首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Lymphoid cells of the vertebrate immune system rely on factors in the non-homologous end-joining (NHEJ) DNA repair pathway to form signal joints during V(D)J recombination. Unlike other end-joining reactions, signal joint formation is a specialized case of NHEJ that also requires the lymphoid-specific RAG proteins. Whether V(D)J recombination requires the Mre11-Rad50-Nbs1 complex remains an open question, as null mutations in any member of the complex are lethal in mammals. However, Saccharomyces cerevisiae strains carrying null mutations in components of the homologous Mre11p-Rad50p-Xrs2p (MRX) complex are viable. We therefore took advantage of a recently developed V(D)J recombination assay in yeast to assess the role of MRX in V(D)J joining. Here we confirmed that signal joint formation in yeast is dependent on the same NHEJ factors known to be required in mammalian cells. In addition, we showed an absolute requirement for the MRX complex in signal joining, suggesting that the Mre11-Rad50-Nbs1 complex may be required for signal joint formation in mammalian cells as well.  相似文献   

2.
Y Tsukamoto  J Kato    H Ikeda 《Nucleic acids research》1996,24(11):2067-2072
Hdf1 is the yeast homologue of the mammalian 70 kDa subunit of Ku-protein, which has DNA end-binding activity and is involved in DNA double-strand break repair and V(D)J recombination. To examine whether Hdf1 is involved in illegitimate recombination, we have measured the rate of deletion mutation caused by illegitimate recombination on a plasmid in an hdf1 disruptant. The hdf1 mutation reduced the rate of deletion formation by 20-fold, while it did not affect mitotic and meiotic homologous recombinations between two heteroalleles or homologous recombination between direct repeats. Hence Hdf1 participates in illegitimate recombination, but not in homologous recombination, in contrast to Rad52, Rad50, Mre11 and Xrs2, which are involved in both homologous and illegitimate recombination. The illegitimate recombination in the hdf1 disruptant took place between recombination sites that shared short regions of homology (1-4 bp), as was observed in the wild-type. Based on the DNA end-binding activity of Hdf1, we discuss models in which Hdf1 plays an important role in the late step of illegitimate recombination.  相似文献   

3.
Studies of human Nijmegen breakage syndrome (NBS) cells have led to the proposal that the Mre11/Rad50/ NBS1 complex, which is involved in the repair of DNA double-strand breaks (DSBs), might also function in activating the DNA damage checkpoint pathways after DSBs occur. We have studied the role of the homologous budding yeast complex, Mre11/Rad50/Xrs2, in checkpoint activation in response to DSB-inducing agents. Here we show that this complex is required for phosphorylation and activation of the Rad53 and Chk1 checkpoint kinases specifically in response to DSBs. Consistent with defective Rad53 activation, we observed defective cell-cycle delays after induction of DSBs in the absence of Mre11. Furthermore, after gamma-irradiation phosphorylation of Rad9, which is an early event in checkpoint activation, is also dependent on Mre11. All three components of the Mre11/Rad50/Xrs2 complex are required for activation of Rad53, however, the Ku80, Rad51 or Rad52 proteins, which are also involved in DSB repair, are not. Thus, the integrity of the Mre11/Rad50/Xrs2 complex is specifically required for checkpoint activation after the formation of DSBs.  相似文献   

4.
The inherited chromosomal instability disorder Nijmegen breakage syndrome (NBS) results from truncating mutations in the NBS1 gene, which encodes the protein nibrin. Nibrin is part of a nuclear multiprotein complex that also contains the DNA repair proteins Mre11 and Rad50. Upon irradiation, this complex redistributes within the nucleus, forming distinct foci that have been implicated as sites of DNA repair. In NBS cells, nibrin is absent and Mre11 and Rad50 are cytoplasmic. In this study, the interacting domains on nibrin and Mre11 were mapped using the yeast two-hybrid system and expression of epitope-tagged constructs in NBS fibroblasts. Deletion of the carboxy-terminal 101 amino acids of nibrin eliminated its ability to interact with Mre11 and to complement the radiation sensitivity of NBS cells. However, this truncated form of nibrin could localize to the nucleus and form radiation-inducible foci. Expression of a carboxy-terminal 354-amino-acid fragment of nibrin was sufficient to direct the nuclear localization of nibrin, as well as that of Mre11 and Rad50. Despite providing some partial complementation of the radiation-sensitive phenotype, the nibrin-Mre11-Rad50 complexes in these cells were unable to form foci. These results indicate that nibrin directs not only the nuclear localization of the nibrin-Mre11-Rad50 complexes but also radiation-induced focus formation. However, direct interaction between nibrin and Mre11 is required for normal cellular survival postirradiation. Distinct domains of nibrin are required for each of these functions, focus formation, nuclear localization, and Mre11 interaction.  相似文献   

