首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 270 毫秒
1.
Protein engineering is a powerful tool for improving the properties of enzymes. However, large changes in enzyme properties are still challenging for traditional evolution strategies because they usually require multiple amino acid substitutions. In this study, a feasible evolution approach by a combination of fragment swapping and semi-rational design was developed for the engineering of nitrilase. A chimera BaNIT harboring 12 amino acid substitutions was obtained using nitrilase from Arabis alpine (AaNIT) and Brassica rapa (BrNIT) as parent enzymes, which exhibited higher enantioselectivity and activity toward isobutylsuccinonitrile for the biosynthesis of pregabalin precursor. The semi-rational design was executed on BaNIT to further generate variant BaNIT/L223Q/H263D/Q279E with the concurrent improvement of activity, enantioselectivity, and solubility. The robust nitrilase displayed a 5.4-fold increase in whole-cell activity and the enantiomeric ratio (E) increased from 180 to higher than 300. Molecular dynamics simulation and molecular docking demonstrated that the substitution of residues on the A and C surface contributed to the conformation alteration of nitrilase, leading to the simultaneous enhancement of enzyme properties. The results obtained not only successfully engineered the nitrilase with great industrial potential for the production of pregabalin precursor, but also provided a new perspective for the development of novel industrially important enzymes.  相似文献   

2.
The nitrilases include a variety of enzymes with functional specificities of nitrilase, amidase, and hydrolase reactions. The crystal structure of the uncharacterized protein SA0302 from the pathogenic microorganism Staphylococcus aureus is solved at 1.7?Å resolution. The protein contains 261 amino acids and presents a four-layer αββα sandwich with a chain topology similar to that of a few known CN-hydrolase folds. In the crystal, the proteins are arranged as dimers whose monomers are related by a pseudo twofold rotation symmetry axis. Analysis of the sequences and structures of CN-hydrolases with known 3D structures shows that SA0302 definitely is a member of Branch 10 (Nit and NitFhit) of the nitrilase superfamily. Enzyme activities and substrate specificities of members of this branch are not yet characterized, in contrast to those of the members of Branches 1–9. Although the sequence identities between Branch 10 members are rather low, less than 30%, five conserved regions are common in this subfamily. Three of them contain functionally important catalytic residues, and the two other newly characterized ones are associated with crucial intramolecular and intermolecular interactions. Sequence homology of the area near the active site shows clearly that the catalytic triad of SA0302 is Glu41-Lys110-Cys146. We suggest also that the active site includes a fourth residue, the closely located Glu119. Despite an extensive similarity with other Nit-family structural folds, SA0302 displays an important difference. Protein loop 111–122, which follows the catalytic Lys110, is reduced to half the number of amino acids found in other Nit-family members. This leaves the active site fully accessible to solvent and substrates. We have identified conservative sequence motifs around the three core catalytic residues, which are inherent solely to Branch 10 of the nitrilase superfamily. On the basis of these new sequence fingerprints, 10 previously uncharacterized proteins also could be assigned to this hydrolase subfamily.

An animated interactive 3D complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:19  相似文献   

3.
Cyanoalanine hydratase (E.C. 4.2.1.65) is an enzyme involved in the cyanide detoxification pathway of higher plants and catalyzes the hydrolysis of β-cyano-l-alanine to asparagine. We have isolated the enzyme from seedlings of blue lupine (Lupinus angustifolius) to obtain protein sequence information for molecular cloning. In contrast to earlier reports, extracts of blue lupine cotyledons were found also to contain cyanoalanine-nitrilase (E.C. 3.5.5.4) activity, resulting in aspartic acid production. Both activities co-elute during isolation of cyanoalanine hydratase and are co-precipitated by an antibody directed against Arabidopsis thaliana nitrilase 4 (NIT4). The isolated cyanoalanine hydratase was sequenced by nanospray-MS/MS and shown to be a homolog of Arabidopsis thaliana and Nicotiana tabacum NIT4. Full-length cDNA sequences for two NIT4 homologs from blue lupine were obtained by PCR using degenerate primers and RACE-experiments. The recombinant LaNIT4 enzymes, like Arabidopsis NIT4, hydrolyze cyanoalanine to asparagine and aspartic acid but show a much higher cyanoalanine-hydratase activity. The two nitrilase genes displayed differential but overlapping expression. Taken together these data show that the so-called ‘cyanoalanine hydratase’ of plants is not a bacterial type nitrile hydratase enzyme but a nitrilase enzyme which can have a remarkably high nitrile-hydratase activity.  相似文献   

