首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
This study examined the effects of waterborne silver nanoparticles (AgNPs) on juvenile fish Piaractus mesopotamicus (“pacú”), and analyzed toxicological endpoints such as metal burdens, oxidative stress and genotoxicity in a short-term assay. Fish were individually exposed to 0 (control), 2.5, 10, and 25 μg AgNPs/L. After 24 h, silver accumulation was greater in the brain than the liver and gills at all silver concentrations. Fish exposed to higher AgNPs concentrations showed major alterations in oxidative stress markers. An increase in lipid peroxidation (LPO) levels was observed in the liver of fish exposed to 10 μg AgNPs/L with no changes in the antioxidant enzymes activities. In the case of the 25 μg AgNPs/L treatment, a hepatic activation of the enzymatic antioxidant defense occurred, and LPO levels resulted unaltered. On the other hand, the brain presented the highest LPO levels at both 10 and 25 μg AgNPs/L exposures. The AgNPs toxicity was also evidenced by the DNA damage in fish erythrocytes at higher concentrations. Summarizing, a short exposure to sublethal concentrations of AgNPs is enough to generate deleterious effects on fish, including DNA damage.  相似文献   

2.
Beginning in April 2002, three species of Florida puffer fish from around the state of Florida, USA were monitored for the presence of saxitoxin (STX). In total, 873 southern (Sphoeroides nephelus), 171 checkered (S. testudineus), and 53 bandtail (S. spengleri) puffer fish were collected between 2002 and 2006 from eight regions: Jacksonville, the Indian River Lagoon, Tequesta, the Florida Keys, Charlotte Harbor, Tampa Bay, Cedar Key, and Apalachicola. Emphasis was placed on collecting specimens from the Indian River Lagoon (IRL), where recreational harvesting of puffer fish led to 28 cases of saxitoxin puffer fish poisoning (SPFP) between January 2002 and May 2004. Southern puffer fish from the northern IRL routinely contained the highest concentrations of STX, with average levels in the skin of 1787 μg STXequiv./100 g tissue. Elevated concentrations were also found in the muscle (1102 μg STXequiv./100 g), gut contents (539 μg STXequiv./100 g), gonads (654 μg STXequiv./100 g), and liver (214 μg STXequiv./100 g). Lower, yet significant (above the action limit of 80 μg STXequiv./100 g tissue), concentrations of STX were also detected in the skin (599 μg STXequiv./100 g), muscle (233 μg STXequiv./100 g), gut contents (197 μg STXequiv./100 g), and gonads (239 μg STXequiv./100 g) of southern puffer fish from Tequesta in the southern IRL, as well as in the gonads (122 μg STXequiv./100 g) of Jacksonville southern puffer fish and the skin (265 μg STXequiv./100 g) of Tampa Bay southern puffer fish. STX concentrations above the action limit were also found in the skin of bandtail puffer fish from the IRL (620 μg STXequiv./100 g), Tequesta (374 μg STXequiv./100 g), and the Florida Keys (230 μg STXequiv./100 g). Checkered puffer fish collected from the IRL, Tequesta, and the Florida Keys on average were nontoxic, containing STX levels below the action limit in all tissues.  相似文献   

3.
Oxidative stress a major cause of fluoride induced toxicity and mitochondrial impairment in common in experimental rats during chronic exposure of fluoride. Attempts have been made in the present experiment to diminish oxidative damage, combined therapy with (+)-catechin hydrate (an antioxidant) and sodium meta borate (chelator) were used. Fluoride intoxication in rats was performed by using 13 mg/kg NaF and both antioxidant CH and chelator SMB were used at a concentration of 8.98 μM/kg body weight. Mixture of CH and SMB in free or in PLGA nanocapsule encapsulated form were prepared. The efficacies of those formulations were tested in combating free radical mediated oxidative insult produced by sodium fluoride (NaF). The amalgamated therapy used in this experiment was shown to reduce fluoride levels in liver, brain and kidney from 9.5, 5.5, 6.3 μg/g to 4.6, 2, 2.6 μg/g, respectively. Our result indicated that the combined chelator and antioxidant therapy in nanocapsulated drug delivery system could provide a projection in combating fluoride induced mitochondrial impairment in rat model.  相似文献   

