systems has been investigated. Oxidation of 4-methoxybenzyl alcohol (1), taken as a benchmark reaction, enabled us to compare and to rank the relative ability of twelve mediators: TEMPO proved most effective, and a ionic mechanism is suggested for its action. Data on intermolecular selectivity of substrate oxidation are in favour of an electron transfer (ET) mechanism in the case of ABTS-mediated oxidations, and of a radical mechanism in HBT- and HPI-mediated reactions. Investigation by cyclic voltammetry (CV) of some of the mediators revealed that an important role in determining the mechanism of substrate oxidation may be played by the stability of the oxidised form of the mediator, as well as by its redox potential.  相似文献   

17.
The Qatar University Culture Collection of Cyanobacteria and Microalgae (QUCCCM) is a unique resource containing a diverse collection of microalgae and cyanobacteria, isolated from the Qatar desert environment. In order to ensure maximum preservation of this resource, a number of cryopreservation techniques were applied to various strains, and the preservation effectiveness (cell viability and lipid productivity) was determined. The conditions tested were direct, passive, and freeze-cooling cryopreservation (technique), dimethyl sulfate and methanol (cryoprotectant), and 5 and 10 % cryoprotectant concentrations over storage durations of up to 1 year. It was shown that the cryopreservation regime is strain dependent, and strains belonging to the same genera can have different requirements. On the other hand, neutral lipid estimation, via Nile red fluorescence determination of pre- and post-cryopreserved microalgae isolates, confirmed that the lipid production is affected by the applied cryopreservation method.  相似文献   

18.
Microalgal-facilitated bacterial oxidation of manganese   总被引:1,自引:0,他引:1  
In the presence of unicellular microalgae, bacterial manganese oxidation was increased by up to ten times the rate produced by bacterial oxidation alone. Azide-poisoned controls demonstrated that the manganese-oxidizing bacteria were active in the algal-bacterial oxidation of manganese. Scanning electron microscopy showed that oxide formation occurred in a number of structurally different deposits on the surface of the alga. Studies involving algal cell fractionation showed that bacterial manganese oxidation was facilitated by the algal cell wall, possibly via Mn2+ adsorption. Variations in growth conditions had an effect on algal-bacterial oxide formation and composition. High nutrient (yeast extract, peptone and/or sucrose) levels favored microbial growth but lowered oxide formation, whereas optimal levels of manganese oxide formation required minimal media. High concentrations of either organic nutrients or mineral salts promoted manganese carbonate precipitation.  相似文献   

19.
Bioactivity of horseradish peroxidase entrapped in silica nanospheres   总被引:1,自引:0,他引:1  
Interest in the fabrication of micro/nanoreactors for evaluation of the function of biomolecules in biological processes, enzymatic reaction kinetics occurring inside the nanospace is rapidly increasing. With a simple reverse-micelle microemulsion method, horseradish peroxidase (HRP), a model biomolecule, was herein skillfully confined in silica nanoshells (HRP@SiO(2)) and its biocatalytical behaviors were investigated in detail. Spectroscopic measurements showed that the entrapped HRP molecules retained their native structure and had high enzymatic activity toward 3,3',5,5'-tetramethylbenzidine (TMB) with Michaelis constant (K(m)) of 3.02 × 10(-5) mol L(-1). The entrapped HRP displayed a good direct electron transfer behavior and sensitive electrocatalytic response toward the reduction of H(2)O(2), which could be enhanced using thionine and o-phenylenediamine (o-PD) as electron mediators. When using thionine as mediator, the mass transport between the substrates in electrolyte and HRP confined in silica nanospheres through the mesoporous tunnels was slower than that of o-PD, which slowed down the electron transfer between heme in HRP in the confined nanospace and the electrode, and resulted in low sensitivity to H(2)O(2) with thionine as mediator when compared to o-PD.  相似文献   

20.
1. The efficiencies of ferredoxins and flavodoxins from a range of sources as mediators in systems for hydrogen evolution were assessed. 2. In supporting electron transfer from dithionite to hydrogenase of the bacterium Clostridium pasteurianum, highest activity was shown by the ferredoxin from the cyanobacterium Chlorogloeopsis fritschii and flavodoxin from the bacterium Megasphaera elsdenii. The latter was some twenty times as active as comparable concentrations of Methyl Viologen. Ferredoxins from the cyanobacterium Anacystis nidulans and the red alga Porphyra umbilicalis also showed high activity. 3. In mediating electron transfer from chloroplast membranes to Clostridium pasteurianum hydrogenase the flavodoxin from Anacystis nidulans proved the most active with Nostoc strain MAC flavodoxin and Porphyra umbilicalis ferredoxin also being appreciably more active than other cyanobacterial and higher plant ferredoxins. 4. In both hydrogenase systems the ferredoxin and flavodoxin from the red alga Chondrus crispus and the ferredoxin from another red alga Gigartina stellata showed very low activity. 5. There appeared to be no apparent correlation of efficiency in supporting hydrogenase activity with midpoint redox potential (Em) of the mediators, though some correlation of Em with the efficiency of the mediators in supporting NADP+ photoreduction by chloroplasts, or pyruvate oxidation by a Clostridium pasteurianum system, was evident. 6. Activity of the mediators in the hydrogenase systems therefore primarily reflects differences in tertiary structure conferring differing affinities for the other components of the systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号