首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 969 毫秒
1.
By using atomic force microscope (AFM), the topography and function of the plasmalemma surface of the isolated protoplasts from winter wheat mesophyll cells were observed, and compared with dead protoplasts induced by dehydrating stress. The observational results revealed that the plasma membrane of living protoplasts was in a state of polarization. Lipid layers of different cells and membrane areas exhibited distinct active states. The surfaces of plasma membranes were unequal, and were characterized of regionalisation. In addition, lattice structures were visualized in some regions of the membrane surface. These typical structures were assumed to be lipid molecular complexes, which were measured to be 15.8±0.09 nm in diameter and 1.9±0.3 nm in height. Both two-dimensional and three-dimensional imaging showed that the plasmalemma surfaces of winter wheat protoplasts were covered with numerous protruding particles. In order to determine the chemical nature of the protruding particles, living protoplasts were treated by proteolytic enzyme. Under the effect of enzyme, large particles became relatively looser, resulting that their width was increased and their height decreased. The results demonstrated that these particles were likely to be of protein nature. These protein particles at plasmalemma surface were different in size and unequal in distribution. The diameter of large protein particles ranged from 200 to 440 nm, with a central micropore, and the apparent height of them was found to vary from 12 to 40 nm. The diameter of mid-sized protein particles was between 40―60 nm, and a range of 1.8―5 nm was given for the apparent height of them. As for small protein particles, obtained values were 12―40 nm for their diameter and 0.7―2.2 nm for height. Some invaginated pits were also observed at the plasma membrane. They were formed by the endocytosis of protoplast. Distribution density of them at plasmalemma was about 16 pits per 15 μm2. According to their size, we classified the invaginated pits into two types―larger pits measuring 139 nm in diameter and 7.2 nm in depth, and smaller pits measuring 96 nm in diameter and 2.3 nm in depth. On dehydration-induced dead pro-toplasts, the degree of polarization of plasma membranes decreased. Lipid molecular layers appeared relatively smooth, and the quantity of integral proteins reduced a lot. Invaginated pits were still de-tectable at the membrane surface, but due to dehydration-induced protoplast contraction, the orifice diameter of pits reduced, and their depth increased. Larger pits averagely measuring 47.4 nm in di-ameter and 31.9 nm in depth, and smaller pits measuring 26.5 nm in diameter and 43 nm in depth at average. The measured thickness of plasma membranes of mesophyll cells from winter wheat examined by AFM was 6.6―9.8 nm, thicker in regions covered with proteins.  相似文献   

2.
The fine structure of plasmalemmal tubular invaginations with caveolae and coated pits in the sinus endothelial cells of the rat spleen has been demonstrated by scanning and transmission electron microscopy. In addition, the three-dimensional structure of the tubular invagination has been revealed by computer-aided reconstruction. The tubular invaginations of the plasma membrane plunged into the cytoplasm everywhere from the apical, lateral, and basal surfaces of the plasma membrane. The invaginations were tubular and branched away, and their plasma membranes were reinvaginated to form numerous caveolae and occasional coated pits. Numerous caveolae were found in clusters that looked similar to a bunch of grapes and the coated pits were present at the base of the clusters. The caveolae and coated pits derived from the tubular invaginations were almost ultrastructurally identical to those derived from the surface plasma membrane. From examination of the fractured surfaces of the endothelial cells treated with the aldehyde prefix osmium-dimethyl sulfoxide-osmium method and of ultrathin sections of those infiltrated by lanthanum nitrate, the tubular invaginations were found to not penetrate any endothelial cells. A computer-aided reconstruction revealed that the caveolae derived from the tubular invaginations were in close apposition to the surface-connected canaliculi. The reaction product of Concanavalin A conjugated to horseradish peroxidase was present on the outer leaflet of the membranes of the coated pits and coated vesicles and also in the contents of the endosomes, but it was absent from any caveolae. Based on our observations, the functional significance of the tubular invaginations in sinus endothelial cells is discussed. Accepted: 13 September 1999  相似文献   