4.
In fishes, arsenic (As) is absorbed via the gills and is capable of causing disturbance to the antioxidant system. The objective of present study was to evaluate antioxidant responses after As exposure in gills of zebrafish (Danio rerio, Cyprinidae). Fish were exposed for 48 h to three concentration of As, including the highest As concentration allowed by current Brazilian legislation (10 μg As/L). A control group was exposed to tap water (pH 8.0; 26 °C; 7.20 mg O2/L). As exposure resulted in (1) an increase (p < 0.05) of glutathione (GSH) levels after exposure to 10 and 100 μg As/L, (2) an increase of the glutamate cysteine ligase (GCL) activity in the same concentrations (p < 0.05), (3) no significant differences in terms of glutathione reductase, glutathione-S-transferase and catalase activities; (4) a significantly lower (p < 0.05) oxygen consumption after exposure to 100 μg As/L; (4) no differences in terms of oxygen reactive species generation and lipid peroxidation content (p > 0,05). In the gills, only inorganic As was detected. Overall, it can be concluded that As affected the antioxidant responses increasing GCL activity and GSH levels, even at concentration considered safe by Brazilian legislation.  相似文献   

5.
《Phytomedicine》2014,21(10):1189-1195
Oxidative stress resulting from accumulation of reactive oxygen species (ROS) is involved in cell death associated with neurological disorders such as stroke, Alzheimer's disease and traumatic brain injury. Antioxidant compounds that improve endogenous antioxidant defenses have been proposed for neural protection. The purpose of this study was to investigate the potential protective effects of total saponin in leaves of Panax notoginseng (LPNS) on oxidative stress and cell death in brain cells in vitro. Lactate dehydrogenase (LDH) assay indicated that LPNS (5 μg/ml) reduced H2O2-induced cell death in primary rat cortical astrocytes (23 ± 8% reduction in LDH release vs. control). Similar protection was found in oxygen and glucose deprivation/reoxygenation induced SH-SY5Y (a human neuroblastoma cell line) cell damage (78 ± 7% reduction vs. control). The protective effects of LPNS in astrocytes were associated with attenuation of reactive oxygen species (ROS) accumulation. These effects involved activation of Nrf2 (nuclear translocation) and upregulation of downstream antioxidant systems including heme oxygenase-1 (HO-1) and glutathione S-transferase pi 1 (GSTP1). These results demonstrate for the first time that LPNS has antioxidative effects which may be neuroprotective in neurological disorders.  相似文献   

6.
Muscle insulin resistance is linked to oxidative stress and decreased mitochondrial function. However, the exact cause of muscle insulin resistance is still unknown. Since offspring of patients with type 2 diabetes mellitus (T2DM) are susceptible to developing insulin resistance, they are ideal for studying the early development of insulin resistance. By using primary muscle cells derived from obese non-diabetic subjects with (FH +) or without (FH ?) a family history of T2DM, we aimed to better understand the link between mitochondrial function, oxidative stress, and muscle insulin resistance. Insulin-stimulated glucose uptake and glycogen synthesis were normal in FH + myotubes. Resting oxygen consumption rate was not different between groups. However, proton leak was higher in FH + myotubes. This was associated with lower ATP content and decreased mitochondrial membrane potential in FH + myotubes. Surprisingly, mtDNA content was higher in FH + myotubes. Oxidative stress level was not different between FH + and FH ? groups. Reactive oxygen species content was lower in FH + myotubes when differentiated in high glucose/insulin (25 mM/150 pM), which could be due to higher oxidative stress defenses (SOD2 expression and uncoupled respiration). The increased antioxidant defenses and mtDNA content in FH + myotubes suggest the existence of compensatory mechanisms, which may provisionally prevent the development of insulin resistance.  相似文献   