4.
Abstract The gene encoding the extracellular active-site serine β-lactamase of Streptomyces cacaoi previously cloned into Streptomyces lividans , has the information for the synthesis of a 303 amino-acid precursor. The β-lactamase as excreted by the host S. lividans ML1, has a ragged amino-terminus, indicating either the presence of a leader peptidase of poor specificity or the action of an amino-peptidase. The deduced primary structure has been confirmed by amino acid sequencing of a 10-residue stretch at the amino terminus of the mature protein and an 8-residue stretch containing the active-site serine. The S. cacaoi β-lactamase is highly homologous with the class A β-lactamases of Streptomyces albus G and Staphylococcus aureus of known three-dimensional structure. Amino acid alignments show that the S. cacaoi β-lactamase essentially differs from these two latter enzymes by short insertions and deletions that do not affect the spatial disposition of the secondary structures.  相似文献   

5.
Two Rhodococcal isolates, one possessing a nitrile hydratase and an amidase enzyme, the other an aliphatic nitrilase enzyme have been isolated. The kinetic constants for the enzymes in each isolate have been determined. This data coupled with stability tests indicate that Rhodococcus ruber NCIMB 40757, the nitrilase containing organism, should be an excellent biocatalyst for the commercial production of ammonium acrylate. This is confirmed by a fed-batch bioconversion to produce 5.7 M ammonium acrylate.  相似文献   

6.
GLYCOSIDASES IN NORMAL AND SCRAPIE MOUSE BRAIN   总被引:4,自引:2,他引:2  
Abstract— The pH optima of ten glycosidases have been determined in normal and scrapie-affected mouse brain. The enzymes α-mannosidase, α-glucosidase and β-glucosidase displayed two peaks of enzyme activity over the pH range examined.
There is a significant increase in the activity of the enzymes α-mannosidase, β-glucuronidase, N -acetyl β-D-glucosaminidase, N -acetyl β-galactosaminidase, β-glucosidase (pH 4.1), α-fucosidase and β-xylosidase in the brains of mice clinically affected with scrapie, whilst only α-mannosidase (pH 4.1), β-glucuronidase, N -acetyl-β-D-glucosinidase and N- acetyl-β-D-gaiactosaminidase are elevated before mice exhibit signs of the disease.  相似文献   

7.
Nitrilases represent a very important class of enzymes having an array of applications. In the present scenario, where the indepth information about nitrilases is limited, the present work is an attempt to shed light on the residues crucial for the nitrilase activity. The nitrilase sequences demonstrating varying degree of identity with P. putida nitrilase were explored. A stretch of residues, fairly conserved throughout the range of higher (96%) to lower (27%) sequence identity among different nitrilases was selected and investigated for the possible functional role in nitrilase enzyme system. Subsequently, the alanine substitution mutants (T48A, W49A, L50A, P51A, G52A, Y53A and P54A) were generated. Substitution of the rationally selected conserved residues altered the substrate recognition ability, catalysis and affected the substrate specificity but had very little impact on enantioselectivity and pattern of nitrile hydrolysis.  相似文献   

8.
A yeast strain isolated in the laboratory was studied and classified as a Zygosaccharomyces bailii. Both intracellular and extracellular β-glucosidases of this yeast were purified by ion-exchange chromatography, gel filtration and hydroxylapatite (only for the intracellular enzyme). The tetrameric structure of the two β-glucosidases was determined following treatment of the purified enzyme with dodecyl sulphate. The intracellular β-glucosidase exhibited optimum activity at 65°C and pH 5.5. The extracellular enzyme exhibited optimum catalytic activity at 55°C and pH 5. The molecular mass of purified intracellular and extracellular β-glucosidases, estimated by gel filtration, was 440 and 360 kDa, respectively. Both enzymes are active against glycosides with (1 → 4)-β, (1 → 6)-β and (1 → 4)-α linkage configuration. The intracellular enzyme possesses (1 → 6)-α-arabinofuranosidase activity and extracellular enzyme (1 → 6)-α-rhamno-pyranosidase activity. The two β-glucosidases are competitively inhibited by glucose and by D-gluconic-acid-lactone and a slight glucosyl transferase activity is observed in the presence of ethanol. Since the glycosides present in wine and fruit juices represent a potential source of aromatic flavour, the possible use of the yeast β-glucosidases for the liberation of the bound aroma is discussed.  相似文献   

9.

