首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
While an aeration tank in an activated sludge process is often operated with high dissolved oxygen (DO) concentration to ensure organic degradation and nitrification, it may be operated at low DO concentration to reduce energy consumption and achieve desired denitrification. The ASM1 (Activated Sludge Model No. 1) can be used to describe the activated sludge process if the nitrification and denitrification occur either during different phases or in different tanks, but it may encounter problems in simulating the denitrification phenomenon caused by low DO concentration in the aeration tank. In the present work, we developed a model integrating the ASM1 kinetics and a biofloc model to account for the actual anoxic and aerobic rates. Oxygen was assumed the only substrate of both bio-kinetically and flux limiting in the flocs and its dispersion coefficient was estimated as 1.2 × 10−4 m2 day−1 by using a set of measured effluent qualities of a full-scale wastewater treatment plant (WWTP) operating at low DO concentration (∼0.80 mg L−1) for 60 days. Simulation studies predicted the optimal DO level of 0.36 mg L−1 which would lead to minimum total nitrogen of 15.7 mg N L−1 and also showed the insignificance of the addition of carbon source for nitrogen removal for the operation under study. The developed model may be helpful for process engineers to predict the plant behaviors under various configurations or operating strategies.  相似文献   

2.
《Process Biochemistry》2007,42(4):715-720
A comparative study to produce the correct influent for Anammox process from anaerobic sludge reject water (700–800 mg NH4+-N L−1) was considered here. The influent for the Anammox process must be composed of NH4+-N and NO2-N in a ratio 1:1 and therefore only a partial nitrification of ammonium to nitrite is required. The modifications of parameters (temperature, ammonium concentration, pH and solid retention time) allows to achieve this partial nitrification with a final effluent only composed by NH4+-N and NO2-N at the right stoichiometric ratio. The equal ratio of HCO3/NH4+ in reject water results in a natural pH decrease when approximately 50% of NH4+ is oxidised. A Sequencing batch reactor (SBR) and a chemostat type of reactor (single-reactor high activity ammonia removal over nitrite (SHARON) process) were studied to obtain the required Anammox influent. At steady state conditions, both systems had a specific conversion rate around 40 mg NH4+-N g−1 volatile suspended solids (VSS) h−1, but in terms of absolute nitrogen removal the SBR conversion was 1.1 kg N day−1 m−3, whereas in the SHARON chemostat was 0.35 kg N day−1 m−3 due to the different hydraulic retention time (HRT) used. Both systems are compared from operational (including starvation experiments) and kinetic point of view and their advantages/disadvantages are discussed.  相似文献   

3.
Ex situ nitrification followed by denitrification inside the landfill has been recommended to remove ammonia from leachate. The effects of increasing nitrate load and decreasing organic carbon content in the injected leachate on the denitrifying capacity of municipal solid waste (MSW) were investigated. Results showed that MSW possesses a high denitrification capacity. Nitrate reduction could be initiated within 48 h after the first addition of nitrate. Nitrate reduction rate increased with the increasing nitrate loading concentration. When the nitrate loading concentration was increased to 850 mg L?1, nitrate reduction rate reached up to 35 mg L?1 h?1. Nitrite accumulation could be found after the addition of nitrate in each test. However, the maximum nitrite accumulation efficiency declined with increased nitrate load. Organic carbon played an important role in the reduction of nitrate, and both endogenous and exogenous organic materials could act as electron donors.  相似文献   

4.
《Process Biochemistry》2010,45(4):573-580
A batch test procedure, based on manometric measurements, was used to study the Anammox process, in particular the inhibition due to nitrite and the effects of hydroxylamine and hydrazine, indicated as possible intermediates of the process. The maximum nitrite removal rate (MNRR) was measured. The method showed good reliability with a standard error of 4.5 ± 3.3% (n: 41). All the tests were carried out on samples taken from a pilot plant with Anammox suspended biomass. The tests were used also to monitor the reactor activity. By testing different spiked additions of nitrite (10–75 mg NO2-N L−1), a short-term inhibition, with more than 25% MNRR decrease, was found at concentrations higher than 60 mg NO2-N L−1. Repeated additions of nitrite higher than 30 mg NO2-N L−1 caused losses of activity. After a complete loss of activity, spiked additions of hydroxylamine (30 mg N L−1 in total) determined a 20% permanent recovery. Low amounts of the intermediates (1–3 mg N L−1) applied on partially inhibited samples and uninhibited samples produced temporary increases in activity up to 50% and 30%, respectively.  相似文献   

