首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Abstract: Spectrin isotypes segregate in neurons and are differentially distributed between axons and somatodendritic compartments. Their functions in those compartments are likely to be mediated by proteins that interact selectively with one or other isotype. Fodaxin (an axon-specific protein previously termed A60) colocalizes in CNS neurons with axonal spectrin and in vitro binds brain spectrin (a mixture of αI, βI, αII, and βII polypeptides) but not erythrocyte spectrin (αI and βI). Because αII and βII spectrin polypeptides are enriched in axons, we investigated a possible binding of fodaxin to the types of spectrin found in axons. Fodaxin did not bind to isolated brain α chains. Bacterially expressed C-terminal segments 18–19 of βII spectrin bound to fodaxin and inhibited the binding of fodaxin to whole brain spectrin. By contrast, recombinant segments 18–19 of the somatodendritic βIΣ2 spectrin showed no interaction with fodaxin. Within βII, fodaxin binding activity was localized to residues 2,087–2,198, which are unique to βII and link between the end of segment 18 and the pleckstrin homology domain in segment 19. The divergent regions of sequence in segments 19 of βII and βIΣ2 are candidates to mediate the isotype-specific functions of spectrin. Fodaxin is the first protein to be described that discriminates between the unique regions of β spectrin isoforms.  相似文献   

2.
Species that live in extreme conditions have specially adapted physiology and tissue/organ organisation. The adaptation of lymphoid organs to low temperatures in polar species could be an original field of study, indicating how the immune system works under extreme conditions. In fishes, the head kidney is a key organ for immunity and here the cytology of this organ is studied in two common Antarctic species: Trematomus bernacchii and Chionodraco hamatus. Ultrastructural analysis revealed heterogeneity of epithelial cells, with reticular cells, subcapsular- and perivascular-limiting cells. Differences in the size and morphology of epithelial cells were observed between the polar species and warm water species of fish. Intermingled with epithelial cell leucocytes, such as lymphocytes, thrombocytes and macrophages, had comparable morphology in both species, contrary to sharp differences observed in the morphology of erythrocytes and granulocytes. The functional adaptation of the head kidney to the low temperatures of polar water is discussed.  相似文献   

3.
The presence of nitric oxide synthase (NOS) was investigated in the ventricle of two Antarctic teleosts, the hemoglobinless icefish Chionodraco hamatus and its red-blooded counterpart, Trematomus bernacchii. Under unstimulated conditions, in both teleosts, NADPH-diaphorase localised NOS activity in the endocardial-endothelial cells (EEc) and in the myocardiocytes. Application of anti-mammalian endothelial and inducible NOS (eNOS and iNOS, respectively) primary antibodies for immunofluorescence revealed a comparable tissue-specific basal expression of the two isoforms in the two species. eNOS strongly localised at the level of the EEc and, in T. bernacchii, of the vascular endothelium (VE). The enzyme is also localised, albeit to less extent, within the myocardiocytes, and in the epicardium. In contrast, iNOS immunostaining only labels the cytoplasm of the ventricular myocytes. Western blotting analysis identified two peptides with molecular masses of about 135 and 130kDa, similar to those of the mammalian eNOS and iNOS. To verify whether this NOS system is susceptible to septic stimulation, C. hamatus and T. bernacchii were exposed to bacterial lipopolysaccharides (LPS). The treatment did not modify the distribution pattern of the two isoenzymes while it increased the amount of NADPH-diaphorase-dependent reaction product and the expression of both eNOS and iNOS. These results indicate a high phylogenetic conservation of the intracardiac NOS system, emphasizing its importance in the control of the vertebrate heart and its relevance as a general mechanism of defense against pathogens.  相似文献   