Nitrilases are of commercial interest in the selective synthesis of carboxylic acids from nitriles. Nitrilase induction was achieved here in three bacterial strains through the incorporation of a previously unrecognised and inexpensive nitrilase inducer, dimethylformamide (DMF), during cultivation of two Rhodococcus rhodochrous strains (ATCC BAA-870 and PPPPB BD-1780), as well as a closely related organism (Pimelobacter simplex PPPPB BD-1781). Benzonitrile, a known nitrilase inducer, was ineffective in these strains. Biocatalytic product profiling, enzyme inhibition studies and protein sequencing were performed to distinguish the nitrilase activity from that of sequential nitrile hydratase-amidase activity. The expressed enzyme, a 40-kDa protein with high sequence similarity to nitrilase protein Uniprot Q-03217, hydrolyzed 3-cyanopyridine to produce nicotinic acid exclusively in strains BD-1780 and BD-1781. These strains were capable of synthesising both the vitamin nicotinic acid as well as β-amino acids, a compound class of pharmaceutical interest. The induced nitrilase demonstrated high enantioselectivity (> 99%) in the hydrolysis of 3-amino-3-phenylpropanenitrile to the corresponding carboxylic acid.

  相似文献   

10.
The nitrilase superfamily consists of thiol enzymes involved in natural product biosynthesis and post-translational modification in plants, animals, fungi and certain prokaryotes. On the basis of sequence similarity and the presence of additional domains, the superfamily can be classified into 13 branches, nine of which have known or deduced specificity for specific nitrile- or amide-hydrolysis or amide-condensation reactions. Genetic and biochemical analysis of the family members and their associated domains assists in predicting the localization, specificity and cell biology of hundreds of uncharacterized protein sequences.  相似文献   

11.
Pace HC  Brenner C 《Genome biology》2001,2(1):REVIEWS0001-9
The nitrilase superfamily consists of thiol enzymes involved in natural product biosynthesis and post-translational modification in plants, animals, fungi and certain prokaryotes. On the basis of sequence similarity and the presence of additional domains, the superfamily can be classified into 13 branches, nine of which have known or deduced specificity for specific nitrile- or amide-hydrolysis or amide-condensation reactions. Genetic and biochemical analysis of the family members and their associated domains assists in predicting the localization, specificity and cell biology of hundreds of uncharacterized protein sequences.  相似文献   

12.
Two cDNAs, GluClα and GluClβ, encoding glutamate-gated chloride channel subunits that represent targets of the avermectin class of antiparasitic compounds, have recently been cloned from Caenorhabditis elegans (Cully et al., Nature, 371, 707–711, 1994). Expression studies in Xenopus oocytes showed that GluClα and GluClβ have pharmacological profiles distinct from the glutamate-gated cation channels as well as the γ-aminobutyric acid (GABA)- and glycine-gated chloride channels. Establishing the evolutionary relationship of related proteins can clarify properties and lead to predictions about their structure and function. We have cloned and determined the nucleotide sequence of the GluClα and GluClβ genes. In an attempt to understand the evolutionary relationship of these channels with the members of the ligand-gated ion channel superfamily, we have performed gene structure comparisons and phylogenetic analyses of their nucleotide and predicted amino acid sequences. Gene structure comparisons reveal the presence of several intron positions that are not found in the ligand-gated ion channel superfamily, outlining their distinct evolutionary position. Phylogenetic analyses indicate that GluClα and GluClβ form a monophyletic subbranch in the ligand-gated ion channel superfamily and are related to vertebrate glycine channels/receptors. Glutamate-gated chloride channels, with electrophysiological properties similar to GluClα and GluClβ, have been described in insects and crustaceans, suggesting that the glutamate-gated chloride channel family may be conserved in other invertebrate species. The gene structure and phylogenetic analyses in combination with the distinct pharmacological properties demonstrate that GluClα and GluClβ belong to a discrete ligand-gated ion channel family that may represent genes orthologous to the vertebrate glycine channels. Received: 30 September 1996 / Accepted: 15 November 1996  相似文献   