3.
Localization of TRPC1 channel in the sinus endothelial cells of rat spleen   总被引:1,自引:1,他引:0  
The ultrastructural localization of transient receptor potential C1 (TRPC1) channels in the sinus endothelial cells of rat spleen was examined by confocal laser scanning and electron microscopy. In addition, the localization of the closely associated proteins and channels, VE-cadherin, calreticulin, inositol-1,4,5-trisphosphate receptors type 1 (IP3R1), and ryanodine receptor (RyR), was also examined. Immunofluorescence microscopy of tissue cryosections revealed TRPC1 channels to be localized within the cytoplasm, in the superficial layer of the apical and basal parts of the cells, and in the junctional area of the adjacent endothelial cells. The distribution of Ca2+-storing tubulovesicular structures within endothelial cells was established by using tissue sections treated with osmium ferricyanide. Electron microscopy revealed densely stained tubulovesicular structures closely apposed to the plasma membrane and that occasionally ran closely parallel to the plasma membrane and near the caveolae and junctional apparatus. Immunolocalization analysis at the electron microscopy level using immunogold bound to the secondary antibody confirmed that TRPC1 channels were localized in the plasma membrane, caveolae, and vesicular structures in the subplasmalemmal cytoplasm of sinus endothelial cells. Calreticulin was predominantly localized in endoplasmic reticulum. IP3R1 and RyR, considered to be type 3, were colocalized in endoplasmic reticulum in proximity to the plasma membrane and caveolae. Thus, TRPC1 channels in sinus endothelial cells of the spleen might play an important role in controlling blood cell passage through phenomena including cytoskeletal reorganization, cell retraction, and disassembly of adherens junctions.This work was supported by a Grant-in-Aid for Scientific Research (C), Japan.  相似文献   

4.
Although cholesterol is an essential component of mammalian membranes, resolution of cholesterol organization in membranes and organelles (i.e. lysosomes) of living cells is hampered by the paucity of nondestructive, nonperturbing methods providing real time structural information. Advantage was taken of the fact that the emission maxima of a naturally occurring fluorescent sterol (dehydroergosterol) were resolvable into two structural forms, monomeric (356 and 375 nm) and crystalline (403 and 426 nm). Model membranes (sterol:phospholipid ratios in the physiological range, e.g. 0.5-1.0), subcellular membrane fractions (plasma membranes, lysosomal membranes, microsomes, and mitochondrial membranes), and lipid rafts/caveolae (plasma membrane cholesterol-rich microdomain purified by a nondetergent method) contained primarily monomeric sterol and only small quantities (i.e. 1-5%) of the crystalline form. In contrast, the majority of sterol in isolated lysosomes was crystalline. However, addition of sterol carrier protein-2 in vitro significantly reduced the proportion of crystalline dehydroergosterol in the isolated lysosomes. Multiphoton laser scanning microscopy (MPLSM) of living L-cell fibroblasts cultured with dehydroergosterol for the first time provided real time images showing the presence of monomeric sterol in plasma membranes, as well as other intracellular membrane structures of living cells. Furthermore, MPLSM confirmed that crystalline sterol colocalized in highest amounts with LysoTracker Green, a lysosomal marker dye. Although crystalline sterol was also detected in the cytoplasm, the extralysosomal crystalline sterol did not colocalize with BODIPY FL C(5)-ceramide, a Golgi marker, and crystals were not associated with the cell surface membrane. These noninvasive, nonperturbing methods demonstrated for the first time that multiple structural forms of sterol normally occurred within membranes, membrane microdomains (lipid rafts/caveolae), and intracellular organelles of living cells, both in vitro and visualized in real time by MPLSM.  相似文献   

5.
High resolution scanning force microscope (SFM) images of fibrinogen-exposed platelet membranes are presented. Using ultrasharp carbon tips, we are able to obtain submolecular scale resolution of membrane surface features. Corroboration of SFM results is achieved using low voltage, high resolution scanning electron microscopy (LVHRSEM) to image the same protein molecule that is seen in the SFM. We obtain accurate height dimensions by SFM complemented by accurate lateral dimensions obtained by LVHRSEM. The use of 14- and 5-nm gold labels to identify specific membrane-bound biomolecules and to provide contrast enhancement with the SFM is explored as a useful adjunct to observation of unlabeled material. It is shown that the labels are useful for locating specific protein molecules on platelet membrane surfaces and for assessing the distribution of these molecules using the SFM. Fourteen nm labels are shown to be visible over the membrane corrugation, whereas 5-nm labels appear difficult to resolve using the present SFM instrumental configuration. When using the 5-nm labels, collateral use of LVHRSEM allows one to examine SFM images at submolecular resolution and associate function with the structures imaged after the SFM experiment is completed.  相似文献   

