首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We examined the temporal and spatial patterns of feeding behaviours of muskoxen during winter in the High Arctic. Pawing motions (to uncover forages beneath snow cover) were strongly aggregated into temporal bouts. Similarly, feeding stations (areas exploitable without motion of the forelegs) were aggregated into spatial patches. Muskoxen responded to greater snow accumulation at feeding sites by increasing the rates of pawing, rates of pawing bouts, number of pawing strokes per bout, and station residence times. Patch residence times showed little relationship to snow or forage abundance because, as muskoxen increased station residence times, they decreased the number of stations per patch. Muskoxen displaced one another from feeding stations more frequently as snow thickness and group size increased. Time spent at feeding stations was positively correlated to travel costs, in accordance with the marginal value model of patch residence. The model was not supported, however, at the scale of the feeding patch. The results indicate that behavioural responses of muskoxen to foraging conditions differ across scales.  相似文献   

2.
Spatiotemporal variation in forage is a primary driver of ungulate behavior, yet little is known about the nutritional components they select, and how selection varies across the growing season with changes in forage quality and quantity. We addressed these uncertainties in barren‐ground caribou (Rangifer tarandus), which experience their most important foraging opportunities during the short Arctic summer. Recent declines in Arctic caribou populations have raised concerns about the influence of climate change on summer foraging opportunities, given shifting vegetation conditions and insect harassment, and their potential effects on caribou body condition and demography. We examined Arctic caribou selection of summer forage by pairing locations from females in the Central Arctic Herd of Alaska with spatiotemporal predictions of biomass, digestible nitrogen (DN), and digestible energy (DE). We then assessed selection for these nutritional components across the growing season at landscape and patch scales, and determined whether foraging opportunities were constrained by insect harassment. During early summer, at the landscape scale, caribou selected for intermediate biomass and high DN and DE, following expectations of the forage maturation hypothesis. At the patch scale, however, caribou selected for high values of all forage components, particularly DN, suggesting that protein may be limiting. During late summer, after DN declined below the threshold for protein gain, caribou exhibited a switch at both spatial scales, selecting for higher biomass, likely enabling mass and fat deposition. Mosquito activity strongly altered caribou selection of forage and increased their movement rates, while oestrid fly activity had little influence. Our results demonstrate that early and late summer periods afford Arctic caribou distinct foraging opportunities, as they prioritize quality earlier in the summer and quantity later. Climate change may further constrain caribou access to DN as earlier, warmer Arctic summers may be associated with reduced DN and increased mosquito harassment.  相似文献   

3.
For conservation purposes, it is important to design studies that explicitly quantify responses of focal species to different land management scenarios. Here, we propose an approach that combines the influence of landscape matrices with the intrinsic attributes of remaining habitat patches on the space use behavior of woodland caribou (Rangifer tarandus caribou), a threatened subspecies of Rangifer. We sought to link characteristics of forest remnants and their surrounding environment to caribou use (i.e., occurrence and intensity). We tracked 51 females using GPS telemetry north of the Saguenay River (Québec, Canada) between 2004 and 2010 and documented their use of mature forest remnants ranging between 30 and ~170 000 ha in a highly managed landscape. Habitat proportion and anthropogenic feature density within incremental buffer zones (from 100 to 7500 m), together with intrinsic residual forest patch characteristics, were linked to caribou GPS location occurrence and density to establish the range of influence of the surrounding matrix. We found that patch size and composition influence caribou occurrence and intensity of use within a patch. Patch size had to reach approximately 270 km2 to attain 75% probability of use by caribou. We found that small patches (<100 km2) induced concentration of caribou activities that were shown to make them more vulnerable to predation and to act as ecological traps. Woodland caribou clearly need large residual forest patches, embedded in a relatively undisturbed matrix, to achieve low densities as an antipredator strategy. Our patch‐based methodological approach, using GPS telemetry data, offers a new perspective of space use behavior of wide‐ranging species inhabiting fragmented landscapes and allows us to highlight the impacts of large scale management. Furthermore, our study provides insights that might have important implications for effective caribou conservation and forest management.  相似文献   

