首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The waxy gene, which encodes the granule bound starch synthase enzyme, is one of the key genes influencing starch synthesis in the rice endosperm. To investigate functional differences between GBSS alleles, we cloned and sequenced GBSS cDNA from a series of cultivars that differed substantially in apparent amylose content and starch viscosity characteristics. We found two single nucleotide polymorphisms in exons 6 and 10 that resulted in amino acid substitutions. These substitutions are associated with differences in apparent amylose content and viscosity characteristics. Subsequent sequencing of these regions from additional cultivars confirmed their association with particular rice quality characteristics. These point mutations could prove useful as molecular markers in the production of cultivars with superior eating, cooking and processing quality, and contribute to our understanding of the various structural and functional differences among granule bound starch synthase alleles.  相似文献   

2.
作物淀粉生物合成与转基因修饰研究进展   总被引:10,自引:0,他引:10  
淀粉是高等植物中碳水化合物的主要贮藏形式 ,也是粮食作物产品的最主要成分。淀粉虽然都由直链淀粉和枝链淀粉组成 ,但在不同作物中两者的比例和枝链淀粉结构的存在很大差异。现已明确 ,直链淀粉是在颗粒结合淀粉合成酶 (granule boundstarchsynthase,GBSS)催化下合成的 ,而枝链淀粉是四种酶共同作用的结果 ,它们分别是腺嘌呤 -葡萄糖焦磷酸化酶 (ADP glucosepyrophosphorylase ,AGP) ,可溶性淀粉合成酶 (solublestarchsynthase ,SSS) ,淀粉分枝酶 (starchbranchingenzyme ,SBE)和脱分枝酶 (starchdebranchingenzyme ,DBE)。一方面 ,在不同作物中 ,这些酶本身存在多种形式 ,如在玉米胚乳中 ,AGP有大亚基和小亚基之分 ,SBE又可分BE1,BEIIa ,BEIIb 3种 ,SSS也可分为SSI和SSIII(或SSIIa)两种 ,而DBE也有异淀粉酶 (isoamylase)和限制性糊精酶 (pullu lanase)两种。另一方面 ,控制特定酶的基因 ,在不同作物甚至在同一种作物的不同品种中也可能存在不同的复等位基因 ,如籼稻和粳稻的GBSS分别由蜡质基因Wxa 和Wxb 控制 ,两者编码的GBSS活性差异显著。此外 ,环境条件也可通过影响基因的转录使酶的含量或催化性能发生变化。迄今 ,国内外已获得多种马铃薯和水稻的转基因材料 ,对淀粉合成进行修饰 ,试图培育优质品  相似文献   

3.
High-amylose starch is a source of resistant starch (RS) which have great impact on human health like dietary fiber. Nowadays, high-amylose wheat has been produced by genetic backcrossing, which enhances apparent amylose content and generates altered amylopectin. In this study, the high-amylose wheat starches isolated from various high-amylose wheat cultivars grown in Australia were characterized for understanding their physicochemical properties and fine structure of starch. The physicochemical characteristics of the high-amylose wheat starches are significantly different among the cultivars. Amylose contents of these cultivars were in a range of 28.0–36.9%, which is significantly higher than that of the normal wheat starch (25.6%). The high-amylose wheat starches also had higher blue value but lower λmax than the normal wheat starch. Gelatinization temperature of the high-amylose wheat starches is higher than that of the normal wheat starch but transition enthalpy is lower. X-ray diffraction showed that the high-amylose wheat starch had C-type crystals close to A-type crystal. Pasting properties of the high-amylose wheat starches were varying depending on the cultivars. However, almost high-amylose wheat starches had lower peak and final viscosities and higher setback viscosity than did the normal wheat starch. Fine structure of amylose and amylopectin was different among the high-amylose wheat cultivars and related to the physicochemical properties of starch. These results help to understand well the characteristics of the high-amylose wheat starches before application for food processing.  相似文献   