7.
We investigated the effects of physical exercise and green tea supplementation (associated or not) on biochemical and behavioral parameters in the time course of normal aging. Male Wistar rats aged 9 months were divided into groups: control, physical exercise (treadmill running), and supplemented with green tea while either performing physical exercise or not. A young control group was also studied. Physical exercise and green tea supplementation lasted 3 months. Afterwards, behavioral and biochemical tests were performed. Biochemical measurements revealed differences in antioxidant and oxidant responses in hippocampus, prefrontal cortex and striatum. Behavioral testing showed age-related memory impairments reversed by physical exercise. The association of green tea supplementation and physical exercise did not provide aged rats with additional improvements in memory or brain oxidative markers. Green tea per se significantly decreased reactive oxygen species levels and improved antioxidant defenses although it did not reverse memory deficits associated with normal aging.  相似文献   

8.
The link between brain iron homeostasis and neurodegenerative disease has been the subject of extensive research. There is increasing evidence of iron accumulation during ageing, and altered iron levels in some specific brain regions in neurodegenerative disease patients have been reported.Using graphite furnace atomic absorption spectrometry after microwave-assisted acid digestion of the samples, iron levels were determined in 14 different areas of the human brain [frontal cortex, superior and middle temporal, caudate nucleus, putamen, globus pallidus, cingulated gyrus, hippocampus, inferior parietal lobule, visual cortex of the occipital lobe, midbrain, pons (locus coeruleus), medulla and cerebellum (dentate nucleus)] of n = 42 adult individuals (71 ± 12 years old, range: 53–101 years old) with no known history or evidence of neurodegenerative, neurological or psychiatric disorders.It was found that the iron distribution in the adult human brain is quite heterogeneous. The highest levels were found in the putamen (mean ± SD, range: 855 ± 295 μg/g, 304–1628 μg/g) and globus pallidus (739 ± 390 μg/g, 225–1870 μg/g), and the lowest levels were observed in the pons (98 ± 43 μg/g, 11–253 μg/g) and medulla (56 ± 25 μg/g, 13–115 μg/g).Globally, iron levels proved to be age-related. The positive correlation between iron levels and age was most significant in the basal ganglia (caudate nucleus, putamen and globus pallidus).Compared with the age-matched control group, altered iron levels were observed in specific brain areas of one Parkinson's disease patient (the basal ganglia) and two Alzheimer's disease patients (the hippocampus).  相似文献   

9.
Dyslipidemia in patients with glycogen storage disease types Ia (GSD Ia) and III (GSD III) does not lead to premature atherosclerosis. The aim of this study was to investigate the association among serum copper (Cu), zinc (Zn), iron (Fe), and selenium (Se) concentrations, and their carrier proteins: ceruloplasmin, albumin, and related antioxidant enzyme activities [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), paraoxonase (PON), and arylesterase (ARYL)] in 20 GSD Ia and 14 III patients compared to age and sex matched 20 healthy subjects. Erythrocyte oxidative stress was measured by erythrocyte thiobarbituric acid reactive substances (eTBARSs). Hypertriglyceridemia [333 (36–890) mg/dL] in GSD Ia and hypercholesterolemia with elevated LDL-cholesterol [188 (91–313) mg/dL] and decreased HDL-cholesterol [32(23–58) mg/dL] levels in GSD III were found. Serum Cu, Fe, and Zn showed no significant differences between groups. However, Se 60 (54–94), 81 (57–127) μg/L, ceruloplasmin 21 (10–90), 27 (23–65) μg/L, and albumin 2.4 (1.7–5.1), 2.8 (1.8–4.06) g/dL levels were decreased in GSD Ia and III groups, respectively, in comparison with the controls [Se 110 (60–136) μg/L, ceruloplasmin 72 (32–94) μg/L, and albumin 4.4 (4–4.8) g/dL)]. In spite of high oxidative stress in erythrocyte detected by elevated eTBARS/Hb levels in GSD group [674.8 (454.6–948.2) for GSD Ia, 636.3 (460.9–842.1) for GSD III, and 525.6 (449.2–612.6)], the activities of CAT, SOD, ARYL, and PON in GSD patients were not different from the controls. GPx activity was decreased in GSD Ia [3.7 (1.8–7.1) U/mL] and GSD III [4.2 (2.2–8.6) U/mL] compared with healthy controls [7.1 (2.9–16.2) U/mL].In conclusion, this study supplied the data for trace elements, their carrier, and antioxidative enzymes in the patients with GSD Ia and III. The trace elements and anti-oxidative enzyme levels in GSD patients failed to explain the atherosclerotic escape phenomenon reported in these patients.  相似文献   