4.
Abstract: Phosphorylation of brain spectrin was studied by a combination of in vivo and in vitro approaches. Chemical analysis of phosphate groups on electrophoretically purified mouse brain β-spectrin yielded a stoichiometry of 3.2 ± 0.18 mol of PO4/mol of β-spectrin. The spectrin isolated by chromatographic methods from mouse brain, pig brain, and human erythrocytes yielded 4.1, 5.6, and 3.2 mol of PO4/mol of spectrin heterodimer, respectively. The 32P labeling of spectrin in retinal ganglion cell neurons or NB 2a/d1 neuroblastoma cells with [32P]orthophosphate showed phosphorylation of only β-spectrin in vivo. Two-dimensional phosphopeptide map analyses showed that most of the in vivo sites on β-spectrin were phosphorylated by either a heparin-sensitive endogenous cytoskeleton-associated protein kinase or protein kinase A. Phosphoamino acid analysis of in vivo and in vitro phosphorylated β-spectrin showed that [32P]phosphate groups were incorporated into both serine (>90%) and threonine residues. In vitro, phosphate groups were incorporated into threonine residues by the heparin-sensitive endogenous protein kinase. The amino acid sequence VQQQLQAFNTY of an α-chymotryptic 32P-labeled peptide phosphorylated by the heparin-sensitive cytoskeleton-associated endogenous protein kinase corresponded to amino acid residues 338–348 on the β1 repeat of β-spectrinG (βSPIIa) gene. These data suggest that phosphorylation of Thr347, which is localized on the presumptive synapsin I binding domain of β-spectrinG, may play a role in synaptic function by regulating the binding of spectrin to synaptic vesicles.  相似文献   

5.
Clostridium perfringens isolated from sheep and goat with enterotoxaemia at necropsy and from healthy animals at slaughter were typed using specific PCR assays for the detection of the α-, β- and ε-toxin genes. Clostridium perfringens isolated from all 52 animals with pathological signs of enterotoxaemia showed the presence of the α- and ε-toxin genes but were devoid of the β-toxin gene. These strains could therefore be identified as type D, characteristic for clostridial enterotoxaemia of sheep, lambs and goats. In contrast, Cl. perfringens isolated from 11 of 13 healthy animals only contained the α-toxin gene which is typical for type A. Two of the healthy animals contained Cl. perfringens with the α- and ε-toxin genes. However, when several individual Cl. perfringens colonies were analysed from each of these two animals, only a small percentage was found to contain the ε-toxin gene, whereas the majority of the colonies were of type A with the α-toxin gene only. This is in contrast to the findings from the diseased animals which contained practically only type D Cl. perfringens . The β-toxin gene was not found in any Cl. perfringens isolate from goat and sheep. Comparison of the PCR data with results obtained by the classical biological toxin assay using the mouse model showed a good correlation.  相似文献   

6.
7.
GABAA receptors are pentameric ligand-gated ion channels that are major mediators of fast inhibitory neurotransmission. Clinically relevant GABAA receptor subtypes are assembled from α5(1-3, 5), β1-3 and the γ2 subunit. They exhibit a stoichiometry of two α, two β and one γ subunit, with two GABA binding sites located at the α/β and one benzodiazepine binding site located at the α/γ subunit interface. Introduction of the H105R point mutation into the α5 subunit, to render α5 subunit-containing receptors insensitive to the clinically important benzodiazepine site agonist diazepam, unexpectedly resulted in a reduced level of α5 subunit protein in α5(H105R) mice. In this study, we show that the α5(H105R) mutation did not affect cell surface expression and targeting of the receptors or their assembly into macromolecular receptor complexes but resulted in a severe reduction of α5-selective ligand binding. Immunoprecipitation studies suggest that the diminished α5-selective binding is presumably due to a repositioning of the α5(H105R) subunit in GABAA receptor complexes containing two different α subunits. These findings imply an important role of histidine 105 in determining the position of the α5 subunit within the receptor complex by determining the affinity for assembly with the γ2 subunit.  相似文献   

