首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Keith Porter culminated his stellar career as the founding father of biological electron microscopy by acquiring, in the late 1970s, a high-voltage electron microscope (HVEM). With this magnificent instrument he examined whole-mounts of cultured cells, and perceived within them a structured cytoplasmic matrix he named the "microtrabecular lattice". Over the next decade Porter published a series of studies, together with a team of outstanding young colleagues, which elaborated his broader "microtrabecular concept." This concept posited that microtrabeculae were real physical entities that represented the fundamental organization the cytoplasm, and that they were the physical basis of cytoplasmic motility and of cell-shape determination. The present review presents Porter's original images of microtrabeculae, after conversion to a more interpretable "digital-anaglyph" form, and discusses the rise and fall of the microtrabecular concept. Further, it explains how the HVEM images of microtrabeculae finally came to be considered as an artifact of the preparative methods Porter used to prepare whole cells for HVEM. Still, Keith's "microtrabecular concept" foretold of our current appreciation of the complexity and pervasiveness of the cytoskeleton, which has now been found by more modern methods of EM to actually be the fundamental organizing principle of the cytoplasmic matrix. During the impending eclipse of Porter's microtrabecular concept in the late 1980s, many of Keith's colleagues fondly described the cell as being filled, not with protoplasm, but with "Porterplasm." Despite the fact that Keith's view was clouded by the methods of his time, it would be fitting and apt to retain this name, still today, for the ordered matrix of cytoskeletal macromolecules that exists in the living cell. In the end, the story of what happened to Porter's microtrabecular concept should be an object lesson in scientific hubris that should humble and inform all of us in cell biology, even today--particularly when we begin to think that our most recent methods and observations are achieving "the last word".  相似文献   

2.
The cytoplasmic ground substance of cultured cells prepared for high voltage transmission electron microscopy (glutaraldehyde/osmium fixed, alcohol or acetone dehydrated, critical-point dried) consists of slender (3-6 nm Diam) strands--the microtrabeculae (55)--that form an irregular three-dimensional lattice (the microtrabecular lattice). The microtrabeculae interconnect the membranous and nonmembranous organelles and are confluent with the cortices of the cytoplast. The lattice is found in all portions of the cytoplast of all cultured cells examined. The possibility that the lattice structure is an artifact of specimen preparation has been tested by (a) subjecting whole cultured cells (WI-38, NRK, chick embryo fibroblasts) to various chemical (aldehydes, osmium tetroxide) and nonchemical (freezing) fixation schedules, (b) examination of model systems (erythrocytes, protein solutions), (c) substantiating the relaibility of critical-point drying, and (d) comparing images of whole cells with conventionally prepared (plastic-embedded) cells. The lattice structure is preserved by chemical and nonchemical fixation, though alterations in ultrastructure can occur especially after prolonged exposure to osmium tetroxide. The critical-point method for drying specimens appears to be reliable as is the freeze-drying method. The discrepancies between images of plastic-embedded and sectioned cells, and images of whole, critical-point dried cells appear to be related, in part, to the electron-scattering properties of the embedding resin. The described observations indicate that the microtrabecular lattice seen in electron micrographs closely represents the nonrandom structure of the cytoplasmic ground substance of living cultured cells.  相似文献   

3.
Pigment migration in cultured erythrophores of the squirrel fish Holocentrus ascensionis, after manipulation with K+, epinephrine, 3',5'- dibutyryl cyclic adenosine monophosphate, theophylline, and caffeine, is essentially identical to that observed in this chromatophore in situ. For such observations, the erythrophores are dissociated from the scales with hyaluronidase and collagenase, and allowed to spread on an amorphous collagen substrate, where they resemble the discoid erythrophore in situ. In this state, they are readily fixed by glutaraldehyde and osmium tetroxide, and are then critical-point dried for whole-cell viewing in the high voltage electron microscope. The organization and fine structure of the erythrophore cytoplast was stereoscopically examined after fixation of the pigment granules in four experimental states: pigment dispersed, pigment aggregated, pigment aggregating, and pigment dispersing. In the dispersed cell, granules are contained in an extensive three-dimensional lattice composed of radially oriented microtubules and a network of fine filaments 3-6 nm in diameter (microtrabeculae), whereas in the aggregated cell, the microtrabecular system is absent, and the majority of the microtubules appear displaced into the cortices on the cytoplasmic surface of the plasma membrane. In cells fixed while aggregating, few microtrabeculae are observed, although formless thickenings are observed in the cortices, on granules, and between clumped granules. In dispersing cells, the microtrabecular system is reformed from material stored in the cortices and with the granules in the centrosphere. These observations suggest that the granules are suspended in a dynamic microtrabecular system that withdraws during pigment aggregation and is restructured during pigment dispersion. The microtubules guide linear granule motion not by defining physical channels, but by a recognizable affinity of microtubules, microtrabeculae, and granules for one another.  相似文献   

