首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 316 毫秒
1.
In this study, the saccharification and fermentation of the by-product of starch manufacture, potato pulp, were investigated. Analytic results of the components show that the potato pulp contains large amounts of starch, cellulose, and pectin. A commercial enzyme from Acremonium cellulolyticus was found to be highly efficient in the saccharification of potato pulp, since it exhibited high pectinase, α-amylase, and cellulase activities. Hydrothermal treatment of the potato pulp increased the saccharification rate, with a corresponding glucose concentration of 114 g/L and yield of 68% compared to the glucose concentration of 47 g/L and yield of 28% in the untreated case. The hydrolyzate could be used as both nitrogen and carbon sources for ethanol fermentation, showing that bioconversion of potato pulp to ethanol is feasible.  相似文献   

2.
Upgrading of potato pulp, a byproduct stream from industrial manufacture of potato starch, is important for the continued economic competitiveness of the potato starch industry. The major part of potato pulp consists of the tuber plant cell wall material which is particularly rich in galactan branched rhamnogalacturonan I type pectin. In the work reported here, the release of high-molecular weight pectinaceous dietary fiber polysaccharides from starch free potato pulp was accomplished by use of a multicomponent pectinase preparation from Aspergillus aculeatus (Viscozyme® L). The enzyme reaction conditions for the solubilization were optimized via a surface response design to be addition of 0.27% Viscozyme® L by weight of potato pulp substrate dry matter, 1 h treatment at pH 3.5, 62.5 °C. Analysis of the molecular size and monomer composition of the enzymatically released fibers showed that they were rich in galactose and uronic acid indicating that the solubilized fibers were mainly made up of galactan branched rhamnogalacturonan I type pectin polymers.  相似文献   

3.
The elm leaf beetle, Xanthogaleruca luteola, is a serious pest of elm trees in urban areas. Partial biochemical characterization of pectinases and cellulases was conducted using the larval digestive system of the pest. Midgut extracts from larvae showed optimum activity for pectinase and cellulase against pectin and carboxymethyl cellulose, respectively, under acidic conditions (pH 6). Pectinases and cellulases were respectively more stable under acidic conditions (pH 4–7) and slightly acidic conditions (pH 5–7) than under highly acidic and alkaline conditions. However, the enzymes were more stable in slightly acidic conditions (pH 6) when incubation time was increased. Maximum activity for the pectinases and cellulases incubated at different temperatures was observed at 45 and 50 °C, respectively. Mg2+ remarkably increased pectinase activity, and cellulase activity increased significantly in the presence of Ca2+ and Mg2+. Sodium dodecyl sulfate significantly decreased pectinase and cellulase activity. The Michaelis–Menten constant (KM) and the maximal reaction velocity (Vmax) values for pectinase were 2 mg·mL? 1 and 0.017 mmol·min? 1·mg? 1 protein toward pectin, respectively. Zymogram analyses revealed the presence of one and five bands of pectinase and cellulase activity, respectively, in the larval midgut extract.  相似文献   

4.
Simultaneous saccharification and fermentation (SSF) of renewable cellulose for the production of 3-phenyllactic acid (PhLA) by recombinant Escherichia coli was investigated. Kraft pulp recovered from biomass fractionation processes was used as a model cellulosic feedstock and was hydrolyzed using 10–50 filter paper unit (FPU) g−1 kraft pulp of a commercial cellulase mixture, which increased the glucose yield from 21% to 72% in an enzyme dose-dependent manner. PhLA fermentation of the hydrolyzed kraft pulp by a recombinant E. coli strain expressing phenylpyruvate reductase from Wickerhamia fluorescens TK1 produced 1.9 mM PhLA. The PhLA yield obtained using separate hydrolysis and fermentation was enhanced from 5.8% to 42% by process integration into SSF of kraft pulp (20 g L−1) in a complex medium (pH 7.0) at 37 °C. The PhLA yield was negatively correlated with the initial glucose concentration, with a five-fold higher PhLA yield observed in culture medium containing 10 g L−1 glucose compared to 100 g L−1. Taken together, these results suggest that the PhLA yield from cellulose in kraft pulp can be improved by SSF under glucose-limited conditions.  相似文献   