5.
The present report deals with the functional relationships among protein complexes which, when mutated, are responsible for four human syndromes displaying cancer proneness, and whose cells are deficient in DNA double-strand break (DSB) repair. In some of them, the cells are also unable to activate the proper checkpoint, while in the others an unduly override of the checkpoint-induced arrest occurs. As a consequence, all these patients display genome instability. In ataxia-telangiectasia, the mutated protein (ATM) is a kinase, which acts as a transducer of DNA damage signalling. The defective protein in the ataxia-telangiectasia-like disorder is a DNase (the Mre11 nuclease) that in vivo produces single-strand tails at both sides of DSBs. Mre11 is always present with the Rad50 ATPase in a protein machine: the nuclease complex. In mammals, this complex also contains nibrin, the protein mutated in the Nijmegen syndrome. Nibrin confers new abilities to the nuclease complex, and can also bind to BRCA1 (one of the two proteins mutated in familial breast cancer). BRCA1 has a central motif that binds with high affinity to cruciform DNA, a structure present in places where the DNA loops are anchored to the chromosomal axis or scaffold. The BRCA1 x cruciform DNA complex should be released to allow the nuclease complex to work in DNA recombinational repair of DSBs. BRCA1 also acts as a scaffold for the assembly of ATPases such as Rad51, responsible for the somatic homologous recombination. Loss of the BRCA1 gene prevents cell survival after exposure to cross-linkers. The BRCA1-RING domain is an E3-ubiquitin ligase. It can mono-ubiquitinate the FANCD2 protein, mutated in one of the Fanconi anemia complementation groups, to regulate it. Finally, during DNA replication, the nuclease complex and its activating ATM kinase are integrated in the BRCA1-associated surveillance complex (BASC) that contains, among others, enzymes required for mismatch excision repair. In short, the proteins missing in these syndromes have in common their BRCA1-mediated assembly into multimeric machines responsible for the surveillance of DNA replication, DSB recombinational repair, and the removal of DNA cross-links.  相似文献   

6.
7.
The genome of the halophilic archaeon Halobacterium sp. strain NRC-1 encodes homologs of the eukaryotic Mre11 and Rad50 proteins, which are involved in the recognition and end processing of DNA double-strand breaks in the homologous recombination repair pathway. We have analyzed the phenotype of Halobacterium deletion mutants lacking mre11 and/or rad50 after exposure to UV-C radiation, an alkylating agent (N-methyl-N'-nitro-N-nitrosoguanidine), and gamma radiation, none of which resulted in a decrease in survival of the mutant strains compared to that of the background strain. However, a decreased rate of repair of DNA double-strand breaks in strains lacking the mre11 gene was observed using pulsed-field gel electrophoresis. These observations led to the hypothesis that Mre11 is essential for the repair of DNA double-strand breaks in Halobacterium, whereas Rad50 is dispensable. This is the first identification of a Rad50-independent function for the Mre11 protein, and it represents a shift in the Archaea away from the eukaryotic model of homologous recombination repair of DNA double-strand breaks.  相似文献   

8.
Mre11/Rad50 complexes in all organisms function in the repair of DNA double-strand breaks. In budding yeast, genetic evidence suggests that the Sae2 protein is essential for the processing of hairpin DNA intermediates and meiotic double-strand breaks by Mre11/Rad50 complexes, but the biochemical basis of this functional relationship is not known. Here we demonstrate that recombinant Sae2 binds DNA and exhibits endonuclease activity on single-stranded DNA independently of Mre11/Rad50 complexes, but hairpin DNA structures are cleaved cooperatively in the presence of Mre11/Rad50 or Mre11/Rad50/Xrs2. Hairpin structures are not processed at the tip by Sae2 but rather at single-stranded DNA regions adjacent to the hairpin. Truncation and missense mutants of Sae2 inactivate this endonuclease activity in vitro and fail to complement Deltasae2 strains in vivo for meiosis and recombination involving hairpin intermediates, suggesting that the catalytic activities of Sae2 are important for its biological functions.  相似文献   