4.
The three-dimensional organization of the cytoplasm of randomly migrating neutrophils was studied by stereo high-voltage electron microscopy. Examination of whole-mount preparations reveals with unusual clarity the structure of the cytoplasmic ground substance and cytoskeletal organization; similar clarity is not observed in conventional sections. An extensive three-dimensional network of fine filaments (microtrabeculae) approximately 7 to 17 nm in diameter extends throughout the cytoplasm and between the two cell cortices; it also comprises the membrane ruffles and filopodia. The granules are dispersed within the lattice and are surrounded by microtrabeculae. The lattice appears to include dense foci from which the microtrabeculae emerge. Triton X-100 dissolves the plasma membrane, most of the granules, and many of the microtrabecular strands and leaves as a more stable structure a cytoskeletal network composed of various filaments and microtubules. Heavy meromyosin-subfragment 1 (S1) decoration discloses actin filaments as the major filamentous component present in membrane ruffles and filopodia. Actin filaments, extending from the leading edge of the cells, are of uniform polarity, with arrowheads pointing towards the cell body. Likewise, the filaments forming the core of filopodia have the barbed end distal. End-to-side associations of actin filaments as well as fine filaments (2--3 nm) which are not decorated with S1 and link actin filaments are observed. The ventral cell cortex includes numerous substrate-associated dense foci with actin filaments radiating from the dense center. Virtually all the microtubules extend from the centrosome. An average of 35 +/- 7 microtubules originate near the pair of centrioles and radiate towards the cell periphery; microtubule fragments are rare. Intermediate filaments form an open network of single filaments in the perinuclear space. Comparison of Triton-extracted and unextracted cells suggest that many of the filamentous strands seen in unextracted cells have as a core a stable actin filament.  相似文献   

5.
Pigment migration in isolated melanophores of the angelfish, Pterophyllum scalare, has been studied by high voltage electron microscopy. Cells were isolated from the scales by collagenase and allowed to spread on Formvar and carbon-coated gold grids. Melanophores were then fixed by glutaraldehyde and osmium tetroxide and critical-point dried for viewing of whole cells in a high voltage electron microscope (1000 kV). The three-dimensional organization of the cytoplasmic matrix was stereoscopically examined in different states of pigment distribution, as well as under cold and colchicine treatment. The most prominent matrix constituent is an extensive mesh of cytoplasmic filaments (microtrabeculae) 2–18 nm in diameter that make contact to microtubules, pigment granules, and mitochondria. Microtrabeculae undergo dramatic changes in structural appearance in association with different phases of pigment movements. Cells fixed in the process of pigment aggregation are characterized by thickened and beaded trabeculae which may form irregular clots. Part of this material trails behind centripetally moving melanosomes. In dispersing cells, microtrabeculae are straight and of relatively uniform thickness throughout their length and form a highly ordered three-dimensional lattice. Reconstruction of the mesh in part precedes the arrival of pigment granules.Under the influence of cold or colchicine treatment, microtrabeculae show a high degree of polymorphism, being beaded, branched, or flattened with globose ends. Rather formless heaps are found associated with the surface of pigment granules. Since, however, these treatments also remove microtubules, the other important component of the cytoplasmic frame, alterations in microtrabecular structure may simply be mediated through removal of this organelle. In an attempt to separate the effects on microtrabeculae and microtubules from one another, cells have been cold-treated for only 15 min, a procedure that leaves a considerable portion of microtubules intact. Also under these conditions, microtrabeculae are beaded or transformed to globose heaps and flattened sheets.The observations suggest an involvement of microtrabeculae in the process of granule movement. Centripetal melanosome migration thereby seems associated with a collapse of microtrabeculae which again are reconstructed during pigment dispersion. The cold and colchicine experiments indicate direct effects of these agents on the structure and possibly also the function of the trabecular mesh. The significance and possible chemical composition of microtrabeculae is discussed.  相似文献   