10.
Reversible uncoupling of the mitochondrial electron-transport chain may be one strategy to prevent intracellular oxidative stress during liver cold preservation/warm reperfusion (CP/WR) injury. 2,4-Dinitrophenol (DNP) is a potent water-soluble uncoupling agent for supplementation of the hepatic CP solution. The aim of this work was to investigate the possible influence of DNP in the CP solution on the isolated rat liver state during CP/WR. Livers were subjected to CP at 4 °C in sucrose–phosphate based solution (SPS) for 18 h, followed by WR for 60 min in vitro. The final concentration of DNP was 100 μM. DNP presence during the CP stage led to partial ATP level decrease accompanied by a significant diminution in liver TBARS and a prevention of antioxidant enzyme activity decrease (catalase, GSH-PO, GSH-Red) when compared with livers stored without DNP. After DNP wash-out during WR, an improvement in the mitochondrial functional state (higher respiratory control indices and ATP levels, and a decrease in V4 respiration rates) were observed. This was concurrent with lower TBARS levels, higher antioxidant enzyme activities and significant increase of bile production. The results suggest that reversible uncoupling may be one way to influence oxidative stress associated with hepatic cold preservation.  相似文献   

11.
Boerhaavia diffusa Linn. of family Nyctaginaceae is a known traditional medicinal plant and has been used in the treatment of many free radical mediated diseases. Excessive formation of free radicals, either reactive oxygen species (ROS) or reactive nitrogen species (RNS) is responsible for damaging various biomolecules like DNA, lipids and proteins. The present investigation was initially carried out to explore the possible link between antioxidant, oxidative DNA damage protective and α-amylase inhibitory property of B. diffusa root extract and their bioactive fraction. Our results illustrated an enhanced DPPH radical scavenging activity/antioxidant power of methanol root extract (IC50 < 250 μg/ml) than ethanol (IC50 = 250 μg/ml) and aqueous extract (IC50 > 250 μg/ml). In addition, the methanol root extract also showed better oxidative DNA damage protective activity and α-amylase inhibitory property than ethanol and aqueous root extract. Phytochemical screening of B. diffusa ethanol and methanol root extract showed the presence of saponins, alkaloids, flavonoids, glycosides and terpenoids in large amount. By means of repetitive preparatory TLC and HPLC the potent antioxidant and α-amylase inhibitory fraction was isolated from methanol root extract. Our results illustrated that DPPH radical scavenging activity (IC50 < 250 μg/ml) and oxidative DNA damage protective and α-amylase inhibitory activity of the isolated/purified bioactive compound from methanol extract were significantly closer to that of crude extract, which in turn confirm that antioxidant and antidiabetic property of methanol root extract resides in this fraction and established a significant correlation between antioxidant and inhibitory α-amylase property of this bioactive fraction compound. These profound effects of B. diffusa methanol root extract and its purified fraction against oxidative plasmid DNA damage, antioxidant and α-amylase inhibitory activity may explain its extensive use in daily life and possible health benefits.  相似文献   