8.
Killing of wild-type spores of Bacillus subtilis with formaldehyde also caused significant mutagenesis; spores (termed αβ) lacking the two major α/β-type small, acid-soluble spore proteins (SASP) were more sensitive to both formaldehyde killing and mutagenesis. A recA mutation sensitized both wild-type and αβ spores to formaldehyde treatment, which caused significant expression of a recA - lacZ fusion when the treated spores germinated. Formaldehyde also caused protein–DNA cross-linking in both wild-type and αβ spores. These results indicate that: (i) formaldehyde kills B. subtilis spores at least in part by DNA damage and (b) α/β-type SASP protect against spore killing by formaldehyde, presumably by protecting spore DNA.  相似文献   

9.
Abstract: Previous experiments suggested that the human cell adhesion molecule L1 interacts with different integrins via its sixth immunoglobulin-like domain in an RGD-dependent manner. Here we have described the expression of this domain from early postnatal mouse brain, analyzed the structure of the recombinant protein by circular dichroism and fluorescence spectroscopy, and performed solid-phase binding studies to αvβ3, αIIbβ3, and α5β1 integrins. The domain was found to have the expected β-sheet organization, which was lost in the presence of guanidine hydrochloride. The midpoint of the single-step transition occurred at 1.5 M guanidine hydrochloride. The sixth immunoglobulin-like domain of mouse brain L1 contains two RGD motifs and was found to bind in a concentration-dependent and saturable way to αvβ3, αIIbβ3, and α5β1 integrins, suggesting specific interactions with these ligands. However, only the interaction to αvβ3 could be inhibited in a concentration-dependent manner by an RGD-containing peptide, and the IC50 was determined to be ∼20 n M . Mutants of the domain, which lack either one or both of the RGD sites, demonstrated that the RGD site comprising residues 562–564 is involved in the interaction to αvβ3. Our findings indicate an RGD-independent mechanism for the interactions to αIIbβ3 and α5β1, as no involvement of any RGD motif could be demonstrated.  相似文献   

10.
The genetic polymorphism αs1-, β- and x-caseins was examined by gel electrophoresis in two Italian breeds, Valdostana and Piedmont.
The results obtained from acid and basic migration show that the gene frequencies of the two breeds are very similar.
Non independent assortment of genotypes among these milk protein loci was also studied.
Results of analyses carried out on loci pairs showed that the genetic complex αs1-CnB-β-CnA2 was the most common in both breeds. In addition, the measure of linkage disequilibrium or gametic association (denoted A) showed a close association between αs1-Cn and β-Cn , and between β-Cn. and x-Cn. No significant association was found between αs1-Cn and x-Cn. This is in line with the model proposed by Grosclaude et al. (1973).  相似文献   

11.
Abstract: Studies of processing of the Alzheimer β-amyloid precursor protein (βAPP) have been performed to date mostly in continuous cell lines and indicate the existence of two principal metabolic pathways: the "β-secretase" pathway, which generates β-amyloid (Aβ1–40/42; ∼4 kDa), and the "α-secretase" pathway, which generates a smaller fragment, the "p3" peptide (Aβ17–40/42; ∼3 kDa). To determine whether similar processing events underlie βAPP metabolism in neurons, media were examined following conditioning by primary neuronal cultures derived from embryonic day 17 rats. Immunoprecipitates of conditioned media derived from [35S]methionine pulse-labeled primary neuronal cultures contained 4- and 3-kDa Aβ-related species. Radiosequencing analysis revealed that the 4-kDa band corresponded to conventional Aβ beginning at position Aβ(Asp1), whereas both radio-sequencing and immunoprecipitation-mass spectrometry analyses indicated that the 3-kDa species in these conditioned media began with Aβ(Glu11) at the N terminus, rather than Aβ(Leu17) as does the conventional p3 peptide. Either activation of protein kinase C or inhibition of protein phosphatase 1/2A increased soluble βAPPα release and decreased generation of both the 4-kDa Aβ and the 3-kDa N-truncated Aβ. Unlike results obtained with continuously cultured cells, protein phosphatase 1/2A inhibitors were more potent at reducing Aβ secretion by neurons than were protein kinase C activators. These data indicate that rodent neurons generate abundant Aβ variant peptides and emphasize the role of protein phosphatases in modulating neuronal Aβ generation.  相似文献   