5.
This study evaluated the ethanol addition as a strategy for start-up and acclimation of a pilot scale (1300 L) anaerobic sequencing batch biofilm reactor (AnSBBR) for the treatment of municipal landfill leachate with seasonal biodegradability variations. The treatment was carried out at ambient temperature (23.8 ± 2.1 °C) in the landfill area. In a first attempt, the leachate collected directly from landfill showed to be predominantly recalcitrant to anaerobic treatment and the acclimation was not possible. In a second attempt, adding ethanol to leachate, the reactor was successfully acclimated. After acclimation, without ethanol addition, the CODTotal influent ranged from 4970 to 13040 mg L?1 and the removal efficiencies ranged from 12.1% to 70.7%. A final test was carried out increasing the ammonia and free-ammonia concentration from 2486 mgN L?1 and 184 mgN L?1 to 4519 mgN L?1 and 634 mgN L?1, respectively, with no expressive inhibition verified. The start-up strategy was found to be feasible, providing the acclimation of the biomass in the AnSBBR, and maintaining the biomass active even when the leachate was recalcitrant.  相似文献   

6.
Poultry manure contains high levels of ammonia, which result in a suboptimal bioconversion to methane in anaerobic digesters (AD). A simultaneous process of nitrification, Anammox and denitrification (SNAD) in a continuous granular bubble column reactor to treat the anaerobically digested poultry manure was implemented. Thus, two strategies to achieve high efficiencies were proposed in this study: (1) ammonia overload to suppress nitrite oxidizing bacteria (NOB) and (2) gradual adaptation of the partial nitrification–Anammox (PN–A) biomass to organic matter. During the NOB-suppression stage, microbial and physical biomass characterizations were performed and the NOB abundance decreased from 31.3% to 3.3%. During the adaptation stage, with a nitrogen loading rate of 0.34 g L−1 d−1, a hydraulic retention time of 1.24 d and an influent COD/N ratio of 2.63 ± 0.02, a maximum ammonia and total nitrogen removal of 100% and 91.68% were achieved, respectively. The relative abundances of the aerobic and the anaerobic ammonia-oxidizing bacteria were greater than 35% and 40% respectively, during the study. These strategies provided useful design tools for the efficient removal of nitrogen species in the presence of organic matter.  相似文献   

7.
Appropriate biomass retention in reactors is a crucial factor for the accurate operation of the anaerobic ammonium oxidation (Anammox) process due to the slow growth rate of this bacterial population. In the present work two different approaches were studied and compared to improve Anammox biomass retention minimizing wash-out events: (1) formation of granular biomass using influents with high inorganic salts concentrations by production of saline precipitates acting as promoters for biomass aggregation (reactor SBR1); (2) use of zeolite particles as carrier material for Anammox biofilm formation (reactor SBR2). Both alternatives allowed the reduction of biomass wash-out in the effluent to values as low as 18 mg VSS L−1 (SBR1) and 3 mg VSS L−1 (SBR2). As a consequence the biomass concentration increased significantly inside each reactor. In the case of the SBR2 the specific Anammox activity (SAA) of the biomass was also enhanced increasing from 0.35 up to 0.5 g N (g VSS d)−1. Both approaches allow the improvement of the biomass retention, the first option indicating the suitability of the Anammox process to treat wastewaters with high salt content. The second one with zeolite particles could be a good strategy to apply the Anammox process to low salinity wastewaters.  相似文献   

8.
《Process Biochemistry》2004,39(10):1223-1229
Partial nitrification to nitrite is technically feasible and economically favourable, especially when wastewaters contained high ammonium concentrations or low C/N ratios. Partial nitrification can be obtained by selectively inhibiting nitrite-oxidizing bacteria (NOB) through appropriate regulation of the pH, temperature and dissolved oxygen (DO) concentrations. The effect of pH, DO levels and temperature on ammonia oxidation rate and nitrite accumulation was investigated in order to determine the optimal conditions for partial nitrification of synthetic wastewater with high ammonia concentration. The experiments performed at low DO levels to lower the total oxygen needed in the nitrification step, which means great saving in aeration. During the start-up stage pH and DO were set at 7.0–7.4 and 0.5 mg/l, respectively. The reactor was operated until complete partial nitrification was achieved. The effect of pH, DO on partial nitrification was studied, as pH was kept at 6.5, 7.5, 8.5, 9.5 and DO at 0.5±0.2, 1.5±0.2 and 2.5±0.2 mg/l, and temperature at 30 °C. The influence of temperature on ka value was studied by keeping pH=7.5, DO=1.5 mg/l and temperature was controlled at 12, 20 and 30 °C, respectively. The results showed that partial nitrification to nitrite was steadily obtained and the optimal operational parameters were pH=7.5, DO=1.5 mg/l, T=30 °C based on ammonia oxidation rate and nitrite accumulation rate. The maximum ka was achieved and to be 115.1×10−3 mg NH4+–N (mg VSS h)−1 under this condition.  相似文献   