12.
Arsenic, the environmental toxicant causes oxidative damage to liver and produces hepatic fibrosis. The theme of our study was to evaluate the therapeutic efficacy of liposomal and nanocapsulated herbal polyphenolic antioxidant Quercetin (QC) in combating arsenic induced hepatic oxidative stress, fibrosis associated upregulation of its gene expression and plasma TGF ß (transforming growth factor ß) in rat model.A single dose of Arsenic (sodium arsenite-NaAsO2, 13 mg/kg b.wt) in oral route causes the generation of reactive oxygen species (ROS), arsenic accumulation in liver, hepatotoxicity and decrease in hepatic plasma membrane microviscosity and antioxidant enzyme levels in liver. Arsenic causes fibrosis associated elevation of its gene expression in liver, plasma TGF ß (from normal value 75.2 ± 8.67 ng/ml to 196.2 ± 12.07 ng/ml) and release of cytochrome c in cytoplasm. Among the two vesicular delivery systems formulated with QC, polylactide nanocapsules showed a promising result compared to liposomal delivery system in controlling arsenic induced alteration of those parameters. A single dose of 0.5 ml of nanocapsulated QC suspension (QC 2.71 mg/kg b.wt) when injected to rats 1 h after arsenic administration orally protects liver from arsenic induced deterioration of antioxidant levels as well as oxidative stress associated gene expression of liver. Histopathological examination also confirmed the pathological improvement in liver. Nanocapsulated plant origin flavonoidal compound may be a potent formulation in combating arsenic induced upregulation of gene expression of liver fibrosis through a complete protection against oxidative attack in hepatic cells of rat liver.  相似文献   

13.
14.
The present study aimed to investigate in Hoplosternum littorale (Hancock, 1828) the effects of different water temperatures (10 °C, 25 °C-control group- and 33 °C) on physiologic and metabolic traits following acute (1 day) and chronic (21 days) exposures. We analyzed several biomarker responses in order to achieve a comprehensive survey of fish physiology and metabolism under the effect of this natural stressor. We measured morphological indices, biochemical and hematological parameters as well as oxidative stress markers. To evaluate energy consumption, muscle and hepatic total lipid, protein and glycogen concentrations were also quantified. Extreme temperatures exposures clearly resulted in metabolic adjustments, being liver energy reserves and plasma metabolites the most sensitive parameters detecting those changes. We observed reduced hepatosomatic index after acute and chronic exposure to 33 °C while glycogen levels decreased at both temperatures and time of exposure tested. Additionally, acute and chronic exposures to 10 °C increased liver lipid content and plasma triglycerides. Total protein concentration was higher in liver and lower in plasma after chronic exposures to 10 °C and 33 °C. Acute exposition at both temperatures caused significant changes in antioxidant enzymes tested in the different tissues without oxidative damage to lipids. Antioxidant defenses in fish failed to protect them when they were exposed for 21 days to 10 °C, promoting higher lipid peroxidation in liver, kidney and gills. According to multivariate analysis, oxidative stress and metabolic biomarkers clearly differentiated fish exposed chronically to 10 °C. Taken together, these results demonstrated that cold exposure was more stressful for H. littorale than heat stress. However, this species could cope with variations in temperature, allowing physiological processes and biochemical reactions to proceed efficiently at different temperatures and times of exposure. Our study showed the ability of H. littorale to resist a wide range of environmental temperatures and contributes for the understanding of how this species is adapted to environments with highly variable physicochemical conditions.  相似文献   

15.
In pathological conditions, the balance between reactive oxygen species (ROS) and antioxidants may shift toward a relative increase of ROS, resulting in oxidative stress. Conflicting data are available on antioxidant defenses in human failing heart and they are limited to the left ventricle. Thus, we aimed to investigate and compare the source of oxidant and antioxidant enzyme activities in the right (RV) and left (LV) ventricles of human failing hearts. We found a significant increase in superoxide production only by NADPH oxidase in both failing ventricles, more marked in RV. Despite unchanged mRNA or protein expression, catalase (CAT) and glutathione peroxidase (GPx) activities were increased, and their increases reflected the levels of Tyr phosphorylation of the respective enzyme. Manganese superoxide dismutase (Mn-SOD) activity appeared unchanged. The increase in NADPH oxidase-dependent superoxide production positively correlated with the activation of both CAT and GPx. However, the slope of the linear correlation (m) was steeper in LV than in RV for GPx (LV: m = 2.416; RV: m = 1.485) and CAT (LV: m = 1.007; RV: m = 0.354). Accordingly, malondialdehyde levels, an indirect index of oxidative stress, were significantly higher in the RV than LV. We conclude that in human failing RV and LV, oxidative stress is associated with activation of antioxidant enzyme activity. This activation is likely due to post-translational modifications and more evident in LV. Overall, these findings suggest a reduced protection of RV against oxidative stress and its potential contribution to the progression toward overt heart failure.  相似文献   