4.
Sun MM  Abdula SE  Lee HJ  Cho YC  Han LZ  Koh HJ  Cho YG 《PloS one》2011,6(4):e18385
The composition of amylopectin is the determinant of rice eating quality under certain threshold of protein content and the ratio of amylose and amylopectin. In molecular biology level, the fine structure of amylopectin is determined by relative activities of starch branching enzyme (SBE), granule-bound starch synthase (GBSS), and soluble starch synthase (SSS) in rice grain under the same ADP-Glucose level. But the underlying mechanism of eating quality in molecular biology level remains unclear. This paper reports the differences on major parameters such as SNP and insertion-deletion sites, RNA expressions, and enzyme activities associated with eating quality of japonica varieties. Eight japonica rice varieties with significant differences in various eating quality parameters such as palatability and protein content were used in this experiment. Association analysis between nucleotide polymorphism and eating quality showed that S12 and S13 loci in SBE1, S55 in SSS1, S58 in SSS2A were significantly associated with apparent amylose content, alkali digestion value, setback viscosity, consistency viscosity, pasting temperature, which explained most of the variation in apparent amylose content, setback viscosity, and consistency viscosity; and explained almost all variations in alkali digestion value and pasting temperature. Thirty-five SNPs and insertion-deletions from SBE1, SBE3, GBSS1, SSS1, and SSS2A differentiated high or intermediate palatability rice varieties from low palatability rice varieties. Correlation analysis between enzyme activities and eating quality properties revealed that SBE25 and SSS15/W15 were positively correlated with palatability, whereas GBSS10 and GBSS15 were negatively correlated. Gene expressions showed that SBE1 and SBE3 expressions in high palatability varieties tended to be higher than middle and low palatability varieties. Collectively, SBE1, SBE3, SSS1, and SSS2A, especially SBE1 and SBE3 could improve eating quality, but GBSS1 decreased eating quality. The results indicated the possibility of developing high palatability cultivars through modification of key genes related to japonica rice eating quality formation in starch biosynthesis.  相似文献   

5.
Amylose and amylopectin are determinants of the physicochemical properties for starch and grain quality in rice. Their biosynthesis is catalyzed by the interplay of ADP-glucose pyrophosphorylase (AGPase), granule-bound starch synthase (GBSS), soluble starch synthase (SSS), a starch branching enzyme (SBE), and a starch debranching enzyme (SDE). In this study, the genes for these enzymes were highly expressed 7 to 28 days after flowering during grain development, and their expression closely matched increases in both starch content and grain weight Among all the tested cultivars, amylose contents in the rice grains remained essentially constant throughout their development The AGPase gene was highly expressed in the high-yield cultivars of both glutinous and non-glutinous rice. The SSS gene was actively expressed when mature GBSS mRNA decreased. Genes responsible for amylopectin biosynthesis were simultaneously expressed in the late stage of grain development. We have now demonstrated that the expression patterns of starch biosynthetic genes differ between glutinous and non-glutinous rice, and between Tongil (a Japonica/ Indica hybrid) and Japonica types.  相似文献   

6.
The effects of temperature on starch and amylose accumulation, fine structure of amylopectin and activities of some enzymes related to starch synthesis in developing rice endosperms was examined. Two early indica rice varieties were used, differing in amylose concentration (AC, %), namely Jia 935 (low AC) and Jia 353 (high AC). The results showed that the effects of high temperature on AC and amylopectin fine structure were variety-dependent. High temperature caused a reduction in amylose concentration and an increase in the short chain (CL<22) proportion of amylopectin for Jia 935; while opposite was true for Jia 353. High temperature also reduced and increased the activity of granule-bound starch synthase (GBSS) in Jia 935 and in Jia 353, respectively. This suggests that a change in the ratio of amylose/starch due to temperature was attributable to a change in GBSS activity. Moreover, obvious differences between the two rice varieties were detected in the activities of sucrose synthase (SuSy), ADP-glucose pyrophosphorylase (ADPG-Ppase), soluble starch synthase (SSS), starch branching enzyme (SBE), starch de-branching enzyme (SDBE) and starch phosphorylase (SPase) to high temperature. Accumulation rate of amylose was significantly and positively correlated with GBSS for Jia 935, but not for Jia 353. Amylose accumulation was also significantly and positively correlated with the activities of SDBE, SBE, ADPG-Ppase and SuSy for both varieties. The results suggest that the ratio of amylose to starch in rice endosperm is not only related to GBSS, but also affected by the activities of SDBE, SBE, ADPG-Ppase and SuSy.  相似文献   