6.
Subsurface cytoskeletal structure can be visualized in either fixed or living mammalian cells in aqueous medium with approximately 50 nm resolution using the Scanning Force Microscope (SFM). In living cells, changes in cell topography, or subsurface cytoskeleton caused by the introduction of drugs (colchicine) or cross-linking of surface receptors (by antibodies against IgE bound to the IgE receptor) can be followed in time. Contrast in SFM images of cell surfaces result from both topographic features of the cell and from variations in cell surface "stiffness". The SFM is therefore capable of measuring local compliance and stress in living cells, and so should make it possible to map the cytoskeletal forces used to generate cell motions and changes in cell shape.  相似文献   

7.
A non-human like glycosylation pattern in human recombinant glycoproteins expressed by animal cells may compromise their use as therapeutic drugs. In order to correct the CHO glycosylation machinery, a CHO cell line producing recombinant human interferon- (IFN) was transformed to replace the endogenous pseudogene with a functional copy of the enzyme 2,6-sialyltransferase (2,6-ST). Both the parental and the modified CHO cell line were propagated in serum-free batch culture with or without 1 mM sodium butyrate. Although Na-butyrate inhibited cell growth, IFN concentration was increased twofold. The IFN sialylation status was determined using linkage specific sialidases and HPLC. Under non- induced conditions, IFN expressed by 2,6-engineered cells contained 68% of the total sialic acids in the 2,6- conformation and the overall molar ratio of sialic acids to IFN was 2.3. Sodium butyrate addition increased twofold the molar ratio of total sialic acids to IFN and 82% of total sialic acids on IFN were in the 2,6-conformation. In contrast, no effect of the sodium butyrate was noticed on the sialylation of the IFN secreted by the 2,6-ST deficient parental cell line. This study deals for the first time with the effect of Na-butyrate on CHO cells engineered to produce human like sialylation.  相似文献   

8.
Galactomannan was localized by scanning and transmission electron microscopy on the cells and cell walls of Schizosaccharomyces pombe. The markers were prepared from colloidal gold granules labelled with an -galactopyranosyl-binding lectin isolated from the seeds of Bandeiraea simplicifolia. Part or all of this -galactomannan was present in the outer layer of the cell wall and was uniformly distributed even on the fission scars.Non-Standard Abbreviations Au lectin-labelled colloid - SEM scanning electron microscopy - TEM transmission electron microscopy  相似文献   

9.
The surface structure of mitotic barley chromatin was studied by field-emission scanning electron microscopy (FESEM) and scanning force microscopy (SFM). Different stages of the cell cycle were accessible after a cell suspension was dropped onto a glass surface, chemical fixed, and critically point dried. Imaging was carried out with metal-coated specimen or uncoated specimen (only for SFM). The spatial contour of the chromatin could be resolved by SFM correlating to FESEM data. The experimentally determined volume of the residue chromatin during mitosis was within the range of 65-85 microm(3). A comparison with the theoretically calculated volume indicated a contribution of about 40% of internal cavities. Decondensation of chromosomes by proteinase K led to a drastic decrease in the chromosome volume, and a 3-D netlike architecture of the residue nucleoprotein material, similar to that in the intact chromosome, was obvious. Incubation of metaphase chromosomes in citrate buffer permitted access to different levels of chromatin packing. We imaged intact chromosomes in liquid by SFM without any intermediate drying step. A granular surface was obvious but with an appreciably lower resolution. Under similar imaging conditions proteinase K-treated chromosomes exhibited low topographic contrast but were susceptible to plastic deformations.  相似文献   

10.
Caveolae are flask-shaped membrane invaginations present in most mammalian cells. They are distinguished by the presence of a striated coat composed of the protein, caveolin. Caveolae have been implicated in numerous cellular processes, including potocytosis in which caveolae are hypothesized to co-localize with folate receptor and participate in folate uptake. Our laboratory has recently localized folate receptor to the basolateral surface of the retinal pigment epithelium (RPE). It is present also in many other cells of the retina. In the present study, we asked whether caveolae were present in the RPE, and if so, whether their pattern of distribution was similar to folate receptor . We also examined the distribution pattern of caveolin-1, which can be a marker of caveolae. Extensive electron microscopical analysis revealed caveolae associated with endothelial cells. However, none were detected in intact or cultured RPE. Laser scanning confocal microscopical analysis of intact RPE localized caveolin-1 to the apical and basal surfaces, a distribution unlike folate receptor . Western analysis confirmed the presence of caveolin-1 in cultured RPE cells and laser scanning confocal microscopy localized the protein to the basal plasma membrane of the RPE, a distribution like that of folate receptor . This distribution was confirmed by electron microscopic immunolocalization. The lack of caveolae in the RPE suggests that these structures may not be essential for folate internalization in the RPE.  相似文献   