4.
A key problem faced by foragers is how to forage when resources are distributed heterogeneously in space. This heterogeneity and associated trade‐offs may change with spatial scale. Furthermore, foragers may also have to optimize acquiring multiple resources. Such complexity of decision‐making while foraging is poorly understood. We studied the butterfly Ypthima huebneri to examine how foraging decisions of adults are influenced by spatial scale and multiple resources. We predicted that, at a small‐spatial scale, the time spent foraging in a patch should be proportional to resources in the patch, but at large‐spatial scales, due to limitations arising from large travel costs, this relationship should turn negative. We also predicted that both adult and larval resources should jointly affect foraging butterflies. To test these predictions, we laid eleven plots and sub‐divided them into patches. We mapped nectar and larval resources and measured butterfly behavior in these patches and plots. We found that adult foraging behavior showed contrasting relationships with adult resource density at small versus large‐spatial scales. At the smaller‐spatial scale, butterflies spent more time feeding in resource‐rich patches, whereas at the large‐scale, butterflies spent more time feeding in resource‐poor plots. Furthermore, both adult and larval resources appeared to affect foraging decisions, suggesting that individuals may optimize search costs for different resources. Overall, our findings suggest that the variation in foraging behavior seen in foragers might result from animals responding to complex ecological conditions, such as resource heterogeneity at multiple spatial scales and the challenges of tracking multiple resources.  相似文献   

5.
The white‐fronted chat (Epthianura albifrons) is a small, insectivorous passerine that is threatened with extinction in the north‐eastern part of its range, partially due to loss and degradation of its saltmarsh habitat. Food availability is a potential limiting factor for the disjunct populations that survive in saltmarsh refugia, surrounded by urbanized land, because the anthropogenic matrix reduces the capacity of birds to commute to alternative grassland habitat to exploit temporary insect outbreaks. This limitation is likely to be exacerbated during the winter months when local arthropod abundance in saltmarsh is reduced. This study measured temporal and spatial variation in the abundance of saltmarsh arthropods to determine whether patch switching by foraging flocks can be explained by variation in food availability. Arthropods in the size range known to be important in the diet of white‐fronted chats were vacuum‐sampled from six patches within a continuous area of Sarcocornia‐dominated saltmarsh over a four‐month period. The location of foraging birds was recorded during the same period. Despite superficial similarity in vegetation composition and structure, there was significant variation in arthropod biomass among sites through time, such that the patches with the highest food abundance changed from month to month. There was little evidence, however, to suggest that white‐fronted chats foraged in saltmarsh patches with the highest overall food abundance. During the course of the study, birds were discovered flying 2 km from the saltmarsh to a development site where they foraged in weedy grassland. Arthropod samples collected from this site contained an extremely high abundance of Hemiptera and Neuroptera larvae, supporting previous research indicating that white‐fronted chats forage on irruptions of particular arthropod taxa. These findings indicate that food abundance is unlikely to be the main determinant of foraging site selection within saltmarsh, but highlights the potential importance of alternative foraging habitat types for this species.  相似文献   

6.
Black spider monkey Ateles chamek foraging data from eastern Bolivia are examined in relation to the size of fruit patches and the relative fruit density within the patch. In general, spider monkeys exhibited a preference for larger fruit patches and foraged for longer and in larger subgroups as patch size and relative fruit density increased. Nevertheless, results for specific resources revealed considerable variation in the primary variables influencing foraging behavior and subgroup size with certain specific resources more influenced by patch size, and others more influenced by relative fruit density. The results are discussed in relation to the foraging ecology of fission–fusion primate social systems and previous studies on the influence of patch size on primate foraging decisions.  相似文献   

7.
高山/亚高山森林灌木层植物凋落物的分解对于系统物质循环等过程具有重要意义, 并可能受到冬季不同厚度雪被斑块下冻融格局的影响。该文采用凋落物分解袋法, 研究了高山森林典型灌层植物华西箭竹(Fargesia nitida)和康定柳(Salix paraplesia)凋落物在沿林窗-林下形成的冬季雪被厚度梯度(厚型雪被斑块、较厚型雪被斑块、中型雪被斑块、薄型雪被斑块、无雪被斑块)上在第一年不同关键时期(冻结初期、冻结期、融化期、生长季节初期和生长季节后期)的质量损失特征。在整个冻融季节, 华西箭竹和康定柳凋落叶的平均质量损失分别占全年的(48.78 ± 2.35)%和(46.60 ± 5.02)%。冻融季节雪被覆盖斑块下凋落叶的失重率表现出厚型雪被斑块大于薄型雪被斑块的趋势,而生长季节无雪被斑块的失重率明显较高。尽管如此, 华西箭竹凋落物第一年分解表现出随冬季雪被厚度增加而增加的趋势, 但康定柳凋落物第一年失重率以薄型雪被斑块最高, 而无雪被斑块最低。同时, 相关分析表明冻融季节凋落叶的失重率与平均温度和负积温呈极显著正相关, 生长季节凋落叶的失重率与所调查的温度因子并无显著相关关系, 但全年凋落物失重率与平均温度和正/负积温均显著相关。这些结果清晰地表明, 未来冬季变暖情境下高山森林冬季雪被格局的改变将显著影响灌层植物凋落物分解, 影响趋势随着物种的差异具有明显差异。  相似文献   