6.
Light and high voltage electron microscopy (HVEM) procedures have been employed to examine the processes regulating saltatory motion in neurons. Light microscope studies demonstrate that organelle transport occurs by rapid bidirectional saltations along linear pathways in cultured neuroblastoma cells. HVEM stereo images of axons reveal that microtubules (Mts) and organelles are suspended in a continuous latticework of fine microtrabecular filaments and that the Mts and lattice constitute a basic cytoskeletal structure mediating the motion of particles along axons. We propose that particle transport depends on dynamic properties of nonstatic microtrabecular lattice components. EXperiments were initiated to determine the effects of changes in divalent cation concentrations (Ca2+ and Mg2+) on: (a)the continuation of transport and (b) the corresponding structural properties of the microtrabecular lattice. We discovered that transport continues or is stimulated to a limited extent in cells exposed to small amounts of exogenously supplied Ca2+ and Mg2+ ions (less than 0.1 mM). Exposure of neurons to increased dosages of Ca2+ and Mg2+ (0.2-1.0 mM) stimulates transport for 2-4 min at 37 degrees C, but after a 5- to 20-min exposure the saltatory movements of organelles are observed gradually to become shorter in duration and rate particle motion ceases to occur. HVEM observations demonstrated that Ca2+ - and with the cessation of motion. Ca2+-containing solutions produced contractions of the microtrabecular filaments, whereas Mg2+-containing solutions had the opposing effect of stimulating an elongation and assembly (expansion) of microtrabeculae. On the basis of these observations we hypothesize that cycles of Ca2+/Mg2+-coupled contractions and expansions of the microtrabecular lattice probably regulate organelle motion in nerve cells.  相似文献   

7.
High voltage electron microscopy of intact cells prepared by the critical point drying (CPD) procedure has become an important tool in the study of three-dimensional relationships between cytoplasmic organelles. It has been claimed that critical point-dried specimens reveal a structure that is not visible in sections of plastic-embedded material; it has also been claimed that this structure, in association with known cytoplasmic filaments, forms a meshwork of tapering threads ("microtrabecular lattice"). Alternatively, this structure might be a surface tension artifact produced during CPD. To test possible sources of artifacts during CPD, model fiber systems of known structure were used. It was found that traces of water or ethanol in the CO2 caused distortions and fusion of fibers in pure muscle actin, fibrin, collagen, chromatin, and microtubules that produce a structure very similar to the proposed "microtrabecular lattice." These structures were, however, well preserved if water and ethanol were totally excluded from the CO2. The same results were obtained with whole mounts of cultured cells. A "microtrabecular lattice" was obtained if some water or ethanol was present in the pressure chamber. On the other hand, when water or ethanol were totally excluded from the CO2 during CPD, cytoplasmic filaments were uniform in thickness similar to their appearance in sections of plastic-embedded cells. It is concluded that the "microtrabecular lattice" is a distorted image of the cytoplasmic filament network produced during CPD by traces of water or ethanol in the CO2.  相似文献   

8.
We followed the translocation of identifiable pigment granules in living erythrophores through normal aggregation and dispersion and observed that they always return in dispersion to the same location relative to the whole pigment complex. This is interpreted to mean that each granule occupies a fixed position within a unit structure, the cytoplast. This position is retained even though the cytoplast undergoes dramatic reversals in form from ellipsoid to spheroid and back again with each aggregation and dispersion. The major structural components of the cytoplast, besides pigment granules, are microtubules and microtrabeculae. The latter constitute an irregular lattice that is confluent with microtubules and contains the pigment granules. In aggregation, the microtrabeculae shorten and seemingly contribute to the contraction of the entire cytoplast plus pigment. In dispersion, the microtrabeculae elongate in an apparent restructuring of the ellipsoidal cytoplast. The microtubules, however, persist in the cell cortex and appear to give radial direction to the pigment motion.  相似文献   