16.
Melatonin is an important antioxidant, and through its anti-inflammatory effects it can control immune responses, oxidative stress, and defense cell infiltration. Periodontitis is a disease of the oral cavity and the generation of free radicals is an important consideration in this disease. Therefore, we examined the immune-modulatory and antioxidant roles of melatonin in the treatment of periodontitis. In all, 30 male Wistar rats were randomly divided into three groups: the control group, the periodontitis-induced (PED) group, and the periodontitis+melatonin treatment (MEL+PED) group. The control group received no treatment, whereas periodontitis was induced in both the PED and the MEL+PED groups, with the MEL+PED group being treated with systemic melatonin. For the periodontitis-induced groups, the rats' mandibular first molar teeth were ligatured (3-0 cotton) in a submarginal position for 4 weeks, and then the ligature was removed. After removal of the ligature, melatonin was administered only to the MEL+PED group (an ip dose of 10 mg/kg body wt for 15 days at 11:00 PM each day). In the histological examination, the MEL+PED group, which received the melatonin, showed reduced inflammatory cytokines (IL-1β, from 97.47 to 84.24 pg/ml; TNF-α, from 0.22530 to 0.22519 pg/ml), regulated oxidative stress parameters (MDA, from 41,458 to 30,708 nmol/g; GSH, from 18,166 to 25,858 nmol/mg), and less periodontal tissue destruction (CEJ-PL, lingual, from 244.54 to 140.57 μm; buccal, from 235.6 to 158.93 μm; and CEJ-BC, lingual, from 383.65 to 287.76 μm; buccal, from 391.92 to 296.12 μm). From these findings we conclude that, even when periodontitis was induced, melatonin reduced the oxidative damage in the rats' periodontal tissue by inhibiting the inflammatory effects and by restoring the antioxidants.  相似文献   

17.
Studies show that decreased antioxidant system is related to cognitive decline. Thus we aimed to measure selenium (Se) status in Alzheimer's disease (AD) and mild cognitive impairment (MCI) elderly and compared them with a control group (CG). 27 AD, 17 MCI and 28 control elderly were evaluated. Se concentration was determined in plasma and erythrocyte by using hydride generation atomic absorption spectroscopy. Erythrocyte Se concentration in AD group was lower than CG (43.73 ± 23.02 μg/L and 79.15 ± 46.37 μg/L; p = 0.001), but not statistically different from MCI group (63.97 ± 18.26 μg/L; p = 0.156). AD group exhibited the lowest plasma Se level (34.49 ± 19.94 μg/L) when compared to MCI (61.36 ± 16.08 μg/L; p = 0.000) and to CG (50.99 ± 21.06 μg/L; p = 0.010). It is observed that erythrocyte Se decreases as cognition function does. Since erythrocyte reflects longer-term nutritional status, the data point to the importance of the relation between Se exposure and cognitive function. Our findings suggest that the deficiency of Se may contribute to cognitive decline among aging people.  相似文献   

18.
The present study was conduced to investigate the synergistic effects of combined treatments with Se-methylselenocysteine (SeMSC) and vitamin E (Vit E) in reversing oxidative stress induced by ethanol in serum and different tissues of rats. Sixty female rats were randomly divided into six groups for 30 days’ consecutive pretreatments as followed: control (I), physiological saline (II), 2.8 μg kg−1 Se as SeMSC (III), 2.8 μg kg−1 Se as sodium selenite (Na2SeO3, IV), 5 mg kg−1 α-tocopherol as α-tocopherol acetate (Vit E, V), 5 mg kg−1 α-tocopherol as α-tocopherol acetate and 2.8 μg kg−1 Se as SeMSC (VI). All animals in groups II–VI were treated by ethanol treatment to cause oxidative stress. After 6 h of ethanol treatment, the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), the contents of total antioxidant capacity (T-AOC), malondialdehyde (MDA), glutathione (GSH) and carbonyl protein (CP) in the serum, liver, heart and kidney were measured. The result showed that the individual SeSMC, Na2SeO3 and vitamin E could effectively increase the SOD, T-AOC, GSH-Px and GSH contents as well as significantly decrease the MDA and CP concentrations in the tissues of ethanol-induced rats. At the same dose on different forms of Se, SeMSC showed greater antioxidant activity than Na2SeO3. Moreover, group VI (SeMSC and α-tocopherol acetate) showed much better antioxidant activity than individual group III (SeMSC) and V (α-tocopherol acetate) due to the synergistic effect.  相似文献   