8.
Diet and habitat overlap was studied in two sympatric primate species sharing two neighbouring patches of fragmented gallery forest in Tana River, Kenya. Systematic data on feeding and ranging behaviour was collected on one group each of the Tana crested mangabey Cercocebus galeritus and yellow baboon Papio cynocephalus between August 1992 and February 1993. When rainfall was low and fruit resources scarce, yellow baboons spent most of their foraging time in the open woodlands while mangabeys foraged within the forest. At this period, diet and habitat overlaps between the two species were low. As rainfall increased, followed by a gradual rise in fruit availability, yellow baboons shifted their foraging range and both species became confined to the forest habitat. Consequently, both diet and habitat overlaps increased, peaking at the end of the rainy season. Mangabeys showed a reduced within-group dispersal and also spent significantly less time foraging in a given forest patch when yellow baboons were also present within the same forest patch.
Increased habitat and diet overlaps during the wet season need not have resulted in increased interspecific competition for food because at this period, fruits were readily available in the forest.  相似文献   

9.
In winter, foraging activity is intended to optimize food search while minimizing both thermoregulation costs and predation risk. Here we quantify the relative importance of thermoregulation and predation in foraging patch selection of woodland birds wintering in a Mediterranean montane forest. Specifically, we account for thermoregulation benefits related to temperature, and predation risk associated with both illumination of the feeding patch and distance to the nearest refuge provided by vegetation. We measured the amount of time that 38 marked individual birds belonging to five small passerine species spent foraging at artificial feeders. Feeders were located in forest patches that vary in distance to protective cover and exposure to sun radiation; temperature and illumination were registered locally by data loggers. Our results support the influence of both thermoregulation benefits and predation costs on feeding patch choice. The influence of distance to refuge (negative relationship) was nearly three times higher than that of temperature (positive relationship) in determining total foraging time spent at a patch. Light intensity had a negligible and no significant effect. This pattern was generalizable among species and individuals within species, and highlights the preponderance of latent predation risk over thermoregulation benefits on foraging decisions of birds wintering in temperate Mediterranean forests.  相似文献   

10.
We compared the foraging behavior of mourning doves Zenaida macroura and cottontail rabbits Sylvilagus floridanus in patches that varied in initial food abundance, surface area and substrate depth. We measured giving‐up densities (GUD), food harvest and proportion of food harvested to investigate their ability to respond to characteristics of resource patches. GUDs have been analyzed in three ways: grams of per patch, grams per unit surface area (GUDAREA), and grams per unit volume of sand (GUDVOL). Mourning doves and cottontails exhibited similar responses to resource density and sand depth. Both foragers detected and responded to variation in initial food abundance. The proportion of food harvested from a patch increased from 40.7, 43.8 to 48.3% (for the doves) and 34.9, 35.8 to 38.4% (for the rabbits) in patches of low, medium and high initial food abundance, respectively. Deeper substrates reduced the foragers’ encounter probability with food, decreased patch quality and resulted in higher GUDs (60% higher in the deepest relative to shallowest substrate) and lower harvests. A significant interaction between initial food abundance and substrate depth showed that both species were willing to dig deeper in patches with higher resource density. Patch size (surface area) had no effect on food harvest or the proportion of food harvested. Consequently, GUDAREA and GUDVOL increased in patches with a smaller surface area. Smaller patches appeared to hamper the dove's and cottontail's movement across the surface. Our results revealed that mourning doves and cottontails forage under imperfect information. Both species were able to respond to patch properties by biasing their feeding efforts toward rich and easy opportunities, however, mourning doves were more efficient at food harvesting. The interaction of patch area, volume and food abundance directly influenced food harvest. Such resource characters occur under natural situations where food varies in abundance, area of distribution, and accessibility.  相似文献   