7.
The dynamic changes of the activities of enzymes involving in starch biosynthesis, including ADP-glucose pyrophosphorylase (AGPase), soluble starch synthases (SSS), starch branching enzyme (SBE) and starch debranching enzymes (DBE) were studied, and changes of fine structure of amy- lopectin were characterized by isoamylase treatment during rice grain development, using trans anti-waxy gene rice plants. The relationships between the activities of those key enzymes were also analyzed. The amylose synthesis was significantly inhibited in transgenic Wanjing 9522, but the total starch content and final grain weight were less affected as compared with those of non-transgenic Wanjing 9522 rice cultivar. Analyses on the changes of activities of enzymes involving in starch bio- synthesis showed that different enzyme activities were expressed differently during rice endosperm development. Soluble starch synthase is relatively highly expressed in earlier stage of endosperm de- velopment, whilst maximal expression of granule-bound starch synthase (GBSS) occurred in mid-stage of endosperm development. No obvious differences in changes of the activities of AGPase and SBE between two rice cultivars investigated, except the DBEs. Distribution patterns of branches of amy- lopectin changed continually during the development of rice grains and varied between two rice culti- vars. It was suggested that amylopectin synthesis be prior to the synthesis of amylose and different enzymes have different roles in controlling syntheses of branches of amylopectin.  相似文献   

8.
利用普通玉米(Zay mays)‘掖单22’和高油玉米‘高油115’,研究了灌浆期水分差异供应对籽粒淀粉及其组分积累、相关酶活性动态变化的影响。结果表明,两种类型玉米淀粉积累和酶活性动态变化趋势基本一致,但对水分的反应有差异。缺水提高了‘掖单22’籽粒中淀粉、支链淀粉含量,而直链淀粉含量下降,‘高油115’则是籽粒中的淀粉含量、支链淀粉和直链淀粉含量提高;充分供水使淀粉及其组分产量提高;叶片中蔗糖合成酶(SS)、磷酸蔗糖合成酶(SPS)活性随水分供应水平而提高,尤其在授粉后10~30 d增幅更加明显。充分供水明显提高籽粒中腺苷二磷酸葡萄糖焦磷酸化酶(ADPG-PPase)、尿苷二磷酸葡萄糖焦磷酸化酶(UDPG-PPase)、可溶性淀粉合成酶(SSS)和淀粉粒结合淀粉合成酶(GBSS)活性,缺水使籽粒中酶活性下降较早且迅速;SPS、ADPG-PPase、SSS酶活性对缺水反应比较敏感。  相似文献   

9.
Jiang H  Dian W  Wu P 《Phytochemistry》2003,63(1):53-59
Rice (Oryza sativa L.) grain quality is affected by the environmental temperature it experiences. To investigate the physiological molecular mechanisms of the effect of high temperatures on rice grain, a non-waxy indica rice was grown under two temperature conditions, (29/35 degrees C) and (22/28 degrees C), during the ripening stage in two phytotrons. The activities and gene expression of key enzymes for the biosynthesis of amylose and amylopectin were examined. The activity and expression levels of soluble endosperm starch synthase I were higher at 29/35 degrees C than that at 22/28 degrees C. In contrast, the activities and expression levels of the rice branching enzyme1, the branching enzyme3 and the granule bound starch synthase of the endosperm were lower at 29/35 degrees C than those at 22/28 degrees C. These results suggest that the decreased activity of starch branching enzyme reduces the branching frequency of the branches of amylopectin, which results in the increased amount of long chains of amylopectin of endosperm in rice grain at high temperature.  相似文献   

10.
The content of protein, ascorbic acid, starch, amylose, amylopectin and glucose in seeds and seedlings of six varieties of rice cultivars released in Primorskii krai was investigated. The possibility of determining the quality of the grain based on the activity of enzymes of carbohydrate metabolism amylase [EC 3.2.1.1] and phosphorylase [EC 2.4.1.1] in caryopsis was demonstrated.  相似文献   

