首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Chemo- as well as immunotherapeutical approaches induce apoptosis in tumor cells. Apoptotic cells are known to activate homologous complement and to be opsonized with iC3b. Since maturation of dendritic cells (DC) can be inhibited by binding of iC3b to the complement receptor 3 (CR3, CD11b/CD18) and because immature DC induce tolerance, we investigated the induction of tolerance after pulsing DC with apoptotic cells in the presence or absence of native serum. Apoptosis in pancreatic carcinoma cells was induced either by heat-stress, chemotherapy or anti-Her2 antibody. Monocyte-derived DC were pulsed with apoptotic cells with or without native serum. DC were analyzed for the maturation state by flow cytometry and the cytotoxic activity was determined. Tolerance was prevented by addition of substances such as anti CD11b or N–acetyl-D-Glucosamine (NADG) which block iC3b binding to CR3. Furthermore, binding of iC3b from apoptotic cells to DC was blocked in a syngeneic pancreatic carcinoma mouse model. All of the former strategies for apoptosis induction resulted in iC3b release. Pulsing DC with apoptotic cells in the presence of serum prevents maturation of DC and induces finally tolerance. This tolerance could be prevented almost completely by blocking the interaction of iC3b with the CR3 receptor. This could be shown as well in an immunocompetent mouse model. Chemo- as well as immunotherapeutical approaches induce apoptosis in tumor cells. Release of iC3b from apoptotic tumor cells prevents fully maturation of DC and immature DC induce antigen-specific silencing or tolerance. Blocking of iC3b-binding could mostly prevent this effect.  相似文献   

2.
3.
In the present study, we demonstrate that macrophage-tropic HIV-1 opsonized by complement and limited amounts of anti-HIV-IgG causes up to 10-fold higher productive infection of human monocyte-derived dendritic cells than HIV treated with medium or HIV opsonized by Ab only. Enhanced infection is completely abolished by a mAb specific for the ligand-binding site of CD11b (i.e., alpha-chain of complement receptor 3, receptor for iC3b), proving the importance of complement receptor 3 in this process. Inhibition of complement activation by EDTA also prevents enhanced infection, further demonstrating the role of complement in virus uptake and productive infection. Since HIV is, even in the absence of Abs, regularly opsonized by complement, most probably the above-described mechanism plays a role during in vivo primary infection.  相似文献   

4.
The molecular mechanisms involved in the interaction of complement receptor 2 (CR2) with its natural ligands iC3b and C3d are still not well understood. In addition, studies regarding the binding site(s) of the receptor on C3 as well as the affinities of the C3 fragments for CR2 have produced contradictory results. In the present study, we have used surface plasmon resonance technology to study the interaction of CR2 with its ligands C3d, iC3b, and the EBV surface glycoprotein gp350/220. We measured the kinetics of binding of the receptor to its ligands, examined the influence of ionic contacts on these interactions, and assessed whether immobilized and soluble iC3b bound with similar kinetics to CR2. Our results indicate that 1) gp350 binding to CR2 follows a simple 1:1 interaction, whereas that of the C3 fragments is more complex and involves more than one intramolecular component; 2) kinetic differences exist between the binding of C3d and iC3b to CR2, which may be due to an additional binding site found on the C3c region of iC3b; and 3) iC3b binds to CR2 with different kinetics, depending on whether the iC3b is in solution or immobilized on the surface. These findings suggest that binding of CR2 to iC3b and C3d is more complex than previously thought.  相似文献   

5.
Complement is a major effector arm of the innate immune system that responds rapidly to pathogens or altered self. The central protein of the system, C3, participates in an amplification loop that can lead to rapid complement deposition on a target and, if excessive, can result in host tissue damage. Currently, complement activation is routinely monitored by assessing total C3 levels, which is an indirect and relatively insensitive method. An alternative approach would be to measure downstream C3 activation products such as C3a and iC3b. However, in vitro activation can produce falsely elevated levels of these biomarkers. To circumvent this issue, a lateral flow immunoassay system was developed that measures iC3b in whole blood, plasma, and serum and avoids in vitro activation by minimizing sample handling. This assay system returns results within 15 min and specifically measures iC3b while having minimal cross-reactivity to other C3 split products. While evaluating the potential of this assay, it was observed that circulating iC3b levels can distinguish healthy individuals from those with complement activation-associated diseases. This tool is engineered to provide an improved method to assess complement activation at point of care and could facilitate studies to monitor disease progression in a variety of inflammatory conditions.  相似文献   