19.
The regenerative capacity of the cholestatic liver is significantly attenuated. Oval cells are hepatic stem cells involved in liver's regeneration following diverse types of injury. The present study investigated the effect of the neuropeptides bombesin (BBS) and neurotensin (NT) on oval cell proliferation as well as on hepatocyte and cholangiocyte proliferation and apoptosis in the cholestatic rat liver. Seventy male Wistar rats were randomly divided into five groups: controls, sham operated, bile duct ligated (BDL), BDL + BBS (30 μg/kg/d), BDL + NT (300 μg/kg/d). Ten days later, alpha-fetoprotein (AFP) mRNA (in situ hybridization), cytokeratin-19 and Ki67 antigen expression (immunohistochemistry) and apoptosis (TUNEL) were evaluated on liver tissue samples. Cells with morphologic features of oval cells that were cytokeratin-19(+) and AFP mRNA(+) were scored in morphometric analysis and their proliferation was recorded. In addition, the proliferation and apoptotic rates of hepatocytes and cholangiocytes were determined. Alanine aminotransferase (ALT) levels and hepatic oxidative stress (lipid peroxidation and glutathione redox state) were also estimated. The neuropeptides BBS and NT significantly reduced ALT levels and hepatic oxidative stress. Both agents exerted similar and cell type-specific effects on oval cells, hepatocytes and cholangiocytes: (a) oval cell proliferation and accumulation in the cholestatic liver was attenuated, (b) hepatocyte proliferation was increased along with a decreased rate of their apoptosis and (c) cholangiocyte proliferation was attenuated and their apoptosis was increased. These observations might be of potential value in patients with extrahepatic cholestasis.  相似文献   

20.
Recently, residual pharmaceuticals are generally recognized as relevant sources of aquatic environmental pollutants. However, the toxicological effects of these contaminants have not been adequately researched. In this study, the chronic toxic effect of carbamazepine (CBZ), an anticonvulsant drug commonly present in surface and ground water, on hepatic antioxidant status and hematological parameters of rainbow trout were investigated. Fish were exposed at sublethal concentrations of CBZ (1.0 μg/l, 0.2 mg/l and 2.0 mg/l) for 7, 21 and 42 days. Compared to the control group, fish exposed at higher concentration (0.2 mg/l or 2.0 mg/l) of CBZ showed significantly higher levels of hemoglobin, ammonia and glucose, and significantly higher plasma enzymes activities. During the exposure duration, erythrocyte count, hematocrit, mean erythrocyte hemoglobin, mean erythrocyte volume, mean color concentration and total protein content in all groups were not significantly different. At the highest test concentration (2.0 mg/l) of CBZ, oxidative stress was apparent as reflected by the significant higher lipid peroxidation and protein carbonyl levels in liver after 42 days exposure, associated with an inability to induce antioxidant enzymes activities including superoxide dismutase, glutathione peroxidase and glutathione reductase. After 42 days exposure, reduced glutathione level was significantly decreased in the fish exposed at 0.2 mg/l CBZ, compared with the control. In short, CBZ-induced physiological and biochemical responses in fish were reflected in the oxidant stress indices and hematological parameters. These results suggest that hepatic antioxidant responses and hematological parameter could be used as potential biomarkers for monitoring residual pharmaceuticals present in aquatic environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号