9.
Biofilm-internal and external mass transfer resistance was investigated in laboratory-scale nitrifying suspended carrier reactors (SCR), demonstrating the importance of these factors for these increasingly popular reactor systems. Controlled respirometric experiments revealed that oxygen mass transfer resistance regulated the process performance up to a DO concentration of 20 mg L?1. External mass transfer exerts significant control over the overall reaction rate, thus biofilm models must adequately account for this resistance. Whilst carrier type and characteristics have some influence, biofilm structure seems primarily responsible for differences in mass transfer and nitrification performance. Heterogeneous biofilms grown under high ammonium loadings had much greater area-specific rates than the gel-like biofilms sourced from low loaded systems.Being a mass-transfer controlled process, the overall reaction rate of these SCR systems could be immediately increased by elevating the DO above normal operating levels (up to 20 mg L?1). Long-term oxygen deficiency in the lower biofilm sections does not negatively affect the biomass activity.  相似文献   

10.
The feasibility of the anaerobic ammonium oxidation (Anammox) process to treat wastewaters containing antibiotics was studied in this work. Concentrations ranging from 100 to 1000 mg L?1 for tetracycline hydrochloride and from 250 to 1000 mg L?1 for chloramphenicol were tested in batch assays. A strong inhibitory effect was observed for both antibiotics.A concentration of 20 mg L?1 of chloramphenicol was continuously added to an Anammox Sequential Batch Reactor (SBR) system, causing a decrease of the nitrogen removal efficiency of 25%. The Specific Anammox Activity (SAA) of the biomass also decreased from 0.25 to 0.05 g N (g VSS d)?1. Similar effects were observed when 50 mg L?1 of tetracycline hydrochloride were continuously fed. Both antibiotics did not cause any changes in the physical properties of the biomass. A previous degradation step could be necessary in order to treat wastewaters containing inhibitory concentrations of antibiotics by the Anammox process.  相似文献   

11.
During long-term extra-terrestrial missions, food is limited and waste is generated. By recycling valuable nutrients from this waste via regenerative life support systems, food can be produced in space. Astronauts’ urine can, for instance, be nitrified by micro-organisms into a liquid nitrate fertilizer for plant growth in space. Due to stringent conditions in space, microbial communities need to be be defined (gnotobiotic); therefore, synthetic rather than mixed microbial communities are preferred. For urine nitrification, synthetic communities face challenges, such as from salinity, ureolysis, and organics.In this study, a synthetic microbial community containing an AOB (Nitrosomonas europaea), NOB (Nitrobacter winogradskyi), and three ureolytic heterotrophs (Pseudomonas fluorescens, Acidovorax delafieldii, and Delftia acidovorans) was compiled and evaluated for these challenges. In reactor 1, salt adaptation of the ammonium-fed AOB and NOB co-culture was possible up to 45 mS cm−1, which resembled undiluted nitrified urine, while maintaining a 44 ± 10 mg NH4+–N L−1 d−1 removal rate. In reactor 2, the nitrifiers and ureolytic heterotrophs were fed with urine and achieved a 15 ± 6 mg NO3–N L−1 d−1 production rate for 1% and 10% synthetic and fresh real urine, respectively. Batch activity tests with this community using fresh real urine even reached 29 ± 3 mg N L−1 d−1. Organics removal in the reactor (69 ± 15%) should be optimized to generate a nitrate fertilizer for future space applications.  相似文献   

12.
《Ecological Engineering》2007,29(2):125-132
We previously reported that kenaf (Hibiscus cannabinus L.) planted in a zeolite-bed filter-ditch system provided highly effective treatment of wastewater. Here we compared that system with treatment in fallow paddy fields irrigated in different ways in a greenhouse. Paddy soil was a useful alternative to zeolite as the bed filter material. The efficiency of removal of N and P under furrow irrigation and flooding was 82–92% of that of the zeolite system. Most kenaf roots were distributed in water with a high dissolved oxygen (DO) concentration and a high redox potential; few roots grew in reducing soil under water. The roots distributed in the water contributed most to wastewater treatment. A low DO concentration (0.3 mg L−1) decreased the efficiency of N and P removal. However, nightly low DO concentration (near 0 mg L−1) alternating with daily high DO concentration did not seriously restrict the efficiency. An increase of alpha-naphthylamine oxidation activity in kenaf roots at low DO concentration is discussed in regard to induction of an oxygen-protective enzyme.  相似文献   