9.
Homologous recombination is essential for genetic exchange, meiosis and error-free repair of double-strand breaks. Central to this process is Rad52, a conserved homo-oligomeric ring-shaped protein, which mediates the exchange of the early recombination factor RPA by Rad51 and promotes strand annealing. Here, we report that Rad52 of Saccharomyces cerevisiae is modified by the ubiquitin-like protein SUMO, primarily at two sites that flank the conserved Rad52 domain. Sumoylation is induced on DNA damage and triggered by Mre11-Rad50-Xrs2 (MRX) complex-governed double-strand breaks (DSBs). Although sumoylation-defective Rad52 is largely recombination proficient, mutant analysis revealed that the SUMO modification sustains Rad52 activity and concomitantly shelters the protein from accelerated proteasomal degradation. Furthermore, our data indicate that sumoylation becomes particularly relevant for those Rad52 molecules that are engaged in recombination.  相似文献   

10.
The Atm protein kinase is central to the DNA double-strand break response in mammalian cells. After irradiation, dimeric Atm undergoes autophosphorylation at Ser 1981 and dissociates into active monomers. Atm activation is stimulated by expression of the Mre11/Rad50/nibrin complex. Previously, we showed that a C-terminal fragment of nibrin, containing binding sites for both Mre11 and Atm, was sufficient to provide this stimulatory effect in Nijmegen breakage syndrome (NBS) cells. To discriminate whether nibrin's role in Atm activation is to bind and translocate Mre11/Rad50 to the nucleus or to interact directly with Atm, we expressed an Mre11 transgene with a C-terminal NLS sequence in NBS fibroblasts. The Mre11-NLS protein complexed with Rad50, localized to the nucleus in NBS fibroblasts, and associated with chromatin. However, Atm autophosphorylation was not stimulated in cells expressing Mre11-NLS, nor were downstream Atm targets phosphorylated. To determine whether nibrin-Atm interaction is necessary to stimulate Atm activation, we expressed nibrin transgenes lacking the Atm binding domain in NBS fibroblasts. The nibrin DeltaAtm protein interacted with Mre11/Rad50; however, Atm autophosphorylation was dramatically reduced after irradiation in NBS cells expressing the nibrin DeltaAtm transgenes relative to wild-type nibrin. These results indicate that nibrin plays an active role in Atm activation beyond translocating Mre11/Rad50 to the nucleus and that this function requires nibrin-Atm interaction.  相似文献   

11.
Lymphocyte antigen receptor genes are assembled through the process of V(D)J recombination, during which pairwise DNA cleavage of gene segments results in the formation of four DNA ends that are resolved into a coding joint and a signal joint. The joining of these DNA ends occurs in G1-phase lymphocytes and is mediated by the non-homologous end-joining (NHEJ) pathway of DNA double-strand break (DSB) repair. The ataxia telangiectasia mutated (ATM) and the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), two related kinases, both function in the repair of DNA breaks generated during antigen receptor gene assembly. Although these proteins have unique functions during coding joint formation, their activities in signal joint formation, if any, have been less clear. However, two recent studies demonstrated that ATM and DNA-PKcs have overlapping activities important for signal joint formation. Here, we discuss the unique and shared activities of the ATM and DNA-PKcs kinases during V(D)J recombination, a process that is essential for lymphocyte development and the diversification of antigen receptors.Key words: ATM, V(D)J recombination, DNA-PKcs, Lymphocyte, DNA repair, RAG  相似文献   

12.
The process of homologous recombination is a major DNA repair pathway that operates on DNA double-strand breaks, and possibly other kinds of DNA lesions, to promote error-free repair. Central to the process of homologous recombination are the RAD52 group genes (RAD50, RAD51, RAD52, RAD54, RDH54/TID1, RAD55, RAD57, RAD59, MRE11, and XRS2), most of which were identified by their requirement for the repair of ionizing-radiation-induced DNA damage in Saccharomyces cerevisiae. The Rad52 group proteins are highly conserved among eukaryotes, and Rad51, Mre11, and Rad50 are also conserved in prokaryotes and archaea. Recent studies showing defects in homologous recombination and double-strand break repair in several human cancer-prone syndromes have emphasized the importance of this repair pathway in maintaining genome integrity. Although sensitivity to ionizing radiation is a universal feature of rad52 group mutants, the mutants show considerable heterogeneity in different assays for recombinational repair of double-strand breaks and spontaneous mitotic recombination. Herein, I provide an overview of recent biochemical and structural analyses of the Rad52 group proteins and discuss how this information can be incorporated into genetic studies of recombination.  相似文献   