5.
《Process Biochemistry》2010,45(9):1494-1503
Lactose, an inexpensive, soluble substrate, offers reasonably good induction for cellulase production by Trichoderma reesei. The fungus does not uptake lactose directly. Lactose is hydrolyzed to extracellular glucose and galactose for subsequent ingestion. The roles of this extracellular hydrolysis step were investigated in this study. Batch and continuous cultures were grown on the following substrates: lactose, lactose–glycerol mixtures, glucose, galactose, and glucose–galactose mixtures. Cell growth, substrate consumption, lactose hydrolysis, and lactase and cellulase production were followed and modeled. Cells grew much faster on glucose than on galactose, but with comparable cell yields. Glucose (at >0.3 g/L) repressed the galactose consumption. Cellulase synthesis was growth-independent while lactase synthesis was growth-dependent, except at D < ∼0.065 h−1 where a basal level lactase production was observed. For cellulase production the optimal D was 0.055–0.065 h−1 where the enzyme activity and productivity were both near maxima. The model suggested that lactase synthesis was subject to weak galactose repression. As the galactose concentration increased at high D (>0.1 h−1), lactase synthesis became repressed. The insufficient lactase synthesis limited the lactose hydrolysis rate. Extracellular lactose hydrolysis was concluded to be the rate-limiting step for growth of T. reesei Rut C30 on lactose.  相似文献   

6.
《Process Biochemistry》2010,45(6):954-960
A psychrotolerant yeast Guehomyces pullulans 17-1 isolated from sea sediment in Antarctica could produce high level (17.2 U/ml) of both extracellular and cell-bound β-galactosidase. The extracellular β-galactosidase in the supernatant of the cell culture of the psychrotolerant yeast G. pullulans 17-1 was purified to homogeneity with a 2.4-fold increase in specific activity as compared to the supernatant by concentration, gel filtration chromatography (Sephadex G-200) and cation-exchange chromatography (CM-Sepharose Fast Flow cation-exchange). The molecular mass of the purified extracellular β-galactosidase was estimated to be 335 kDa. The optimal temperature and pH of the purified β-galactosidase were 50 °C and 4.0, respectively. Km and Vmax values of the purified β-galactosidase for o-nitrophenyl-β-d-galactopyranoside were 3.3 mM and 9.2 μmol/min. Lactose can be converted into glucose and galactose and a large amount of reducing sugar can be released from milk under catalysis of the purified β-galactosidase. The matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectroscopy identified a peptide ALEEYKK which is the conserved motif of the β-galactosidases from other yeasts. The results show that the enzyme may have potential applications in food industry.  相似文献   

7.
In this study, 115 marine bacterial isolates were screened for cellulase enzymatic activity and enzyme with a molecular mass of 40 kDa was purified from culture supernatant of the marine bacterium Bacillus sp. H1666 using ion exchange and size exclusion chromatography method. Growth of bacterial strain H1666 with efficient cellulase enzyme production was observed on untreated wheat straw and rice bran. The biochemical properties of the extracted cellulase were studied and enzyme was found active over a range of pH 3–9. The optimum cellulase activity was observed at pH 7 and temperature 50 °C. The enzyme was also shown to be slightly thermo-stable with 40% residual activity at 60 °C for 4 h. The potential applicability of enzyme was tested on dried green seaweed (Ulva lactuca) and 450 mg/g increase in glucose yield was obtained after saccharification. MALDI TOF–TOF analysis of cellulase peptide fingerprint showed similarity to the sequence of the glycoside hydrolase family protein.  相似文献   