13.
In order to improve the water quality in shrimp aquaculture operated under low-salinity conditions, a sequencing batch reactor (SBR) was tested for treatment of the wastewater. This water from the backwash of a single-bead filter from the Waddell Mariculture Center, South Carolina, contained high concentrations of carbon and nitrogen and was successfully treated using the SBR. By operating the reactor sequentially in aerobic, anoxic and aerobic modes, nitrification and denitrification were achieved, as well as removal of carbon. Specifically, the initial chemical oxygen demand (COD) concentration of 1201 mg l−1 was reduced to 32 mg l−1 within 8 days of reactor operation. Ammonia in the sludge was nitrified within 3 days. The denitrification of nitrate was achieved by the anoxic process and total removal of nitrate was observed.  相似文献   

14.
The hybrid bioreactor landfill was promising in solid waste management. In the work, the nitrogen removal and nitrogen transformation in hybrid bioreactor landfill with sequencing of facultative anaerobic and aerobic conditions was explored. The result showed that the combination of facultative anaerobic and aerobic conditions in the hybrid bioreactor landfill was indeed effective in eliminating ammonia both from the leachate and the refuse thoroughly. About 72% of nitrogen was reduced from the landfilled fresh refuse through the operation of 357 days. At the end of the experiment, the concentrations of COD, ammonia, nitrate and TN in the leachate decreased to 399.2 mg l?1, 20.6 mg N l?1, 3.7 mg N l?1 and 25.3 mg N l?1, respectively.  相似文献   

15.
To achieve nitritation from complete-nitrification seed sludge at room temperature of 19 ± 1 °C, a lab-scale sequencing batch reactor (SBR) treating domestic wastewater with low C/N ratios was operated to investigate the control and optimization of nitrifying communities. Ammonia oxidizing bacteria (AOB) dominance was enhanced through the combination of low DO concentrations (<1.0 mg/L) and preset short-cycle control of aeration time. Nitritation was successfully established with NO2?-N/NOx?-N over 95%. To avoid the adverse impact of low DO concentrations on AOB activities, DO concentrations were increased to 1–2 mg/L. At the normal DO levels and temperatures, on-line control strategy of aerobic durations maintained the stability of nitritation with nitrite accumulation rate over 95% and ammonia removal above 97%. Fluorescence in-situ hybridization (FISH) analysis presented that the maximal percentage of AOB in biomass reached 10.9% and nitrite oxidizing bacteria (NOB) were washed out.  相似文献   

16.
The extensive prospects of violacein in the pharmaceutical industry have attracted increasing interest. However, the fermentation levels of violacein are currently inadequate to meet the demands of industrial production. This study was undertaken to develop an efficient process for the production of violacein by recombinant Citrobacter freundii. The effects of dissolved oxygen (DO) and pH on cell growth and violacein production in batch cultures were investigated first. When the DO and pH of the medium were controlled at around 25% and 7.0, respectively, the biomass and concentration of violacein were maximized. Based on the consumption of nutrients in the medium observed during batch culture, a fed-batch fermentation strategy with controlled DO and pH was implemented. By continuously feeding glycerol, NH4Cl, and l-tryptophan at a constant feeding rate of 16 mL h−1, the final concentration of violacein reached 4.13 g L−1, which was 4.09-fold higher than the corresponding batch culture, and the maximal dry cell weight (DCW) and average violacein productivity obtained for the fed-batch culture were 3.34 g DCW L−1 and 82.6 mg L−1 h−1, respectively. To date, this is the first report on the efficient production of violacein by genetically engineered strains in a fermentor.  相似文献   