13.
V(D)J recombination, a site-specific gene rearrangement process, requires two RAG1 and RAG2 proteins specifically recognizing recombination signal sequences and forming DNA double-strand breaks. The broken DNA ends tightly bound to RAG proteins are joined by repair proteins. Here, we found that heat shock protein 70 was associated with RAG2 following two-step affinity chromatography purification. It was also co-immunoprecipitated with RAG2 in pro-B cells. Purified HSP70 protein disrupted RAG/DNA complexes assembled in vitro and also inhibited the V(D)J cleavage (both nick and hairpin formation) in a dose-dependent manner. This HSP70 action required ATP energy. These data suggest that HSP70 might play a crucial role in disassembling RAG/DNA complexes stably formed during V(D)J recombination.  相似文献   

14.
Immunodeficiency and lymphoid malignancy are hallmarks of the human disease Nijmegen breakage syndrome (NBS; OMIM 251260), which is caused by NBS1 mutations. Although NBS1 has been shown to bind to the T-cell receptor alpha (TCRα) locus, its role in TCRβ rearrangement is unclear. Hypomorphic mutations of Nbs1 in mice and patients result in relatively mild T-cell deficiencies, raising the question of whether the truncated Nbs1 protein might have clouded a certain function of NBS1 in T-cell development. Here we show that the deletion of the entire Nbs1 protein in T-cell precursors (Nbs1(T-del)) results in severe lymphopenia and a hindrance to the double-negative 3 (DN3)-to-DN4 transition in early T-cell development, due to abnormal TCRβ coding and signal joints as well as the functions of Nbs1 in T-cell expansion. Chromatin immunoprecipitation (ChIP) analysis of the TCR loci reveals that Nbs1 depletion compromises the loading of Mre11/Rad50 to V(D)J-generated DNA double-strand breaks (DSBs) and thereby affects resection of DNA termini and chromatin conformation of the postcleavage complex. Although a p53 deficiency relieves the DN3→DN4 transition block, neither a p53 deficiency nor ectopic expression of TCRαβ rescues the major T-cell loss in Nbs1(T-del) mice. All together, these results demonstrate that Nbs1's functions in both repair of V(D)J-generated DSBs and proliferation are essential for T-cell development.  相似文献   

15.
S. cerevisiae RAD50, MRE11, and XRS2 genes are required for telomere maintenance, cell cycle checkpoint signaling, meiotic recombination, and the efficient repair of DNA double-strand breaks (DSB)s by homologous recombination and nonhomologous end-joining (NHEJ). Here, we demonstrate that the complex formed by Rad50, Mre11, and Xrs2 proteins promotes intermolecular DNA joining by DNA ligase IV (Dnl4) and its associated protein Lif1. Our results show that the Rad50/Mre11/Xrs2 complex juxtaposes linear DNA molecules via their ends to form oligomers and interacts directly with Dnl4/Lif1. We also demonstrate that Rad50/Mre11/Xrs2-mediated intermolecular DNA joining is further stimulated by Hdf1/Hdf2, the yeast homolog of the mammalian Ku70/Ku80 heterodimer. These studies reveal specific functional interplay among the Hdf1/Hdf2, Rad50/Mre11/Xrs2, and Dnl4/Lif1 complexes in NHEJ.  相似文献   

16.
V(D)J recombination has been examined in several X-ray-sensitive and double-strand break repair-deficient Chinese hamster cell mutants. Signal joint formation was affected in four mutants (xrs 5, XR-1, V-3, and XR-V9B cells, representing complementation groups 1 through 4, respectively) defective in DNA double-strand break rejoining. Among these four, V-3 and XR-V9B were the most severely affected. Only in V-3 was coding joint formation also affected. Ataxia telangiectasia-like hamster cell mutants (V-E5 and V-G8), which are normal for double-strand break repair but are X ray sensitive, were normal for all aspects of the V(D)J recombination reaction, indicating that X-ray sensitivity is not the common denominator but that the deficiency in double-strand break repair appears to be. The abnormality at the signal joints consisted of an elevated incidence of nucleotide loss from each of the two signal ends. Interestingly, in complementation groups 1 (xrs 5) and 2 (XR-1), signal joint formation was within the normal range under some transfection conditions. This suggests that the affected gene products in these two complementation groups are not catalytic components. Instead, they may be either secondary or stochiometric components involved in the later stages of both the V(D)J recombination reaction and double-strand break repair. The fact that such factors can affect the precision of the signal joint has mechanistic implications for V(D)J recombination.  相似文献   