12.
ABSTRACT. The α- and the β-tubulin genes of the hypotrichous ciliate Euplotes octocarinatus were isolated from a size-selected macronuclear DNA library. The α-tubulin gene is located on a 1,587 bp macronuclear DNA molecule and the β-tubulin gene on a 1,524 bp macronuclear DNA molecule. Sequencing revealed that all the cysteine residues of the two genes are encoded by the common cysteine codons UGU and UGC and none by an UGA codon. This is in contrast to the genes of E. octocarinatus sequenced so far, where some of the cysteines are encoded by the opal codon UGA. The tubulin genes end like other Euplotes genes with a TAA. They do not contain introns. The last codon for an amino acid in the α-tubulin gene is a GAA which codes for glutamic acid. This is in contrast to what has been reported for most α-tubulin genes, but it supports findings for other hypotrichous ciliates. No evidence for the existence of more than one type of α- and one type of β-tubulin genes could be obtained.  相似文献   

13.
Spectrin tetramerization is important for the erythrocyte to maintain its unique shape, elasticity and deformability. We used recombinant model proteins to show the importance of one residue (G46) in the erythroid α-spectrin junction region that affects spectrin tetramer formation. The G46 residue in the erythroid spectrin N-terminal junction region is the only residue that differs from that in non-erythroid spectrin. The corresponding residue is R37. We believe that this difference may be, at least in part, responsible for the 15-fold difference in the equilibrium constants of erythroid and non-erythroid tetramer formation. In this study, we replaced the Gly residue with Ala, Arg or Glu residues in an erythroid α-spectrin model protein to give G46A, G46R or G46E, respectively. We found that their association affinities with a β-spectrin model protein were quite different from each other. G46R exhibited a 10-fold increase and G46E exhibited a 16-fold decrease, whereas G46A showed little difference, when compared with the wild type. The thermal and urea denaturation experiments showed insignificant structural change in G46R. Thus, the differences in affinity were due to differences in local, specific interactions, rather than conformational differences in these variants. An intra-helical salt bridge in G46R may stabilize the partial domain single helix in α-spectrin, Helix C’, to allow a more stable helical bundling in the αβ complex in spectrin tetramers. These results not only showed the importance of residue G46 in erythroid α-spectrin, but also provided insights toward the differences in association affinity between erythroid and non-erythroid spectrin to form spectrin tetramers.  相似文献   

14.
15.
Abstract: A decrease in protein kinase C activity caused either by treatment with inhibitors, such as staurosporine or H-7, or by prolonged exposure to phorbol diesters has been proposed to be involved in the early events of SH-SY5Y neuroblastoma cell differentiation. Because eight distinct isoforms of protein kinase C with discrete subcellular and tissue distributions have been described, we determined which isoforms are present in SH-SY5Y cells and studied their modifications during differentiation. The α, β, δ, and ɛ isoforms were present in SH-SY5Y cells, as well as in rat brain. Protein kinase C-α and -β1 were the most abundant isoforms in SH-SY5Y cells, and immunoreactive protein kinase C-δ and -ɛ were present in much smaller amounts than in rat brain. Subcellular fractionation and immunocytochemistry demonstrated that all four isoforms are distributed bimodally in the cytoplasm and the membranes. Immunocytochemical analysis showed that the α isoform is associated predominantly with the plasma membrane and the processes extended during treatment with 12-tetradecanoyl-13-acetyl-β-phorbol or staurosporine, and that protein kinase C-ɛ is predominantly membrane-bound. Its localization did not change during differentiation. Western blots of total SH-SY5Y cell extracts and of subcellular fractions probed with isoform-specific polyclonal antibodies showed that when SH-SY5Y cells acquired a morphologically differentiated phenotype, protein kinase C-α and -ɛ decreased, and protein kinase C-β1, did not change. These data suggest distinct roles for the different protein kinase C isoforms during neuronal differentiation, as well as possible involvement of protein kinase α and ɛ in neuritogenesis.  相似文献   