11.
Planar rafts and caveolae are specific membrane clusters that contain high concentrations of cholesterol and lipids consisting of saturated fatty acids. These clusters are resistant to detergents and are known as “detergent-resistant membrane domains” (DRMs). Their morphology and size were studied by atomic force microscopy (AFM). Planar rafts extracted by Lubrol WX from monocytes of healthy donors are 150.6 ± 68.6 nm in diameter and 5.7 ± 2.9 nm in height, while caveolae are 87.3 ± 46.1 nm in diameter and 9.4 ± 5.4 nm in height. Significant differences in size and morphology were found between DRMs isolated from monocytes of healthy donors and patients with myocardial infarction, as well as between DRMs of monocytes and endothelial cells. The morphology dynamics of the isolated planar rafts and caveolae indicates that they quickly aggregate during storage; therefore, in order to assess the actual DRM size and morphology it is necessary to investigate them immediately after isolation.  相似文献   

12.
The Buccinum radula is of the rachiglossate type with two outer rows of fierce hook-like attack teeth and a medial row of straight sharp-pointed shredding teeth. Individual cells of the radular retractor muscle are 10–12 m in diameter and separated at the closest by gaps of only 40 nm, providing areas of potential electrical contact. The cell membranes are heavily invested with long finger-like invaginations, associated with sarcoplasmic reticular cisternae, and surface caveolae; the latter are associated with the numerous dense body membrane attachment plaques found in this muscle. The radular retractor muscle possesses a significant sarcoplasmic reticulum of peripheral cisternae and deeper vesicles associated with mitochondria. The surface caveolae may result from myofilament force exerted via attachment plaques at the cell membrane, while deeper invaginations may constitute a rudimentary transverse tubular system to relay surface depolarization to associated sarcoplasmic reticular cisternae inducing calcium release to effect excitation-contraction coupling. The radular retractor muscle possesses the usual thick paramyosin and thin actin myofilaments, the latter associated with dense bodies and attachment plaques presumably to transduce force to the cell membrane. The mitochondria are unusually large and packed into dense central clusters surrounded by large deposits of glycogen granules. The nerve endings on the radular retractor muscle fibres show four different types of transmitter vesicle, presumably related to the four kinds of agonist action in this muscle, cholinergic, serotonergic, peptidergic and purinergic. All nerve endings have mixed vesicle populations, clear evidence of co-transmission. In this muscle we see a modification of usual smooth muscle structure to effect fast sustained contractions, an ultrastructural configuration functionally designed for the muscle's central role in the feeding cycle.Abbreviations ABRM anterior byssus retractor muscle - EC coupling excitation-contraction coupling - RP radular protractor muscle - RR radular retractor muscle - SR sarcoplasmic reticulum - T-system transverse tubular system  相似文献   

13.
A quantitative ultrastructural study was performed with samples taken throughout a layer of the purple sulfur bacterium Chromatium minus in Lake Cisó (Spain). Ultrathin sections of cells were analyzed by transmission electron microscopy, in order to study the size, number and volume of intracytoplasmic membranes (ICM), sulfur globules and poly--hydroxybutyrate (PHB) granules per unit volume of cell. Important differences were seen between cells from the top (receiving 60 E · m–2 · s–1 at noon) on the one hand, and cells from the peak and bottom parts of the bacterial layer (receiving less than 1 E · m–2 · s–1) on the other hand. The amount of ICM per cell increased as a function of depth being about three times higher in bottom cells than in top cells. Neither statistically significant differences in cell size, nor in numbers of sulfur globules were found, but the ultrastructure changed with depth. Finally, the most important changes throughout depth were detected in PHB granules. Top cells had 0.5% of their volume occupied by PHB granules, whereas in the bottom cells the corresponding value was 12.2%. These changes were due to the number of PHB granules per unit volume of cell since globule size was constant.Non-common abbreviations ECM intracytoplasmic membrane systems - PHB poly--hydroxybutyrate - Bchl bacteriochlorophyll - SED sphere equivalent diameter  相似文献   