8.
The present study demonstrates covalent immobilization of Kluyveromyces lactis β galactosidase on functionalized multi-walled carbon nanotubes (MWCNTs). Highly efficient surface modification of MWCNTs was achieved by glutaraldehyde for binding greater amount of enzyme. X-ray diffraction analysis and UV visible spectroscopy of MWCNTs showed them to be entirely dispersive in aqueous solution. Transmission electron microscopy showed that MWCNTs were of 20 nm size. Thermogravimetric analysis further revealed the stability of glutaraldehyde modified MWCNT as an ideal matrix for enzyme immobilization. The optimal pH for soluble and immobilized β galactosidase was observed at pH 7.0 while the optimal operating temperatures were observed at 40 °C and 50 °C, respectively. Moreover, our findings demonstrated that β galactosidase immobilized on surface functionalized MWCNTs retained greater biocatalytic activity at higher galactose concentration, and upon repeated uses as compared to enzyme in solution.  相似文献   

9.
Several new types of carrier and technology have been implemented in the recent past to improve traditional enzyme immobilization which aims to enhance enzyme loading, activity and stability in order to decrease the cost of enzyme in industrial processes. Thus, the present study aimed to work out a simple and high yield procedure for the immobilization of Kluyveromyces lactis β galactosidase on a bioaffinity support, concanavalin A layered Al2O3 nanoparticles (Con A layered Al2O3-NPs). Thermogravimetric analysis of bioaffinity support revealed 6% loss in weight at 600 °C whereas its thermal decomposition was observed at 350 °C by differential thermal analysis. No significant change was noticed in the band intensity of pUC19 plasmid upon its treatment with Con A layered Al2O3-NPs. Comet assay further exhibited negligible change in tail length of comet after treating the lymphocytes by bioaffinity matrix. Atomic force microscopy revealed large surface area of Con A layered Al2O3-NPs for binding higher amounts of enzyme. Moreover, Fourier transform-infrared spectroscopy confirmed binding of β galactosidase on bioaffinity support by exhibiting broadening in peaks at 3220.61 cm−1 and 3447.27 cm−1. Soluble and immobilized β galactosidase showed same pH-optima at pH 7.0. However, immobilized enzyme exhibited enhanced pH stability and broad spectrum temperature optimum than soluble β galactosidase. Immobilized β galactosidase was found to be highly stable against product inhibition by galactose and retained 85% activity after its sixth repeated use.  相似文献   

10.
The multiple α-galactosidases from Streptomyces griseoloalbus—α-Gal I, α-Gal II and α-Gal III were purified to homogeneity by a two-step chromatographic process. The molecular masses and pI of the three enzymes were 72, 57 and 35 kDa, and 4.41, 5.6 and 6.13, respectively. α-Gal I showed N-terminal sequence homology to S. coelicolor A3(2) family 27 α-galactosidase. The optimum pH and temperature of the three α-galactosidases were 5.0, 6.5 and 5.5 and 65, 50 and 55 °C, respectively. α-Gal I was stable up to 65 °C and α-Gal II and α-Gal III up to 55 °C for 2 h. Based on the hydrolytic properties α-Gal I could be classified as a member of GH27 family and α-Gal II and α-Gal III as members of GH36 family. Metal cations like Hg2+, Ag2+ and Cu2+ inhibited enzyme activity while Mg2+ enhanced the activity of α-Gal I. Interestingly α-Gal I showed unusual tolerance to even higher concentrations of galactose, unlike the other two α-galactosidases, which were competitively inhibited by galactose. Melibiose was a competitive inhibitor of all three enzymes. Histidine, tryptophan and carboxylic residues were essential for catalytic action of the three α-galactosidases.  相似文献   

11.
A strain of Enterobacter cloacae B5 producing β-galactosidase with transglycosylation activity was isolated from the soil. Its freeze-thawed cells synthesized galacto-oligosaccharides with a high yield of 55% from 275 g/L lactose at 50 °C for 12 h. A novel β-galactosidase capable of glycosyl transfer was purified from this strain. It was a homotetramer with molecular mass of about 442 kDa. The optimal pH and temperature for hydrolysis activity on o-nitrophenyl-β-d-galactopyranoside (oNPGal) were 6.5–10.5 and 35 °C, respectively. The enzyme showed a wide range of acceptor specificity for transglycosylation and catalyzed glycosyl transfer from oNPGal to various chemicals such as galactose, glucose, fructose, arabinose, mannose, sorbose, rhamnose, xylose, cellobiose, sucrose, trehalose, melibiose, inositol, mannitol, sorbitol and salicin, resulting in novel saccharide yields ranging from 0.8% to 23.5%. A gene encoding the enzyme was cloned and the recombinant enzyme from Escherichia coli had similar transglycosylation activity to the natural enzyme.  相似文献   