9.
During the past decade, work on whole, critical-point dried animal cells has revealed a three-dimensional meshwork, the microtrabecular lattice or cytomatrix, which pervades the ground cytoplasm. This work was carried out on cells which could be spread out into thin layers on support films. Plant cells provide a more difficult problem since their rigid cell walls do not allow them to be spread into thin layers. Nevertheless high-voltage electron microscopy at up to 2.5 MeV permits examination of whole cells up to 30 μm thick, though both preparation and interpretation present problems. In algal cells flagellar roots and associated structures can be seen in three dimensions, while cells of mosses, ferns and lycopods show a cytomatrix of fine interconnecting filaments.  相似文献   

10.
This report presents the appearance of rapidly frozen, freeze-dried cytoskeletons that have been rotary replicated with platinum and viewed in the transmission electron microscope. The resolution of this method is sufficient to visualize individual filaments in the cytoskeleton and to discriminate among actin, microtubules, and intermediate filaments solely by their surface substructure. This identification has been confirmed by specific decoration with antibodies and selective extraction of individual filament types, and correlated with light microscope immunocytochemistry and gel electrophoresis patterns. The freeze-drying preserves a remarkable degree of three-dimensionality in the organization of these cytoskeletons. They look strikingly similar to the meshwork of strands or "microtrabeculae" seen in the cytoplasm of whole cells by high voltage electron microscopy, in that the filaments form a lattice of the same configutation and with the same proportions of open area as the microtrabeculae seen in whole cells. The major differences between these two views of the structural elements of the cytoplasmic matrix can be attributed to the effects of aldehyde fixation and dehydration. Freeze-dried cytoskeletons thus provide an opportunity to study--at high resolution and in the absence of problems caused by chemical fixation--the detailed organization of filaments in different regions of the cytoplasm and at different stages of cell development. In this report the pattern of actin and intermediate filament organization in various regions of fully spread mouse fibroblasts is described.  相似文献   

11.
Unfolded states of ribonuclease A were used to investigate the effects of macromolecular crowding on macromolecular compactness and protein folding. The extent of protein folding and compactness were measured by circular dichroism spectroscopy, fluorescence correlation spectroscopy, and NMR spectroscopy in the presence of polyethylene glycol (PEG) or Ficoll as the crowding agent. The unfolded state of RNase A in a 2.4 M urea solution at pH 3.0 became native in conformation and compactness by the addition of 35% PEG 20000 or Ficoll 70. In addition, the effects of macromolecular crowding on inert macromolecule compactness were investigated by fluorescence correlation spectroscopy using Fluorescence-labeled PEG as a test macromolecule. The size of Fluorescence-labeled PEG decreased remarkably with an increase in the concentration of PEG 20000 or Ficoll 70. These results show that macromolecules are favored compact conformations in the presence of a high concentration of macromolecules and indicate the importance of a crowded environment for the folding and stabilization of globular proteins. Furthermore, the magnitude of the effects on macromolecular crowding by the different sizes of background molecules was investigated. RNase A and Fluorescence-labeled PEG did not become compact, and had folded conformation by the addition of PEG 200. The effect of the chemical potential on the compaction of a test molecule in relation to the relative sizes of the test and background molecules is also discussed.  相似文献   