14.
The endomembrane system of a cell is a highly dynamic, ephemeral structure that is difficult to visualize. Reconstructions from sections of fixed material can provide high-resolution information on intercellular membrane architecture, but such techniques are fraught with artifacts and are of little help in understanding the dynamics of intracellular membrane traffic. Recently, the availability of fluorescent membrane probes and the development of techniques for optically sectioning intact specimens have allowed glimpses of membrane dynamics to be visualized in living tissue. In this review we discuss the potential of a new optical sectioning technique, multiphoton imaging, for visualizing membrane dynamics in living cells. Multiphoton microscopy offers an unparalleled ability to obtain images from deep within specimens while minimizing the effects of phototoxicity.  相似文献   

15.
Interactions of cationic antimicrobial peptides with living bacterial and mammalian cells are little understood, although model membranes have been used extensively to elucidate how peptides permeabilize membranes. In this study, the interaction of F5W-magainin 2 (GIGKWLHSAKKFGKAFVGEIMNS), an equipotent analogue of magainin 2 isolated from the African clawed frog Xenopus laevis, with unfixed Bacillus megaterium and Chinese hamster ovary (CHO)-K1 cells was investigated, using confocal laser scanning microscopy. A small amount of tetramethylrhodamine-labeled F5W-magainin 2 was incorporated into the unlabeled peptide for imaging. The influx of fluorescent markers of various sizes into the cytosol revealed that magainin 2 permeabilized bacterial and mammalian membranes in significantly different ways. The peptide formed pores with a diameter of ∼2.8 nm (< 6.6 nm) in B. megaterium, and translocated into the cytosol. In contrast, the peptide significantly perturbed the membrane of CHO-K1 cells, permitting the entry of a large molecule (diameter, >23 nm) into the cytosol, accompanied by membrane budding and lipid flip-flop, mainly accumulating in mitochondria and nuclei. Adenosine triphosphate and negatively charged glycosaminoglycans were little involved in the magainin-induced permeabilization of membranes in CHO-K1 cells. Furthermore, the susceptibility of CHO-K1 cells to magainin was found to be similar to that of erythrocytes. Thus, the distinct membrane-permeabilizing processes of magainin 2 in bacterial and mammalian cells were, to the best of our knowledge, visualized and characterized in detail for the first time.  相似文献   

16.
The surface distribution and pathway for internalization of the major cell surface proteins of Chinese hamster ovary (CHO) cells have been investigated after reacting cells at 4 degrees C with the membrane-impermeant reagent trinitrobenzenesulfonate. Molecules, haptenized with trinitrophenol groups, the majority of which are in a group of high molecular weight acidic glycoproteins (HMWAG), were labelled at 4 degrees C with anti-dinitrophenol immunoglobulins coupled to fluorescein isothiocyanate (FITC), horseradish peroxidase, or colloidal gold and either immediately fixed for mapping their distribution or followed intracellularly after warming to allow endocytosis to proceed. The distribution of label on the CHO cell surface was non-random with a large proportion arranged in clusters from 100 to 300 nm in diameter. Antibody label was concentrated heavily on microvilli, and about 10% of the molecules were always associated with clathrin-coated pits. Upon warming the cells to 37 degrees C, HMWAG were internalized immediately into smooth-membraned tubules (less than 80 nm luminal diameter) that appeared to connect with vesicles (less than 300 nm luminal diameter) located in the cortical cytoplasm. By 60 min, labelled antibody was located within larger vesicles (greater than 300 nm luminal diameter) that had a morphology characteristic of multivesicular bodies and not lysosomes. There was no evidence for entry of labelled molecules into either electron-dense, secondary lysosomes or into the Golgi cisternae, suggesting that neither compartment is involved in the major pathway of cell surface endocytosis. Our results are consistent with the view that the majority of plasma membrane protein are internalized as small discrete domains by a pathway very similar to that described by others for adsorptive endocytosis.  相似文献   