12.
In this work, the hydrolysis kinetics of lactose by Aspergillus oryzae β-galactosidase was studied using the ionic exchange resin Duolite A568 as a carrier. The enzyme was immobilized using a β-galactosidase concentration of 16 g/L in pH 4.5 acetate buffer and an immobilization time of 12 h at 25 ± 0.5 °C. Next, the immobilized β-galactosidase was crosslinked using glutaraldehyde concentration of 3.5 g/L for 1.5 h. The influence of lactose concentration was studied for a range of 5–140 g/L, and the Michaelis–Menten model was fitted well to the experimental results with Vm and Km values of 0.71 U and 35.30 mM, respectively. The influence of the product galactose as an inhibitor on the hydrolysis reaction was studied. The model that was best fitted to the experimental results was the competitive inhibition by galactose with Vm, Km and Ki values of 0.77 U, 35.30 mM and 27.44 mM, respectively. The influence of temperature on the enzymatic activity of the immobilized enzyme was studied in the range of 10–80 °C, in which the temperature of the maximum activity was 60 °C, with an activation energy of 5.32 kcal/mol of lactose, using an initial concentration of lactose of 50 g/L in a pH 4.5 sodium acetate buffer solution. The thermal stability of the immobilized biocatalyst was determined to be in the range 55–65 °C. The first-order model described well the kinetics of thermal deactivation for all the temperatures studied. The activation energy of thermal deactivation from immobilized biocatalyst was 66.48 kcal/mol with a half-life of 8.9 h at 55 °C.  相似文献   

13.
β-Galactosidase is an important enzyme catalyzing not only the hydrolysis of lactose to the monosaccharides glucose and galactose but also the transgalactosylation reaction to produce galacto-oligosaccharides (GOS). In this study, β-galactosidase was immobilized by adsorption on a mixed-matrix membrane containing zirconium dioxide. The maximum β-galactosidase adsorbed on these membranes was 1.6 g/m2, however, maximal activity was achieved at an enzyme concentration of around 0.5 g/m2. The tests conducted to investigate the optimal immobilization parameters suggested that higher immobilization can be achieved under extreme parameters (pH and temperature) but the activity was not retained at such extreme operational parameters. The investigations on immobilized enzymes indicated that no real shift occurred in its optimal temperature after immobilization though the activity in case of immobilized enzyme was better retained at lower temperature (5 °C). A shift of 0.5 unit was observed in optimal pH after immobilization (pH 6.5 to 7). Perhaps the most striking results are the kinetic parameters of the immobilized enzyme; while the Michaelis constant (Km) value increased almost eight times compared to the free enzyme, the maximum enzyme velocity (Vmax) remained almost constant.  相似文献   

14.
Attempts were made to enhance cellulose saccharification by cellulase using cellulose dissolution as a pretreatment step. Four cellulose dissolution agents, NaOH/Urea solution, N-methylmorpholine-N-oxide (NMMO), ionic liquid (1-butyl-3-methylimidazolium chloride; [BMIM]Cl) and 85% phosphoric acid were employed to dissolve cotton cellulose. In comparison with conventional cellulose pretreatment processes, the dissolution pretreatments were operated under a milder condition with temperature <130 °C and ambient pressure. The dissolved cellulose was easily regenerated in water. The regenerated celluloses exhibited a significant improvement (about 2.7- to 4.6-fold enhancement) on saccharification rate during 1st h reaction. After 72 h, the saccharification yield ranged from 87% to 96% for the regenerated celluloses while only around 23% could be achieved for the untreated cellulose. Even with high crystallinity, cellulose regenerated from phosphoric acid dissolution achieved the highest saccharification rates and yield probably due to its highest specific surface area and lowest degree of polymerization (DP).  相似文献   