11.
A new approach for the determination of the botanical origin of starch is presented based on the formation of starch-triiodide complexes. The starch samples were extracted from wheat (Srpanjka), potato, maize, rye (Barun), barley (Conduct), rice, tapioca and a commercial modified starch. The amylose/amylopectin ratios of starches, among various other properties, differ between starches of different botanical origins. Triiodide ions bind characteristically to the amylose and amylopectin of the starch depending on the starch's origin. The new technique includes direct potentiometric measurements of the response of free triiodide ions in starch-triiodide solutions where the data is analysed by principal component analysis (PCA). PCA gave graphical results for statistical differentiation between starches of different botanical origins.  相似文献   

12.
13.
14.
This work focuses on the effect of annealing and pressure on microstructures of starch, in particular the crystal structure and crystallinity to further explore the mechanisms of annealing and pressure treatment. Cornstarches with different amylose/amylopectin ratios were used as model materials. Since the samples covered both A-type (high amylopectin starch: waxy and maize) and B-type (high amylose starch: G50 and G80) crystals, the results can be used to clarify some previous confusion. The effect of annealing and pressure on the crystallinity and double helices were investigated by X-ray diffraction (XRD) and 13C CP/MAS NMR spectroscopy. The crystal form of various starches remained unchanged after annealing and pressure treatment. XRD detection showed that the relative crystallinity (RC) of high amylopectin starches was increased slightly after annealing, while the RC of high amylose-rich starches remained unchanged. NMR measurement supported the XRD results. The increase can be explained by the chain relaxation. XRD results also indicated that some of the fixed region in crystallinity was susceptible to outside forces. The effect of annealing and pressure on starch gelatinization temperature and enthalpy are used to explore the mechanisms.  相似文献   

15.
In this study, the structures of the hot-water (80°C) soluble starch fractions (HWS) of six new Japanese rice cultivars (Saikai 194, Saikai 198, Hokuriku 149, Suigen 258, Hoshiyutaka, and Saikai 184) were investigated following a previous study [Mizukami, H., Hizukuri, S. and Takeda, Y. Structures and pasting properties of starches from new characteristic rice cultivars, Oyo Toshitu Kagaku (J. Appl. Glycosci.) 43 (1996) 15–23]. The HWS were subfractionated into 1-butanol-precipitate (SAM) and supernatant (SAP) fractions. The yields of the SAM and SAP fractions were 0.3%–2.4% and 3.1%–4.1% by starch weight, respectively. The Hoshiyutaka and the Saikai 184 yielded both relatively large (2.4%) and small amounts (0.3%) of SAM. The SAM were small amylose molecules with a n between 320 and 420 and a w between 950 and 1850. The SAM from the Hoshiyutaka and the Saikai 184 were the larger molecules with n 390 and 420, respectively, and having slightly more branches (6.0 and 8.1) than those from the others (1.5–4.5). The SAP were smaller molecules having a n between 60 and 190 as compared to the SAM. The SAP was composed of small amylopectin molecules ( n 280–790, CL 17–32, β-amylolysis limit (β-AL), 54%–68%) including very small amylose molecules ( n 24–34) having an average number of branch linkage ( ) of between 0.4 and 0.5. Both the amount and the structures of hot-water-extractable rice starch fractions vary with cultivar, and may influence their cooking properties.  相似文献   

16.
Mukerjea R  Yu L  Robyt JF 《Carbohydrate research》2002,337(11):1015-1022
Starch granules from eight diverse plant sources all had active starch synthases and branching enzymes inside the granules. The enzymes synthesized both amylose and amylopectin from ADPGlc. Pulsing of the granules with ADP-[14C]Glc gave synthesis of starch that on reduction and glucoamylase hydrolysis gave 14C-labeled D-glucitol. The pulsed label could be chased by nonlabeled ADPGlc to give a significant decrease of 14C-label in D-glucitol. Evidence further indicated that the synthase forms a high-energy covalent complex with D-glucose and the growing starch chain, and that the D-glucopyranosyl group is added to the reducing end of the growing starch chain by a two-site insertion mechanism.  相似文献   