6.
Complement activation is implicated in the development of obesity and insulin resistance, and loss of signaling by the anaphylatoxin C3a prevents obesity-induced insulin resistance in mice. Here we have identified C1q in the classical pathway as required for activation of complement in response to high fat diets. After 8 weeks of high fat diet, wild-type mice became obese and developed glucose intolerance. This was associated with increased apoptotic cell death and accumulation of complement activation products (C3b/iC3b/C3c) in liver and adipose tissue. Previous studies have shown that high fat diet-induced apoptosis is dependent on Bid; here we report that Bid-mediated apoptosis was required for complement activation in adipose and liver. Although C1qa deficiency had no effect on high fat diet-induced apoptosis, accumulation of complement activation products and the metabolic complications of high fat diet-induced obesity were dependent on C1q. When wild-type mice were fed a high fat diet for only 3 days, hepatic insulin resistance was associated with the accumulation of C3b/iC3b/C3c in the liver. Mice deficient in C3a receptor were protected against this early high fat diet-induced hepatic insulin resistance, whereas mice deficient in the negative complement regulator CD55/DAF were more sensitive to the high fat diet. C1qa−/− mice were also protected from high fat diet-induced hepatic insulin resistance and complement activation. Evidence of complement activation was also detected in adipose tissue of obese women compared with lean women. Together, these studies reveal an important role for C1q in the classical pathway of complement activation in the development of high fat diet-induced insulin resistance.  相似文献   

7.
Peritoneal macrophages (PEMs) preferentially and rapidly take up oligomannose-coated liposomes (OMLs) and subsequently mature to induce a Th-1 immune response following administration of OMLs into the peritoneal cavity. Here, we examine the contributions of complement component C3 and complement receptor type 3 (CR3) to carbohydrate-dependent uptake of OMLs by PEMs. Effective uptake of OMLs into PEMs in vitro was observed only in the presence of peritoneal fluid (PF), and OMLs incubated with PF were incorporated by PEMs in vitro in the absence of PF. These phenomena were inhibited by methyl-alpha-mannoside, N-acetylglucosamine or EDTA, but not by galactose. Pull-down analysis followed by peptide mass fingerprinting of PF-treated OMLs indicated that the OMLs were opsonized with complement fragment iC3b. In vivo uptake of OMLs by PEMs was inhibited by intraperitoneal injection of an antibody against CR3, a receptor for iC3b, and OML uptake by PEMs in the peritoneal cavity was not observed in C3-deficient mice. Thus, our results indicate that OMLs are opsonized with iC3b in a mannose-dependent manner in the peritoneal cavity and then incorporated into PEMs via CR3.  相似文献   

8.
beta-Glucans were identified 36 years ago as a biologic response modifier that stimulated tumor rejection. In vitro studies have shown that beta-glucans bind to a lectin domain within complement receptor type 3 (CR3; known also as Mac-1, CD11b/CD18, or alphaMbeta2-integrin, that functions as an adhesion molecule and a receptor for factor I-cleaved C3b, i.e., iC3b) resulting in the priming of this iC3b receptor for cytotoxicity of iC3b-opsonized target cells. This investigation explored mechanisms of tumor therapy with soluble beta-glucan in mice. Normal mouse sera were shown to contain low levels of Abs reactive with syngeneic or allogeneic tumor lines that activated complement, depositing C3 onto tumors. Implanted tumors became coated with IgM, IgG, and C3, and the absent C3 deposition on tumors in SCID mice was reconstituted with IgM or IgG isolated from normal sera. Therapy of mice with glucan- or mannan-rich soluble polysaccharides exhibiting high affinity for CR3 caused a 57-90% reduction in tumor weight. In young mice with lower levels of tumor-reactive Abs, the effectiveness of beta-glucan was enhanced by administration of a tumor-specific mAb, and in SCID mice, an absent response to beta-glucan was reconstituted with normal IgM or IgG. The requirement for C3 on tumors and CR3 on leukocytes was highlighted by therapy failures in C3- or CR3-deficient mice. Thus, the tumoricidal function of CR3-binding polysaccharides such as beta-glucan in vivo is defined by natural and elicited Abs that direct iC3b deposition onto neoplastic cells, making them targets for circulating leukocytes bearing polysaccharide-primed CR3. Therapy fails when tumors lack iC3b, but can be restored by tumor-specific Abs that deposit iC3b onto the tumors.  相似文献   