15.
A new strain Trichoderma koningii D-64 was isolated from Singapore soil samples. It produced cellulase, xylanase, and laccase on a variety of carbon sources. Enzyme activities of 3.8 ± 0.3, 40.3 ± 5.1, 6.6 ± 0.3 and 98.8 ± 10.3 U/mL were respectively obtained for FPase, CMCase, β-glucosidase and xylanase in a mixture of 1% cellulose and 2% wheat bran. About 70–95% saccharification efficiency of oil palm empty fruit bunch was obtained using T. koningii D-64 enzymes alone without the supplement of any other commercial enzymes. Strain T. koningii D-64 is therefore a potential cellulase producer for the efficient lignocellulosic biomass conversion to fermentable sugars.  相似文献   

16.
17.
Low exoglucanase and endoglucanase activities of marine Aspergillus niger cellulase decreased the hydrolyzing ability of cellulase. To increase the activity of halostable cellulase obtained from a marine A. niger, a cellulase with endoglucanase and exoglucanase activity was efficiently expressed by constructing a vector with promoter glaA. Exoglucanase and endoglucanase activities increased from 0.21 and 4.51 U/ml of the original strain to 0.89 U/ml and 15.12 U/ml of the transformant, respectively. Filter paper activity (FPA) increased by 7.1 folds from 0.63 to 4.47 U/ml. The release of glucose by hydrolysis of wheat straw with cellulase from the transformant was 1.37 folds higher than that with cellulase from the original strain under high salinity condition. Cellulase with endoglucanase and exoglucanase activities could be well expressed in marine A. niger. The cellulase from the transformant not only showed higher activity, but also retained halostability. An appreciate proportion of β-glucosidase, exoglucanase, endgolucanasein cellulase was important for hydrolyzing cellulose.  相似文献   

18.
To convert bleached softwood paper grade pulp into dissolving pulp for viscose application, two stages of treatments consisting of enzymatic treatment and alkaline peroxide treatment were investigated. It was found that high reactivity (about 80%) of pulp could be achieved by endoglucanases (EG)-rich industrial cellulase treatment, and the α-cellulose content as well as the viscosity of enzymatically treated pulp can be further adjusted by the alkaline peroxide treatment with certain dosages of NaOH and H2O2 to finally meet the quality requirements of dissolving pulp. The resulting pulp with 68.7% of reactivity, 92.1% of α-cellulose content, and 506.9 mL/g of pulp viscosity could be obtained after the two stages of treatments. The appropriate dosage of EG-rich cellulase was 300 IU/g bone dry pulp in the stage of enzymatic treatment, while the suitable dosages of NaOH and H2O2 were 9 wt% and 1 wt%, respectively, in the stage of alkaline peroxide treatment.  相似文献   

19.
20.
Thermally triggered reversible phase transition of elastin-like polypeptide (ELP) allows for a simple, economical and scalable procedure of protein purification. This technique is especially useful for purifying salt-requiring enzymes such as halophilic enzymes which require high salt concentration to keep natural structure and activity. In this study, a highly hydrophilic/acidic β-galactosidase cloned from halotolerant Planococcus sp.L4 was used as a target protein to apply ELP tags for purification. A high-level expression of β-galactosidase tagged with 80 repeats of Val-Pro-Gly-Val-Gly pentapeptide (galactosidase-ELP[V5-80]) was achieved in Escherichia coli BLR(DE3) at 21 °C for 24 h, accounting for around 50% of the total protein. The enzyme activity of the fusion by optimized protocol should be reached as much as 3 folds of that by rapid IPTG-induction, implying that measures to avoid possible errors during protein expression can be helpful for keeping bioactivities. The optimal condition for precipitating ELP-tagged protein was performed with a simple, rapid and sensitive method by examining the activity of supernatant after the first-round hot spin. The fusion protein aggregated effectively at 37 °C with 1.5 M ammonium sulfate and yielded highly pure protein with a recovery higher than 90% by one cycle. These results suggested that inverse transition cycling (ITC) process provides a potential for the large-scale purification of halophilic β-galactosidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号