13.
Amidases: versatile enzymes in nature   总被引:1,自引:0,他引:1  
Amidases are ubiquitous enzymes and biological functions of these enzymes vary widely. In past five decades, they turned out to be an attractive tool in industries for the synthesis of wide variety of carboxylic acids, hydroxamic acids and hydrazide, which find applications in commodity chemicals synthesis, pharmaceuticals agrochemicals and waste water treatments etc. Their proteins structures revealed that aliphatic amidases share the typical α/β hydrolase fold (like nitrilase superfamily) and signature amidases are evolutionary related to aspartic proteinases. They hydrolyse wide variety of amides (short chain aliphatic amides, mid-chain amides, arylamides, α-aminoamides and α-hydroxyamides) and can be grouped on the basis of their catalytic site and preferred substrate. They resist denaturation at extreme of pH and temperature because of their strong and compact multimeric structures. Inhibition studies and three-dimensional analysis of the structures identified a Glu59, Lys134, Cys166 catalytic triad and follow “Bi-bi Ping-Pong” mechanism reaction for amide hydrolysis and acyl transferase reactions. Many recombinant amidases have been expressed in Escherichia coli as well as in Brevibacterium lactofermentum.  相似文献   

14.
Mesophilic nitrile-degrading enzymes are widely dispersed in the Bacteria and lower orders of the eukaryotic kingdom. Two distinct enzyme systems, a nitrilase catalyzing the direct conversion of nitriles to carboxylic acids and separate but cotranscribed nitrile hydratase and amidase activities, are now well known. Nitrile hydratases are metalloenzymes, incorporating FeIII or CoII ions in thiolate ligand networks where they function as Lewis acids. In comparison, nitrilases are thiol-enzymes and the two enzyme groups have little or no apparent sequence or structural homology. The hydratases typically exist as αβ dimers or tetramers in which the α- and β-subunits are similar in size but otherwise unrelated. Nitrilases however, are usually found as homomultimers with as many as 16 subunits. Until recently, the two nitrile-degrading enzyme classes were clearly separated by functional differences, the nitrile hydratases being aliphatic substrate specific and lacking stereoselectivity, whereas the nitrilases are enantioselective and aromatic substrate specific. The recent discovery of novel enzymes in both classes (including thermophilic representatives) has blurred these functional distinctions. Purified mesophilic nitrile-degrading enzymes are typically thermolabile in buffered solution, rarely withstanding exposure to temperatures above 50°C without rapid inactivation. However, operational thermostability is often increased by addition of aliphatic acids or by use of immobilized whole cells. Low molecular stability has frequently been cited as a reason for the limited industrial application of "nitrilases"; such statements notwithstanding, these enzymes have been successfully applied for more than a decade to the kiloton production of acrylamide and more recently to the smaller-scale production of nicotinic acid, R-(−)-mandelic acid and S-(+)-ibuprofen. There is also a rapidly growing catalog of other potentially useful conversions of complex nitriles in which the regioselectivity of the enzyme coupled with the ability to achieve high conversion efficiencies without detriment to other sensitive functionalities is a distinct process advantage. Received: January 22, 1998 / Accepted: February 16, 1998  相似文献   

15.
Nitrile groups are catabolized to the corresponding acid and ammonia through one-step reaction involving a nitrilase. Here, we report the use of bioinformatic and biochemical tools to identify and characterize the nitrilase (NitPf5) from Pseudomonas fluorescens Pf-5. The nitPf5 gene was identified via sequence analysis of the whole genome of P. fluorescens Pf-5 and subsequently cloned and overexpressed in Escherichia coli. DNA sequence analysis revealed an open-reading frame of 921 bp, capable of encoding a polypeptide of 307 amino acids residues with a calculated isoelectric point of pH 5.4. The enzyme had an optimal pH and temperature of 7.0°C and 45°C, respectively, with a specific activity of 1.7 and 1.9 μmol min−1 mg protein−1 for succinonitrile and fumaronitrile, respectively. The molecular weight of the nitrilase as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration chromatography was 33,000 and 138,000 Da, respectively, suggesting that the enzyme is homotetrameric. Among various nitriles, dinitriles were the preferred substrate of NitPf5 with a K m = 17.9 mM and k cat/K m = 0.5 mM−1 s−1 for succinonitrile. Homology modeling and docking studies of dinitrile and mononitrile substrate into the active site of NitPf5 shed light on the substrate specificity of NitPf5. Although nitrilases have been characterized from several other sources, P. fluorescens Pf-5 nitrilase NitPf5 is distinguished from other nitrilases by its high specific activity toward dinitriles, which make P. fluorescens NitPf5 useful for industrial applications, including enzymatic synthesis of various cyanocarboxylic acids.  相似文献   