17.
DNA ligase IV functions in DNA nonhomologous end-joining and V(D)J recombination. Four patients with features including immunodeficiency and developmental and growth delay were found to have mutations in the gene encoding DNA ligase IV (LIG4). Their clinical phenotype closely resembles the DNA damage response disorder, Nijmegen breakage syndrome (NBS). Some of the mutations identified in the patients directly disrupt the ligase domain while others impair the interaction between DNA ligase IV and Xrcc-4. Cell lines from the patients show pronounced radiosensitivity. Unlike NBS cell lines, they show normal cell cycle checkpoint responses but impaired DNA double-strand break rejoining. An unexpected V(D)J recombination phenotype is observed involving a small decrease in rejoining frequency coupled with elevated imprecision at signal junctions.  相似文献   

18.
V(D)J recombination is a site-specific gene rearrangement process that contributes to the diversity of antigen receptor repertoires. Two lymphoid-specific proteins, RAG1 and RAG2, initiate this process at two recombination signal sequences. Due to the recent development of an in vitro assay for V(D)J cleavage, the mechanism of cleavage has been elucidated clearly. The RAG complex recognizes a recombination signal sequence, makes a nick at the border between signal and coding sequence, and carries out a transesterification reaction, resulting in the production of a hairpin structure at the coding sequence and DNA double-strand breaks at the signal ends. RAG1 possesses the active site of the V(D)J recombinase although RAG2 is essential for signal binding and cleavage. After DNA cleavage by the RAG complex, the broken DNA ends are rejoined by the coordinated action of DNA double-strand break repair proteins as well as the RAG complex. The junctional variability resulting from imprecise joining of the coding sequences contributes additional diversity to the antigen receptors.  相似文献   

19.
Yuan SS  Su JH  Hou MF  Yang FW  Zhao S  Lee EY 《DNA Repair》2002,1(2):137-142
Cancer-prone diseases ataxia-telangiectasia (AT), Nijmegen breakage syndrome (NBS) and ataxia-telangiectasia-like disorder (ATLD) are defective in the repair of DNA double-stranded break (DSB). On the other hand, arsenic (As) has been reported to cause DSB and to be involved in the occurrence of skin, lung and bladder cancers. To dissect the repair mechanism of As-induced DSB, wild type, AT and NBS cells were treated with sodium arsenite to study the complex formation and post-translational modification of Rad50/NBS1/Mre11 repair proteins. Our results showed that Mre11 went through cell cycle-dependent phosphorylation upon sodium arsenite treatment and this post-translational modification required NBS1 but not ATM. Defective As-induced Mre11 phosphorylation was rescued by reconstitution with full length NBS1 in NBS cells. Although As-induced Mre11 phosphorylation was not required for Rad50/NBS1/Mre11 complex formation, it might be required for the formation of Rad50/NBS1/Mre11 nuclear foci upon DNA damage.  相似文献   

20.
The MRN complex consists of the two evolutionarily conserved components Mre11 and Rad50 and the third less-conserved component Nbs1/Xrs2. This complex mediates telomere maintenance in addition to a variety of functions in response to DNA double-strand breaks, including homologous recombination, nonhomologous end joining (NHEJ), and activation of DNA damage checkpoints. Mutations in the Mre11 gene cause the human ataxia-telangiectasia-like disorder (ATDL). Here, we show that null mutations in the Drosophila mre11 and rad50 genes cause both telomeric fusion and chromosome breakage. Moreover, we demonstrate that these mutations are in the same epistasis group required for telomere capping and mitotic chromosome integrity. Using an antibody against Rad50, we show that this protein is uniformly distributed along mitotic chromosomes, and that Rad50 is unstable in the absence of its binding partner Mre11. To define the roles of rad50 and mre11 in telomere protection, mutant chromosome preparations were immunostained for both HP1 and HOAP, two proteins that protect Drosophila telomeres from fusion. Cytological analysis revealed that mutations in rad50 and mre11 drastically reduce accumulation of HOAP and HP1 at telomeres. This suggests that the MRN complex protects Drosophila telomeres by facilitating recruitment of HOAP and HP1 at chromosome ends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号