16.
Abstract: Defective protein kinase C (PKC) has been implicated in impaired Na+,K+-ATPase activity in the sciatic nerve of streptozotocin-induced diabetic rats. In the present study, α, βI, βII, γ, δ, and ε isoform-specific antibodies were used in parallel to the measurement of compound PKC activity for the characterization of PKC distribution and isoform expression in sciatic nerves of normal and diabetic rats. To distinguish isoform expression between the axonal and glial compartments, PKC isoforms were evaluated in nerves subjected to Wallerian degeneration and in a pure primary Schwann cell culture. α, βI, βII, δ, and ε but no γ isoforms were detected in sciatic nerve. Similar immunoreactivity was observed in degenerated nerves 3–4 days after transection except for diminished βI and ε species; in Schwann cell cultures, only α, βII, δ, and ε were detected. In normal nerves, two-thirds of PKC compound activity was found in the cytosol and 50% of total enzyme activity translocated to the Na+,K+-ATPase-enriched membrane fraction with phorbol myristate acetate. Similar redistribution patterns were observed for the immunoreactivity of all isoforms with the exception of δ, which did not translocate to the membrane with phorbol myristate acetate. No abnormality in compound PKC activity, in the immunoreactive intensity, or in the distribution of PKC isoforms could be detected in rat sciatic nerve after 6–12 weeks of diabetes. Thus, defective activation rather than decreased intrinsic PKC activity may occur in diabetic neuropathy.  相似文献   

17.
18.
19.
The microalga Dunaliella salina (Teo.) is well known as an accumulator of β-carotene (β,β-carotene) when subjected to growth-limiting conditions (e.g. exposure to high irradiances). In addition, the carotenoid α-carotene (β,ε-carotene) may also be synthesized and subsequently accumulated by this alga under specific growth conditions. The main factor in stimulating the synthesis of this carotene was determined to be exposure to lower than optimum temperatures for algal growth. A 7.5-fold increase in the levels of α-carotene was observed when the temperature was decreased from 34 to 17° C, whilst levels of β-carotene were unaltered. The accumulation of α-carotene was unaffected by irradiance, although its isomeric composition was greatly altered by light levels. The proportion of 9- cis α-carotene increased from 15% to 45% of total α-carotene when the irradiance was decreased from 260 to 50 μmol·m−2·s−1. Exposure to higher irradiances had little influence on the isomeric composition of this carotenoid. A reduction in growth temperature did not influence the isomeric composition of α-carotene. Nutrient status (nitrogen and phosphate) had no effect on either the content or isomeric composition of α-carotene accumulated by D. salina.  相似文献   

20.
Abstract: A membrane cytoskeletal protein, fodrin, is a substrate for a Ca2+-dependent protease, calpain. It remains unknown whether μ-calpain or m-calpain is involved in the proteolysis of either α- or β-fodrin and in what subcellular localization during ischemia and reperfusion of the brain. To address these issues, we examined the distribution of fodrin and calpain and the activities of calpain and calpastatin (endogenous calpain inhibitor) in the same subcellular fractions. Rat forebrain was subjected to ischemia by a combination of occlusion of both carotid arteries and systemic hypotension, whereas reperfusion was induced by releasing the occlusion. Immunoblotting, activity measurement, and casein zymography did not detect the presence of μ-calpain or a significant change of m-calpain level after ischemia or reperfusion. However, casein zymography revealed a unique Ca2+-dependent protease that was eluted with both 0.18 and 0.40 M NaCl from a DEAE-cellulose column. α- and β-fodrins and m-calpain were found to be rich in the synaptosomal, nuclear, and cytosolic subfractions by immunoblotting analysis. Reperfusion (60 min) following ischemia (30 min) induced selective proteolysis of α-fodrin, which was inhibited by a calpain inhibitor, acetylleucylleucylnorleucinal (400 µ M , 1 ml, i.v.). The μ-calpain-specific fragment of β-fodrin was not generated during ischemia-reperfusion, supporting the possibility of the involvement of m-calpain rather than μ-calpain in the α-fodrin proteolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号