11.
Urbanization is a process globally responsible for loss of biodiversity and for biological homogenization. Urbanization may have a direct negative impact on species behaviour and indirect effects on species populations through alterations of their habitats, for example patch size and habitat quality. Woodpeckers are species potentially susceptible to urbanization. These birds are mostly forest specialists and the development of urban areas in former forests may be an important factor influencing their richness and abundance, but documented examples are rare. In this study we investigated how woodpeckers responded to changes in forest habitats as a consequence of urbanization, namely size and isolation of habitat patches, and other within-patch characteristics. We selected 42 woodland patches in a gradient from a semi-natural rural landscape to the city centre of Poznań (Western Poland) in spring 2010. Both species richness and abundance of woodpeckers correlated positively to woodland patch area and negatively to increasing urbanization. Abundance of woodpeckers was also positively correlated with shrub cover and percentage of deciduous tree species. Furthermore, species richness and abundance of woodpeckers were highest at moderate values of canopy openness. Ordination analyses confirmed that urbanization level and woodland patch area were variables contributing most to species abundance in the woodpecker community. Similar results were obtained in presence-absence models for particular species. Thus, to sustain woodpecker species within cities it is important to keep woodland patches large, multi-layered and rich in deciduous tree species.  相似文献   

12.
Diet selection by mammalian herbivores is often influenced by plant community composition, and numerous studies have focused on the relationships between herbivore foraging decisions and food/plant species abundance. However, few have examined the role of neighbour palatability in affecting foraging of a target plant by large mammalian herbivores. We used a large-scale field dataset on diet selection by red deer Cervus elaphus in Fiordland National Park, New Zealand to: (1) estimate the palatability of native forest plant species to introduced deer from observed patterns of browse damage; and (2) examine whether intraspecific variation in browsing of plants can be related to variation in the local abundance of alternative forage species. Overall, 21 of the 53 forest species in our dataset were never browsed by deer. At a community level, plants were more likely to be browsed if they were in a patch of vegetation of high forage quality, containing high abundances of highly palatable species and/or low abundances of less-palatable species. Our findings suggest that deer make foraging decisions at both a coarse-grain level, selecting vegetation patches within a landscape based on the overall patch quality, and at a fine-grain level by choosing among individual plants of different species.  相似文献   

13.
斑块质量对大斑啄木鸟冬季觅食行为的影响   总被引:2,自引:0,他引:2  
为了解大斑啄木鸟(Dendrocopos major)冬季对食物斑块的利用对策,2011年1月和2012年2~3月,在内蒙古乌拉特前旗的农田防护林中,采用目标动物取样法和全事件记录法,观察了大斑啄木鸟在食物斑块的觅食行为,利用主成分分析方法对斑块质量进行评价,通过比较不同质量斑块中大斑啄木鸟的觅食频次、停留时间、觅食成功频次及觅食成功率等指标,分析斑块质量对其觅食行为的影响。结果显示,在不同质量斑块中大斑啄木鸟的觅食频次、停留时间、觅食成功频次差异都极显著,但觅食成功率差异不显著;除停留时间外,不同性别间觅食差异不显著。大斑啄木鸟的觅食频次、停留时间、觅食成功频次与斑块质量呈显著正相关,觅食成功率与斑块质量相关性不显著。大斑啄木鸟倾向于在质量水平高的斑块觅食,表现为在这些斑块停留时间更长、往返次数更频繁;但觅食成功率不受斑块质量影响,这可能是大斑啄木鸟适应不同觅食环境的一种生存本能。  相似文献   