12.
Under a given condition of crystallization, dark brown short rhombohedron crystals could be obtained from ΔnifZ MoFe protein purified from a nifZ deleted mutant strain of Azotobacter vinelandii Lipmann. Systematic studies on the effect of concentrations of PEG 8000,MgCl2, NaCl,Tris and buffer pH on the crystallization and crystal growth of the protein showed that the protein could not be crystallized in lower concentrations of the chemicals and lower buffer pH. A large amount of smaller crystals of the protein appeared in a week with gradual increasing in the chemical concentrations and pH≥8.0. When the chemical concentrations were further increased, the time for crystallization was increased and a few high grade crystals of larger size were formed. If the concentrations of the chemicals were continuously increased, many crystals with smaller size, and, sometimes of poor quality appeared again and eventually ceased to produce any crystals. The optimal concentration for each of the above mentioned chemicals varies with other variable factors. Only one bigger crystal (both of the longest two sides: 0.16 mm) could be obtained in a hanging drop of protein sample when the concentrations of PEG 8000, MgCl2, NaCl,Tris and protein were kept at 1.86%, 300 mmol/L, 400 mmol/L, 53 mmol/L and 4.64 g/L , respectively, with Tris buffer pH 8.2.  相似文献   

13.
在三维结构上对百合花粉母细胞actin的免疫定位   总被引:2,自引:0,他引:2  
传统的切片仅仅能够显示样品的平面结构,不能用于细胞中三维网络结构的研究。笔者在DGD(diethylene glycol distearate)包埋去包埋的基础上,结合电镜免疫胶体金技术对大卫百合花粉母细胞胞间及胞内细胞的骨架系统进行了研究,观察到高反差细胞微梁结构的三维网络,actin这一细胞骨架的主要成员被定位在该微梁结构纤维上。三维结构上的研究表明,actin不但是植物细胞核及细胞质骨架的成员,而且也存在于胞间连接结构(胞质桥和胞间连丝)中,推测它可能与细胞融合有关。实验结果同时表明,三维结构免疫胶体金技术对于细胞骨架和核基质的结构蛋白研究是行之有效的。  相似文献   

14.
Thermoresponsive poly(N-isopropylacrylamide) (pNIPAm) microgel particles cross-linked with various concentrations of PEG diacrylates of 3 different PEG chain lengths were synthesized via free-radical precipitation polymerization in order to investigate the phase transition and protein adsorption behavior as the hydrophilicity of the network is increased. Photon correlation spectroscopy (PCS) reveals that, as the concentration of PEG cross-linker incorporated into the particles is increased, an increase in the temperature and breadth of the phase transition occurs. Qualitative differences in particle density using isopycnic centrifugation confirm that higher PEG concentrations result in denser networks. The efficient incorporation of PEG cross-linker was confirmed with (1)H NMR, and variable temperature NMR studies suggest that, in the deswollen state, the longer PEG cross-links protrude from the dense globular network. This behavior apparently manifests itself as a decrease in nonspecific protein adsorption with increasing PEG length and content. Furthermore, when electrostatically attached to a glass surface, the particles containing the longer chain lengths exhibited enhanced nonfouling behavior and were resistant to cell adhesion in serum-containing media. The excellent performance of these particulate films and the simplicity with which they are assembled suggests that they may be applicable in a wide range of applications where nonfouling coatings are required.  相似文献   

15.
The endoplasmic reticulum (ER) is a metabolically active organelle, which has a central role in proteostasis by translating, modifying, folding, and occasionally degrading secretory and membrane proteins. The lumen of the ER represents a separate compartment of the eukaryotic cell, with a characteristic proteome and metabolome. Although the redox metabolome and proteome of the compartment have not been holistically explored, it is evident that proper redox conditions are necessary for the functioning of many luminal pathways. These redox conditions are defined by local oxidoreductases and the membrane transport of electron donors and acceptors. The main electron carriers of the compartment are identical with those of the other organelles: glutathione, pyridine and flavin nucleotides, ascorbate, and others. However, their composition, concentration, and redox state in the ER lumen can be different from those observed in other compartments. The terminal oxidases of oxidative protein folding generate and maintain an “oxidative environment” by oxidizing protein thiols and producing hydrogen peroxide. ER-specific mechanisms reutilize hydrogen peroxide as an electron acceptor of oxidative folding. These mechanisms, together with membrane and kinetic barriers, guarantee that redox systems in the reduced or oxidized state can be present simultaneously in the lumen. The present knowledge on the in vivo conditions of ER redox is rather limited; development of new genetically encoded targetable sensors for the measurement of the luminal state of redox systems other than thiol/disulfide will contribute to a better understanding of ER redox homeostasis.  相似文献   