9.
The macrophage scavenger receptor SR-AI binds to host tissue debris to perform clearance and it binds to bacteria for phagocytosis. In addition, SR-AI modulates macrophage activation through cell signaling. However, investigation of SR-AI signaling on macrophages is complicated due to its promiscuous ligand specificity that overlaps with other macrophage receptors. Therefore, we expressed SR-AI on HEK 293T cells to investigate its ligand binding and signaling. On 293T cells, SR-AI could respond to E. coli DH5α, leading to NF-κB activation and IL-8 production. However, this requires E. coli DH5α to be sensitized by fresh serum that is treated with heat-inactivation or complement C3 depletion. Anti-C3 antibody inhibits the binding of SR-AI to serum-sensitized DH5α and blocks DH5α stimulation of SR-AI signaling. Further analysis showed that SR-AI can directly bind to purified iC3b but not C3 or C3b. By mutagenesis, The SRCR domain of SR-AI was found to be essential in SR-AI binding to serum-sensitized DH5α. These results revealed a novel property of SR-AI as a complement receptor for iC3b-opsonized bacteria that can elicit cell signaling.  相似文献   

10.
The proteins from labelled human spleen membranes and polymorphonuclear leucocytes which bind to the iC3b fragment of complement component C3 were prepared by iC3b-Sepharose chromatography in the presence of bivalent cations. Complement receptor type 3(CR3) was eluted from iC3b-Sepharose by removal of bivalent cations. Complement receptors type 1 and 2 (present in spleen but not in polymorphonuclear leucocytes) were sequentially eluted by an NaCl gradient. An additional protein of Mr 135 000 was eluted from iC3b-Sepharose under the same conditions as those used to elute CR3. Preabsorption of the starting material on an anti-(CR3 beta-subunit) antibody column before iC3b-Sepharose chromatography removed the alpha- and beta-chains of CR3 and the 135 000-Mr protein. Preabsorption with iC3b-Sepharose before the anti-(CR3 beta-subunit) antibody column showed that iC3b binds CR3 and p150,95, the smallest member of the group of three homologous proteins that share the same beta-subunit.  相似文献   