14.
Changes in grazing management are believed to be responsible for declines in populations of birds breeding in grassland over the last decades. The relationships between grazing management regimes, vegetation structure and composition and the availability of invertebrate food resources to passerine birds remain poorly understood. In this study, we investigated the foraging site selection of meadow pipits (Anthus pratensis L.) breeding in high intensity sheep-grazed plots or low intensity mixed (i.e. sheep and cattle)-grazed plots. We sampled above-ground invertebrates, measured vegetation height and density and conducted a vegetation survey in areas where meadow pipits were observed to forage and areas that were randomly selected. Birds foraged in areas with a lower vegetation height and density and in areas containing a lower proportion of the dominant, tussock-forming grass species Molinia caerulea. They did not forage in areas with a total higher invertebrate biomass but at areas with preferred vegetation characteristics invertebrate biomass tended to be higher in foraging sites than random sites. The foraging distance of meadow pipits was higher in the intensively grazed plots. Our findings support the hypothesis that resource-independent factors such as food accessibility and forager mobility may determine patch selection and are of more importance as selection criteria than food abundance per se. Food accessibility seems to become an even more important selection criterion under high grazing intensity, where prey abundance and size decrease. In our upland grazing system, a low intensity, mixed grazing regime seems to provide a more suitable combination of sward height, plant diversity, structural heterogeneity and food supply for meadow pipit foraging activity compared to a more intensive grazing regime dominated by sheep.  相似文献   

15.
In the early 1990s the Nelchina Caribou (Rangifer tarandus) Herd (NCH) began a dramatic shift to its current winter range, migrating at least an additional 100 km beyond its historic range. We evaluated the impacts of fire and grazing history on lichen abundance and subsequent use and distribution by the NCH. Historic (prior to 1990) and current (2002) winter ranges of the NCH had similar vascular vegetation, lichen cover (P = 0.491), and fire histories (P = 0.535), but the former range had significantly less forage lichen biomass as a result of grazing by caribou. Biomass of forage lichens was twice as great overall (P = 0.031) and 4 times greater in caribou selected sites on the current range than in the historic range, greatly increasing availability to caribou. Caribou on the current range selected for stands with >20% lichen cover (P < 0.001), greater than 1,250 kg/ha (P < 0.001) forage lichen biomass and stands older than 80 yr postfire (P < 0.001). After fires, forage lichen cover and biomass seldom recovered sufficiently to attract caribou grazing until after ≥60 yr, and, as a group, primary forage lichen species did not reach maximum abundance until 180 yr postfire. Recovery following overgrazing can occur much more quickly because lichen cover, albeit mostly fragments, and organic substrates remain present. Our results provide benchmarks for wildlife managers assessing condition of caribou winter range and predicting effects of fires on lichen abundance and caribou distribution. Of our measurements of cover and biomass by species, densities and heights of trees, elevation, slope and aspect, only percentage cover by Cladonia amaurocraea, Cladina rangiferina, Flavocetraria cuculata, and lowbush cranberry (Vaccinium vitis-idaea) were necessary for predicting caribou use of winter range. © 2011 The Wildlife Society  相似文献   

16.
Behaviour of West Greenland caribou during a population decline   总被引:1,自引:0,他引:1  
The major decline of the West Greenland caribou herd during the 1970s prompted a study in 1977–78 of caribou behaviour in relation to environmental factors associated with the decline. Quantification of caribou activity revealed behavioural responses to critically low standing crops of preferred winter forage. Caribou on poor winter range were mostly inactive with low feeding intensities and abnormal diurnal activity patterns. In addition, these animals exhibited very restricted movements, frequently occurred alone or in small groups, and were unable to maintain normal social bonds. In contrast, where fruticose lichen winter forage was available, caribou did not display these behavioural traits. After the initiation of new vegetative growth, feeding intensity increased and social tendency returned. Comparison with behavioural data from other Rangifer populations suggests that the observed responses to low forage quality are not restricted to Greenland but are a normal response of barren-ground caribou to winter ranges poor in lichen forage.  相似文献   

17.
Climatic warming is altering the behavior of individuals and the composition of communities. However, recent studies have shown that the impact of warming on ectotherms varies geographically: species at warmer sites where environmental temperatures are closer to their upper critical thermal limits are more likely to be negatively impacted by warming than are species inhabiting relatively cooler sites. We used a large‐scale experimental temperature manipulation to warm intact forest ant assemblages in the field and examine the impacts of chronic warming on foraging at a southern (North Carolina) and northern (Massachusetts) site in eastern North America. We examined the influence of temperature on the abundance and recruitment of foragers as well as the number of different species observed foraging. Finally, we examined the relationship between the mean temperature at which a species was found foraging and the critical thermal maximum temperature of that species, relating functional traits to behavior. We found that forager abundance and richness were related to the experimental increase in temperature at the southern site, but not the northern site. Additionally, individual species responded differently to temperature: some species foraged more under warmer conditions, whereas others foraged less. Importantly, these species‐specific responses were related to functional traits of species (at least at the Duke Forest site). Species with higher critical thermal maxima had greater forager densities at higher temperatures than did species with lower critical thermal maxima. Our results indicate that while climatic warming may alter patterns of foraging activity in predictable ways, these shifts vary among species and between sites. More southerly sites and species with lower critical thermal maxima are likely to be at greater risk to ongoing climatic warming.  相似文献   