17.
《Process Biochemistry》2007,42(3):363-373
Methane (CH4) and nitrous oxide (N2O) are important greenhouse gases, because of their contribution to the global greenhouse effect. The present study assessed emissions of N2O and CH4 from constructed wetland microcosms, planted with Phragmites australis and Zizania latifolia, when treating wastewater under different biological oxygen demand (BOD) concentration conditions. The removal rate was 95% for BOD and more than 80% for COD in all three pollutant concentrations, both plants’ removal rates of pollutants were at almost the same level, and both were found to resist BOD concentrations as high as 200 mg L−1. When BOD concentrations fell below 200 mg L−1, the soil plant units reached an average of 80–92% T-N and T-P removal rates; however, as the concentrations increased to 200 mg mg L−1 or when during the initial phases of winter, the removal rates for T-N and T-P decreased to less than 70%. With NH3-N removal, the influences of BOD concentrations and air temperature were more obvious. When BOD concentrations increased to 100 mg L−1 after October, an obvious decrease in NH3-N removal was detected; almost no nitrification occurred beginning in December at BOD concentrations of 200 mg mg L−1. N2O and CH4 emissions showed obvious seasonal changes; higher emissions were observed with higher BOD concentrations, especially among Z. latifolia units. The enumeration of methane-oxidizing bacteria and methane-producing bacteria was also conducted to investigate their roles in impacting methane emissions and their relationships with plant species. The pollutant purification potentials of P. australis and Z. latifolia plant units during wastewater treatment of different pollutant concentrations occurred at almost the same levels. The nutrient outflow and methane flux were consistently higher with Z. latifolia units and higher concentrations of BOD. The more reductive status and higher biomass of methanogens may be the reason for the lower nitrification and higher CH4 emissions observed with Z. latifolia units and higher concentration systems. The Z. latifolia root system is shallow, and the activity of methanotrophs is primarily confined to the upper portion of the soil. However, the root system of P. australis is deeper and can oxidize methane to a greater depth. This latter structure is more favorable as it is better for reducing methane emissions from P. australis soil plant systems.  相似文献   

18.
The main objective of this study was to determine the treatment capacity of well-mineralized peat in vertical and horizontal flow filters designed to reduce phosphorus, nitrogen and organic matter in municipal wastewater from the town of Tapa and landfill leachate in Väätsa, Estonia. Two identically designed onsite experiments were conducted using the following filter systems: (a) a vertical flow (VF) peat filter, (b) a vertical flow peat/ash sediment filter (both materials in equal volumes) followed by a horizontal flow (HF) peat filter. Sphagnum peat and hydrated oil-shale ash (ash sediment) was used. In our experiments, one treated municipal wastewater over 6 months and another treated landfill leachate over 12 months. In both cases, effluent from a conventional treatment (aerated activated sludge treatment) plant was used. The median value of total phosphorus (TP) concentration in Väätsa landfill leachate was 3.4 mg P L?1 and in municipal wastewater from Tapa 4.9 mg P L?1. The reduction of TP in VF peat filters during the first 6 months was 58% and 63%, and in peat/ash sediment filters 94% and 67% for the Tapa experiment and the Väätsa experiment, respectively. Both experiments demonstrated that the P-removal efficiency in VF peat filters begins to decrease after 6 months of operation. The purification efficiency in HF filters fluctuated, and no significant removal of TP was found. In the removal of organic matter (BOD, COD values) and nitrogen, the best results were obtained in VF peat filters.  相似文献   

19.
The dairy industry is generally considered to be the largest source of food processing wastewater in many countries. The highly variable nature of dairy wastewaters in terms of volumes and flowrates and in terms of high organic materials contents such as COD 921–9004 mg L−1, BOD 483–6080 mg L−1, TN of 8–230 mg L−1 and SS of 134–804 mg L−1 makes the choice of an effective wastewater treatment regime difficult. A high performance bioreactor, an aerobic jet loop reactor, combined with a ceramic membrane filtration unit, was used to investigate its suitability for the treatment of the dairy processing wastewater. The oxygen transfer rates of the bioreactor were found to be very high (100–285 h−1) on the operating conditions. A loading rate of 53 kg COD m−3 d−1 resulted in 97–98% COD removal efficiencies under 3 h hydraulic retention time. The high MLSS concentrations could be retained in the system (up to 38,000 mg L−1) with the contribution of UF (ultrafiltration) unit. During the filtration of activated sludge, the fluxes decreased with increasing MLSS. Cake formation fouling was determined as dominant fouling mechanisms. The results demonstrate that jet loop membrane bioreactor system was a suitable and effective treatment choice for treating dairy industry wastewater.  相似文献   

20.
The response of a laboratory trickling filter to a step increase in pentachlorophenol (PCP) feed concentration was analyzed using continuous stirred tank (CSTR) and plug flow reactor (PFR) models. The CSTR model provided a slightly better fit to experimental data than the plug flow model when specific growth rate, μ, and PCP-degrading biomass concentration before the shock load, X0, were variable parameters but was clearly superior when the mean residence time, τ, was added as a third parameter. The three-parameter CSTR model accurately represented six of seven concentration response curves corresponding to step increases in PCP feed concentration of 12–165 mg l−1 and 20–150 mg l−1. The continuing improvement in system response to repetitive 20–150 mg l−1 shock loads was reflected by a monotonic increase in the optimal estimates of initial rate of biomass production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号