17.
Overexpression of bacterial-derived starch metabolic enzymes in plant starch storage organs represents a valuable strategy for improving starch quality, bioprocessing and nutritional value. Transgenic rice seeds producing a thermostable and bifunctional starch hydrolase, amylopullulanase (APU) from Thermoanaerobacter ethanolicus 39E, were generated. Starch in these seeds could be hydrolyzed with optimal temperatures between 85 and 95 °C, which resulted in complete conversion of starch into soluble sugars and production of protein-enriched flour within a few hours. By expressing various levels of APU, rice seeds containing reduced amounts of amylose, which is an important factor affecting starch quality, were obtained without a significant impact on grain yield. Elevation in granule-bound pullulanase activity correlates with the reduction of amylose in developing APU-containing rice seeds. APU was found to be localized within amyloplasts and in cell walls, which could be the result of overexpression of APU with a signal peptide. This study establishes novel approaches to alter starch properties, accelerate bioprocessing of starch and production of protein-enriched flour from rice seeds, and could significantly impact the industrial and food uses of cereals.  相似文献   

18.
The inactivation of starch branching IIb (SBEIIb) in rice is traditionally associated with elevated apparent amylose content, increased peak gelatinization temperature, and a decreased proportion of short amylopectin branches. To elucidate further the structural and functional role of this enzyme, the phenotypic effects of down-regulating SBEIIb expression in rice endosperm were characterized by artificial microRNA (amiRNA) and hairpin RNA (hp-RNA) gene silencing. The results showed that RNA silencing of SBEIIb expression in rice grains did not affect the expression of other major isoforms of starch branching enzymes or starch synthases. Structural analyses of debranched starch showed that the doubling of apparent amylose content was not due to an increase in the relative proportion of amylose chains but instead was due to significantly elevated levels of long amylopectin and intermediate chains. Rices altered by the amiRNA technique produced a more extreme starch phenotype than those modified using the hp-RNA technique, with a greater increase in the proportion of long amylopectin and intermediate chains. The more pronounced starch structural modifications produced in the amiRNA lines led to more severe alterations in starch granule morphology and crystallinity as well as digestibility of freshly cooked grains. The potential role of attenuating SBEIIb expression in generating starch with elevated levels of resistant starch and lower glycaemic index is discussed.  相似文献   

19.
The effects of starch granules on the rheological behaviour of gels of native potato and high amylopectin potato (HAPP) starches have been studied with small deformation oscillatory rheometry. The influence of granule remnants on the rheological properties of samples treated at 90 °C was evident when compared with samples treated at 140 °C, where no granule remnants were found. The presence of amylose in native potato starch gave to stronger network formation since potato starch gave higher moduli values than HAPP, after both 90 and 140 °C treatments. In addition, amylose may have strengthened the network of HAPP because higher moduli values were obtained when native potato starch was added to the system. The moduli values of the mixtures also increased with increasing polysaccharide concentration in the system, which is due to an increment in the polysaccharide chain contacts and entanglements. Finally, it was found that a mixture of commercial amylose from potato starch and HAPP resulted in lower values of G′ compared to native potato starch. This indicates that the source of amylose is important for the properties in a blend with native amylopectin.  相似文献   

20.
籼爪交水稻F_2群体的蒸煮食味品质研究   总被引:1,自引:0,他引:1  
分析了籼型高直链淀粉恢复系CG133R与糯性爪哇稻22号杂交衍生的F2群体的蒸煮品质变异及其与淀粉粘滞性特征间的相关性,以及F2群体颗粒结合淀粉合成酶(Wxa基因)和可溶性淀粉合成酶(SSⅡ-3基因)主效基因的遗传。结果表明:蒸煮品质指标和RVA谱特征值在F2群体中广泛分离,其中变异最大的是消减值,其次为胶稠度、直链淀粉含量。高直链淀粉材料各理化指标与RVA谱特征值的相关性不显著;RVA谱特征值在中、低直链淀粉含量和糯稻群体中与各理化指标存在显著或极显著相关;在中、低直链淀粉材料中,RVA谱特征值与糊化温度(GT)也存在显著或极显著相关。用Wxa基因和SSⅡ-3基因的分子标记检测到这两个基因在F2群体中存在偏分离,分别指向两个亲本类型。除高直链淀粉材料外,可以通过RVA谱特征值来辅助筛选优质水稻品种。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号