18.
The factors that affect resource selection by a foraging herbivore can vary according to the resources or conditions associated with particular levels of organization in the environment, and to the scales over which the herbivore perceives and responds to those resources and conditions. To investigate the role of forage in this hierarchical process, we studied resource selection by a mixed‐feeding large herbivore, the impala (Aepyceros melampus). We focussed on three spatial scales: plant species, feeding station and feeding patch. In paired sites where impala were and were not observed, we identified the plant species from which animals fed, the attributes of the plants, and the characteristics of the broader site. Across all three scales, plant species available as forage was central in determining resource selection by impala. At the species level, that effect was modified by the nutritional quality (greenness) and whether it was during a period of forage abundance or scarcity (season). At the feeding‐station level, overall greenness and biomass of the station were important, but their effects were modified by the season. At the feeding‐patch level, broader‐scale factors such as the type of vegetation cover had an important influence on resource selection. The grass Panicum maximum was a preferred forage species and a key resource determining the locations of feeding impala. Our findings support the idea that selection by a foraging herbivore at fine scales (i.e. diet selection) can have consequences for broader‐scale selection that result in observed patterns of habitat use and animal distribution.  相似文献   

19.
Animals use a variety of proximate cues to assess habitat quality when resources vary spatiotemporally. Two nonmutually exclusive strategies to assess habitat quality involve either direct assessment of landscape features or observation of social cues from conspecifics as a form of information transfer about forage resources. The conspecific attraction hypothesis proposes that individual space use is dependent on the distribution of conspecifics rather than the location of resource patches, whereas the resource dispersion hypothesis proposes that individual space use and social association are driven by the abundance and distribution of resources. We tested the conspecific attraction and the resource dispersion hypotheses as two nonmutually exclusive hypotheses explaining social association and of adult female caribou (Rangifer tarandus). We used location data from GPS collars to estimate interannual site fidelity and networks representing home range overlap and social associations among individual caribou. We found that home range overlap and social associations were correlated with resource distribution in summer and conspecific attraction in winter. In summer, when resources were distributed relatively homogeneously, interannual site fidelity was high and home range overlap and social associations were low. Conversely, in winter when resources were distributed relatively heterogeneously, interannual site fidelity was low and home range overlap and social associations were high. As access to resources changes across seasons, caribou appear to alter social behavior and space use. In summer, caribou may use cues associated with the distribution of forage, and in winter caribou may use cues from conspecifics to access forage. Our results have broad implications for our understanding of caribou socioecology, suggesting that caribou use season‐specific strategies to locate forage. Caribou populations continue to decline globally, and our finding that conspecific attraction is likely related to access to forage suggests that further fragmentation of caribou habitat could limit social association among caribou, particularly in winter when access to resources may be limited.  相似文献   

20.
The purpose of this study was to test the hypothesis that foraging sand fiddler crabs. Uca pugilator (Bosc), move through the habitat in response to low substratum food levels even though these movements may take the crabs considerable distances from the safety of the burrow area. Chl a and ATP concentrations were used as measures of food density in foraged and unforaged substratum. Field and laboratory feeding experiments showed that crab foraging intensity in a habitat patch was directly correlated with food density in the patch either in the presence or absence of alternative food patches. Other experiments showed that sand fiddlers can respond to differences in food level on a scale of millimeters and do this by probing the substratum with minor chelae. Food levels in aggregations of non-ingested particles harvested by sand fiddlers, feeding pellets, correspond to low foraging intensities predicted from foraging experiments and crabs exhibit low foraging intensities on substratum patches derived from feeding pellets. Substratum food levels in two distinct areas corresponded to high predicted foraging intensities and there was no consistent trend in the level of food in the burrow vs. the nonburrow microhabitats. These results suggest that the movements of foraging sand fiddlers are to some extent controlled by the reduction in substratum food levels due to feeding during a single foraging episode. Sand fiddlers can extract over 70% of the food from harvested substratum over a broad range of substratum food densities but harvest only 42% of the available substratum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号