11.
The fragments that result from the inactivation of C3b have not been completely characterized. Initial inactivation is catalyzed by the protease factor I, which, in the presence of its cofactor (factor H), cleaves two peptide bonds in the alpha'-chain of C3b. This results in the release of a small peptide (C3f, Mr 3000) from iC3b, which consists of the C3 beta chain covalently bonded to two alpha'-chain-derived peptides (Mr 68,000 and Mr 43,000). Surface-bound iC3b is cleaved at a third site by factor I to produce C3c and C3d,g (or alpha 2D). The factor I cofactor for this cleavage is the C3b receptor that is present on erythrocyte and leukocyte membranes. This report describes the isolation and initial structural characterization of C3c and C3d,g generated in whole blood after complement activation with cobra venom factor. These fragments were compared with the C3 fragments isolated from the serum and plasma of a patient with complement activation in vivo. The fragments were isolated with two solid phase monoclonal antibodies, one of which recognizes a determinant on C3g (clone 9) and one of which recognizes a determinant on C3c (clone 4). C3c isolated from normal blood showed three polypeptides that had apparent m.w. of 75,000, 43,000, and 27,000. The C3d,g consisted of a single polypeptide chain with a m.w. of 40,000. Amino terminal sequence analysis showed that the Mr 27,000 peptide from C3c is derived from the amino terminal portion of the alpha'-chain of C3b, whereas the Mr 43,000 peptide is derived from the carboxy terminus of the same chain. Amino terminal sequence analysis showed also that C3g is derived from the amino terminus of C3d,g. The C3 fragments isolated from a patient with partial lipodystrophy, nephritic factor activity, low serum C3 levels, and circulating C3 cleavage products showed a more complicated pattern on SDS-PAGE. The fragment isolated with clone 9 had an apparent m.w. of 40,000, identical to C3d,g generated in vitro, and it had the same amino terminal sequence as C3d,g generated in vitro. The eluate from insolubilized clone 4, however, showed prominent bands with Mr of 75,000, 56,000, 43,000, and 27,000, together with a triple-banded pattern at 68,000 and a minor band at 80,000. This eluate thus appears to contain C3c, and iC3b or an iC3b-like product. The origin of the Mr 56,000 and Mr 80,000 peptides have not yet been determined. These studies, with previous data, definitively order the C3c and C3d,g peptides in the alpha-chain of C3.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Chlamydia trachomatis is an obligate intracellular bacterium that causes severe infections, which can lead to infertility and ectopic pregnancy. Although both innate and adaptive immune responses are elicited during chlamydial infection the bacterium succeeds to evade host defense mechanisms establishing chronic infections. Thus, studying the host–pathogen interaction during chlamydial infection is of importance to understand how C. trachomatis can cause chronic infections. Both the complement system and monocytes play essential roles in anti-bacterial defense, and, therefore, we investigated the interaction between the complement system and the human pathogens C. trachomatis D and L2.Complement competent serum facilitated rapid uptake of both chlamydial serovars into monocytes. Using immunoelectron microscopy, we showed that products of complement C3 were loosely deposited on the bacterial surface in complement competent serum and further characterization demonstrated that the deposited C3 product was the opsonin iC3b. Using C3-depleted serum we confirmed that complement C3 facilitates rapid uptake of chlamydiae into monocytes in complement competent serum. Complement facilitated uptake did not influence intracellular survival of C. trachomatis or C. trachomatis-induced cytokine secretion. Hence, C. trachomatis D and L2 activate the complement system leading to chlamydial opsonization by iC3b and subsequent phagocytosis, activation and bacterial elimination by human monocytes.  相似文献   

13.
Interaction of iC3b with recombinant isotypic and chimeric forms of CR2.   总被引:5,自引:0,他引:5  
CR2 is a component of a signal transduction complex on B lymphocytes that augments B cell responses to Ag. We have quantitatively assessed binding by the two isotypic forms of CR2 for two of its ligands, the polymerized iC3b (p(iC3b)) fragment of C3, and gp350/220, the EBV membrane protein. The recombinant 15-SCR or 16-SCR forms of CR2 bound p(iC3b) with identical affinities. Full binding activity of CR2 for p(iC3b) was observed with a chimera comprised of SCR-1 and -2 of CR2 fused to SCR-17 through -30 of CR1. Therefore, the alternatively spliced SCR-10a has no role in binding p(iC3b), and the binding activity of wild type receptor for iC3b can be reconstituted with SCR-1 and -2 of CR2. The binding affinities of the two isoforms of CR2 for soluble gp350/220 were also similar. Additional sites in the C3c region of C3 have been postulated also to interact with CR2. However, monomeric iC3b and C3d were equally effective in inhibiting the binding of p(iC3b) to CR2, indicating that the C3c region of iC3b does not contribute to the interaction of iC3b with CR2. Finally, the relative abilities of C3b and iC3b to bind to CR1 and CR2 were compared. The conversion of C3b to iC3b generated a ligand with an approximate 100-fold decrease in affinity for CR1 and a 10-fold increased affinity for CR2, resulting in a 1000-fold greater likelihood for binding to the latter receptor that may then promote B cell activation.  相似文献   