16.
目的:细胞融合是细胞生物学领域近30年来得到迅速发展的一项新兴技术手段,因其操作简便、人工可控等优点在研究核质互作、肿瘤发生、疫苗研发和培育新型生物品种等方面均有广泛应用。其中,利用聚乙二醇(PEG)进行化学融合是细胞融合中最为常用且简便的技术手段。PEG化学融合效果受到多种因素影响,如PEG浓度、Ca2+、Mg2+、pH值等,然而对于糖类物质在细胞融合中的影响未见报道。本文旨在为了更全面了解PEG法诱导的化学细胞融合,通过优化融合条件以提高化学细胞融合效率。方法:选取鸡血血细胞为材料,通过改变原Hanks缓冲液中葡萄糖浓度,观察比较各组细胞融合率,探究葡萄糖浓度在化学细胞融合中的影响,并通过对比结果获得了对于鸡血血细胞应采用的最适葡萄糖浓度区间。结果:对于鸡血血细胞融合实验,葡萄糖浓度在10-14 mmol/L范围内细胞融合效率较原Hanks液配方高2倍左右。结论:葡萄糖对细胞融合效果具有一定的影响,可以通过调节葡萄糖浓度提高细胞融合率,从而为PEG化学细胞融合提供一种更为优化的方案。  相似文献   

17.
The minimum concentration of polyethyleneglycol (PEG) with molecular weights 4000, 6000, and 15000 necessary for precipitation of S, M, X and Y potato viruses was determined. An excessive amount of PEG causes the precipitation of other protein compounds from potato leaf cell sap. In order to obtain highly purified samples, it is necessary to use just the minimum sufficient amount of PEG. Using the minimum quantity of PEG is, also, advisable from an economical point of view. The minimum concentration of PEG of given molecular weight differs for different potato disease viruses. The concentration of PEG necessary for precipitation of a given potato virus depends on the molecular weight of PEG used—4000, 6000 and 15000. As the molecular weight increases, the concentration of PEG necessary for precipitation decreases.  相似文献   

18.
A rapid assay is described, based upon the Marangoni effect, which detects the formation of a denatured-protein film at the air–water interface (AWI) of aqueous samples. This assay requires no more than a 20 µL aliquot of sample, at a protein concentration of no more than1 mg/ml, and it can be performed with any buffer that is used to prepare grids for electron cryo-microscopy (cryo-EM). In addition, this assay provides an easy way to estimate the rate at which a given protein forms such a film at the AWI. Use of this assay is suggested as a way to pre-screen the effect of various additives and chemical modifications that one might use to optimize the preparation of grids, although the final proof of optimization still requires further screening of grids in the electron microscope. In those cases when the assay establishes that a given protein does form a sacrificial, denatured-protein monolayer, it is suggested that subsequent optimization strategies might focus on discovering how to improve the adsorption of native proteins onto that monolayer, rather than to prevent its formation. A second alternative might be to bind such proteins to the surface of rationally designed affinity grids, in order to prevent their diffusion to, and unwanted interaction with, the AWI.  相似文献   

19.
The cytoskeleton of rat neurohypophysial cells as seen in resinless sections is an irregular three-dimensional lattice of short strands of cytoplasmic matrix (the microtrabeculae) that interconnect parallel arrays of neurotubules, neurofilaments, abundant neurosecretory granules, and other membrane-bound organelles including the plasma membrane. This morphological finding suggests that the cytoplasmic ground substance constitutes a cytoskeletal continuum that may be the ultrastructural expression of a motile apparatus responsible for neurosecretory granule movement and hormone release in the neurohypophysis.  相似文献   

20.
The cytoskeleton of rat neurohypophysial cells as seen in resinless sections is an irregular three-dimensional lattice of short strands of cytoplasmic matrix (the microtrabeculae) that interconnect parallel arrays of neurotubules, neurofilaments, abundant neurosecretory granules, and other membrane-bound organelles including the plasma membrane. This morphological finding suggests that the cytoplasmic ground substance constitutes a cytoskeletal continuum that may be the ultrastructural expression of a motile apparatus responsible for neurosecretory granule movement and hormone release in the neurohypophysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号