17.
In the presence of effectors variations in the two recognized activities of the plasma membrane NADH-oxidoreductase system were studied in separate, specificin vitro assays. We report here that ubiquinone analogues that contain a short, less hydrophobic side chain than coenzyme Q-10 dramatically stimulate the NADH-oxidase activity of isolated rat liver plasma membranes whereas they show no effect on the reductase activity of isolated membranes. If measured in assays of the NADHferricyanide reductase of living cultured cells these compounds have only a limited effect; the oxidase activity of whole cells is not measurable in our hands. We have furthermore identified selective inhibitors of both enzyme activities. In particular, the NADH-oxidase activity can be significantly inhibited by structural analogues of ubiquinone, such as capsaicin and resiniferatoxin. The NADHferricyanide reductase, on the other hand, is particularly sensitive to pCMBS, indicating the presence of a sulfhydryl group or groups at its active site. The identification of these specific effectors of the different enzyme activities of the PMOR yields further insights into the function of this system.  相似文献   

18.
With application of EPR and 1H NMR techniques genistein interaction with liposomes formed with egg yolk lecithin and with erythrocyte membranes was assessed. The present study addressed the problem of genistein localization and its effects on lipid membrane fluidity and protein conformation. The range of microscopic techniques was employed to study genistein effects on HeLa cells and human erythrocytes. Moreover, DPPH bioassay, superoxide anion radical test and enzymatic measurements were performed in HeLa cells subjected to genistein. The gathered results from both EPR and NMR techniques indicated strong ordering effect of genistein on the motional freedom of lipids in the head group region and the adjacent hydrophobic zone in liposomal as well as in red blood cell membranes. EPR study of human ghost showed also the changes in the erythrocyte membrane protein conformation. The membrane effects of genistein were correlated with the changes in internal membranes arrangement of HeLa cells as it was noticed using transmission electron microscopic and fluorescent techniques. Scanning electron and light microscopy methods showed that one of the aftermaths of genistein incorporation into membranes was creation of echinocytic form of the red blood cells with reduced diameter. Genistein improved redox status of HeLa cells treated with H2O2 by lowering radicals' level.  相似文献   

19.
We have recently demonstrated that prothymosin (ProT) when administered intraperitoneally (i.p.) protects DBA/2 mice against the growth of syngeneic leukemic L1210 cells through the induction of tumoricidal peritoneal cells producing high levels of tumor necrosis factor (TNF) [Papanastasiou et al. (1992) Cancer Immunol Immunother 35: 145]. In this report we tested further immunological alterations that may be caused by the administration of ProT in vivo. We demonstrate that i.p. injections of ProT enhance natural killer (NK) cell activity and induce lymphokine-activated (LAK) activity in vivo. Thus, splenocytes from ProT-treated DBA/2 animals exhibited significantly higher cytotoxic activity (up to threefold) against the NK-sensitive YAC cell line and the NK-resistant P815 and L1210 syngeneic tumor cells, as compared to splenocytes from syngeneic control mice. The enhancement of the cytotoxic profile of DBA/2 splenocytes was associated with increased percentages of CD8+ cells, NK cells and activated CD3+ cells. The ProT-induced effect persisted for 30 days after the end of the ProT treatment period and returned to normal levels 20 days later. SPlenocytes from non-treated DBA/2 animals generated high NK and LAK activities in response to ProT in vitro. The ProT-induced NK an LAK activities reached 84% and 75% respectively of what was obtained with interleukin-2 (IL-2). High concentrations of TNF and IL-2 were generated in response to ProT in LAK cultures. These findings suggest that ProT may provide an overall protective effect against tumor growth in vivo through induction of NK and LAK activities possibly indirectly via the production of IL-2 and TNF in the spleen, peritoneal cavity and probably other lymphoid organs.This work was supported by a CEC grant to M. Papamichail  相似文献   

20.
Experimental studies have indicated that the mechanisms offered for explaining the neurotoxicity of amyloid beta peptide (AP) are diverse, and include altered enzyme activities, disrupted calcium homeostasis, and increased free radical formation. AP appears to interact at the cell membrane with a multitude of receptor sites and also inserts physically into the membrane matrix. This membrane insertion affects the membrane fluidity and potentially influences the function of resident membrane proteins. We propose a unifying hypothesis to explain the experimental observations of the diverse cellular responses to AP. The indiscriminate physical insertion of AP into the cell membrane unspecifically activates a host of membrane processes by perturbation of the membrane proteins. This recurrent activation of membrane processes eventually culminates in neuronal cell death. We recommend that successful therapeutic interventions should be directed at reducing or preventing the interaction of AP with neuronal cell membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号