14.
Although the complement system has been implicated in liver regeneration after toxic injury and partial hepatectomy, the mechanism or mechanisms through which it participates in these processes remains ill-defined. In this study, we demonstrate that complement activation products (C3a, C3b/iC3b) are generated in the serum of experimental mice after CCl(4) injection and that complement activation is required for normal liver regeneration. Decomplementation by cobra venom factor resulted in impaired entry of hepatocytes into S phase of the cell cycle. In addition, livers from C3-deficient (C3(-/-)) mice showed similarly impaired proliferation of hepatocytes, along with delayed kinetics of both hepatocyte hyperplasia and removal of injured liver parenchyma. Restoration of hepatocyte proliferative capabilities of C3(-/-) mice through C3a reconstitution, as well as the impaired regeneration of C3a receptor-deficient mice, demonstrated that C3a promotes liver cell proliferation via the C3a receptor. These findings, together with data showing two waves of complement activation, indicate that C3 activation is a pivotal mechanism for liver regeneration after CCl(4) injury, which fulfills multiple roles; C3a generated early after toxin injection is relevant during the priming of hepatocytes, whereas C3 activation at later times after CCl(4) treatment contributes to the clearance of injured tissue.  相似文献   

15.
Human mannose-binding lectin (MBL) is a serum protein of the innate immune system that circulates as a complex with a group of so-called MBL-associated serine proteases (MASP-1, MASP-2, and MASP-3). Complexes of MBL-MASP2 are able to activate the complement system in an Ab and C1-independent fashion after binding of the lectin to appropriate microbial sugar arrays. We have evaluated the additive effect of the lectin pathway relative to other complement activation pathways and the subsequent effect on neutrophil phagocytosis. Complement activation in the sera of MBL-deficient individuals was studied with and without the addition of exogenous MBL-MASP. Flow cytometry was used to measure the deposition of C4, factor B, C3b, and iC3b on Staphylococcus aureus. Deposition of the first cleavage product of the lectin pathway, C4b, was increased using the sera of three different MBL-deficient individuals when exogenous MBL-MASP was added. Factor B was deposited in association with C4, but there was no evidence of independent alternative pathway activation. Similar enhancement of C3b deposition was also observed, with evidence of elevated amounts of C3b processed to iC3b. The increase in opsonic C3 fragments mediated by MBL was associated with a significant increase in the uptake of organisms by neutrophils. We also observed significant increases in phagocytosis with MBL-MASPs that were independent of complement activation. We conclude that MBL-MASP makes a major contribution to complement-mediated host defense mechanisms.  相似文献   

16.
The leukocyte integrin complement receptor type III (CR3, CD11b/CD18) binds the C3 cleavage product iC3b. Many other integrins bind their ligands via an Arg-Gly-Asp (RGD) triplet. Both the RGD-containing C3 peptide 1390TRYRGDQDATMS1401 (pro-C3 numbering) and the RGD-like fibrinogen peptide GGAKQAGDV, which binds to the platelet integrin glycoprotein IIb-IIIa, were shown to inhibit the iC3b-CR3 interaction, suggesting that this binding is also RGD-mediated (Wright, S.D., Weitz, J.I., Huang, A. J., Levin, S.M., Silverstein, S.C., and Loike, J.D. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 7734-7738). However, unlike other integrin-ligand interactions, that of CR3 and iC3b is unaffected by the hexapeptide GRGDSP, and substitutions in the RGD triplet of C3 from other species appear to be tolerated. It was, therefore, proposed (Grossberger, D., Marcuz, A., du Pasquier, L., and Lambris, J.D. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 1323-1327) that the highly conserved DATMS portion of the inhibitory C3 peptide may have been responsible for its binding. To address these inconsistencies and directly assess the role of the 1390-1401 segment within the complete iC3b molecule in mediating binding to CR3, a human C3 cDNA was altered by site-directed mutagenesis and the expressed recombinant proteins were examined in a CR3-specific assay. Replacement of RGD by AAA did not abolish rosetting of the corresponding iC3b-coated erythrocytes to human CR3-bearing leukocytes. In addition, mutant iC3b molecules in which the positively charged R1391 (corresponding to K in the fibrinogen peptide) and the highly conserved 1397DATMS sequence were replaced by Q and NAAMA respectively, were still bound by CR3. We conclude that the iC3b-CR3 interaction is not mediated by the RGD triplet or its neighboring residues.  相似文献   

17.
The oviduct-derived embryotrophic factor, ETF-3, enhances the development of trophectoderm and the hatching process of treated embryos. Monoclonal anti-ETF-3 antibody that abolishes the embryotrophic activity of ETF-3 recognized a 115-kDa protein from the conditioned medium of immortalized human oviductal cells. Mass spectrometry analysis showed that the protein was complement C3. Western blot analysis using an antibody against C3 confirmed the cross-reactivities between anti-C3 antibody with ETF-3 and anti-ETF-3 antibody with C3 and its derivatives, C3b and iC3b. Both derivatives, but not C3, were embryotrophic. iC3b was most efficient in enhancing the development of blastocysts with larger size and higher hatching rate, consistent with the previous reported embryotrophic activity of ETF-3. Embryos treated with iC3b contained iC3b immunoreactivity. The oviductal epithelium produced C3 as evidenced by the presence of C3 immunoreactivity and mRNA in the human oviduct and cultured oviductal cells. Cyclical changes in the expression of C3 immunoreactivity and mRNA were also found in the mouse oviduct with the highest expression at the estrus stage. Molecules involving in the conversion of C3b to iC3b and binding of iC3b were present in the human oviduct (factor I) and mouse preimplantation embryo (Crry and CR3), respectively. In conclusion, the present data showed that the oviduct produced C3/C3b, which was converted to iC3b to stimulate embryo development.  相似文献   

18.
Urokinase receptor (uPAR) associates in cis with complement receptor 3 (CR3). In the present study, we addressed whether this coupling regulates CR3-mediated phagocytosis. CR3-mediated attachment of iC3b-opsonized sheep red blood cells to human neutrophils and internalization of these cells were reduced by removal of cell-bound uPAR by phosphatidylinositol-specific phospholipase C and reconstituted in the presence of soluble uPAR. The attachment and internalization were suppressed in the presence of anti-uPAR polyclonal antibody, proteolytically inactive urokinase and saccharides that disrupt interaction of uPAR with CR3. Thus, uPAR acts as a cofactor for iC3b binding to CR3 and regulates CR3-mediated phagocytosis.  相似文献   

19.
The leukocyte integrin alpha(X)beta(2) (p150,95) recognizes the iC3b complement fragment and functions as the complement receptor type 4. alpha(X)beta(2) is more resistant to activation than other beta(2) integrins and is inactive in transfected cells. However, when human alpha(X) is paired with chicken or mouse beta(2), alpha(X)beta(2) is activated for binding to iC3b. Activating substitutions were mapped to individual residues or groups of residues in the N-terminal plexin/semaphorin/integrin (PSI) domain and C-terminal cysteine-rich repeats 2 and 3. These regions are linked by a long range disulfide bond. Substitutions in the PSI domain synergized with substitutions in the cysteine-rich repeats. Substitutions T4P, T22A, Q525S, and V526L gave full activation. Activation of binding to iC3b correlated with exposure of the CBR LFA-1/2 epitope in cysteine-rich repeat 3. The data suggest that the activating substitutions are present in an interface that restrains the human alpha(X)/human beta(2) integrin in the inactive state. The opening of this interface is linked to structural rearrangements in other domains that activate ligand binding.  相似文献   

20.
Little is known about the pathogenesis of gonococcal infection within the lower female genital tract. We recently described the distribution of complement receptor 3 (CR3) on epithelia of the female genital tract. Our studies further indicate that CR3-mediated endocytosis serves as a primary mechanism by which N. gonorrhoeae elicits membrane ruffling and cellular invasion of primary, human, cervical epithelial cells. We have extended these studies to describe the nature of the gonococcus-CR3 interaction. Western Blot analysis demonstrated production of alternative pathway complement components by ecto- and endocervical cells which allows C3b deposition on gonococci and its rapid conversion to iC3b. Anti-iC3b and -factor I antibodies significantly inhibited adherence and invasion of primary cervical cells, suggesting that iC3b covalently bound to the gonococcus serves as a primary ligand for CR3 adherence. However, gonococcal porin and pili also bound to the I-domain of CR3 in a non-opsonic manner. Binding of porin and pili to CR3 were required for adherence to and invasion of cervical epithelia. Collectively, these data suggest that gonococcal adherence to CR3 occurs in a co-operative manner, which requires gonococcal iC3b-opsonization, porin and pilus. In conjunction, these molecules facilitate targeting to and successful infection of the cervical epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号