16.
Nitrilases have long been considered as an attractive alternative to chemical catalyst in carboxylic acids biosynthesis due to their green characteristics and the catalytic potential in nitrile hydrolysis. A novel nitrilase from Pseudomonas putida CGMCC3830 was purified to homogeneity. pI value was estimated to be 5.2 through two-dimensional electrophoresis. The amino acid sequence of NH2 terminus was determined. Nitrilase gene was cloned through CODEHOP PCR, Degenerate PCR and TAIL-PCR. The open reading frame consisted of 1113 bp encoding a protein of 370 amino acids. The predicted amino acid sequence showed the highest identity (61.6%) to nitrilase from Rhodococcus rhodochrous J1. The enzyme was highly specific toward aromatic nitriles such as 3-cyanopyridine, 4-cyanopyridine, and 2-chloro-4-cyanopyridine. It was classified as aromatic nitrilase. The nitrilase activity could reach up to 71.8 U/mg with 3-cyanopyridine as substrate, which was a prominent level among identified cyanopyridine converting enzymes. The kinetic parameters Km and Vmax for 3-cyanopyridine were 27.9 mM and 84.0 U/mg, respectively. These data would warrant it as a novel and potential candidate for creating effective nitrilases in catalytic applications of carboxylic acids synthesis through further protein engineering.  相似文献   

17.
Nitrile-converting enzymes, including nitrilase and nitrile hydratase (NHase), have received increasing attention from researchers of industrial biocatalysis because of their critical role as a tool in organic synthesis of carboxylic acids and amides from nitriles. To date, these bioconversion approaches are considered as one of the most potential industrial processes using resting cells or purified enzymes as catalysts for production of food additives, pharmaceutical, and agrochemical precursors. This review focuses on the distribution and catalytic mechanism research of nitrile-converting enzymes in recent years. Molecular biology aspects to improve the biocatalytic performance of microbial nitrilase and NHase are demonstrated. The process developments of microbial nitrilase and NHase for organic synthesis are also discussed.  相似文献   

18.
Obtusifoliol 14β-demethylase from Sorghum bicolor (L.) Moench has been cloned using a gene-specific probe generated using PCR primers designed from an internal 14 amino acid sequence. The sequence identifies sorghum obtusifoliol 14α-demethylase as a cytochrome P450 and it is assigned to the CYP51 family together with the sterol 14α-demethylases from fungi and mammals. The presence of highly conserved regions in the amino acid sequences, analogous substrates and the same metabolic role demonstrate that the sterol 14α-demethylases are orthologous enzymes. The sterol 14α-demethylases catalyse an essential step in sterol biosynthesis as evidenced by the absence of a 14α-methyl group in all known functional sterols. A functional sorghum obtusifoliol 14α-demethylase was expressed at high levels in Escherichia coli and purified using an efficient method based on temperature-induced Triton X-114 phase partitioning. The recombinant purified enzyme produced a type I spectrum with obtusifoliol as substrate. Reconstitution of purified recombinant enzyme with sorghum NADPH—cytochrome P450 reductase in dilaurylphosphatidylcholine micelles confirms that obtusifoliol 14α-demethylase catalyses the 14α-demethylation of obtusifoliol to 4α-methyl-5α-ergosta-8,14,24(28)-trien-3β-ol as evidenced by GC—MS. The isolation of a cDNA clone encoding the plant sterol 14α-demethylase, combined with the previously isolated cDNA clones for fungal and mammalian sterol 14α-demethylases, provides an important tool in the rational design of specific inhibitors towards the individual sterol 14α-demethylases.  相似文献   

19.
腈化合物是一类重要的用于合成多种精细化学品的化合物,它们容易制备,并且可以合成多种化合物。传统化学水解方法将腈化合物转化为相应的羧酸或酰胺通常需要高温、强酸、强碱等相对苛刻的条件,腈转化酶(腈水解酶、腈水合酶和酰胺酶)由于其生物催化过程具有高效、高选择性、条件温和等特点,在精细化学品的合成中越来越受到人们的关注。许多腈转化酶已经被开发出来并用于精细化学品的生产。以下介绍了腈转化酶在医药及中间体、农药及中间体、食品与饲料添加剂等精细化学品生产中的应用。随着研究的不断深入,将会有更多的腈转化酶被开发出来并用于精细化学品的生产。  相似文献   

20.
The arylacetonitrilase from Pseudomonas fluorescens EBC191 differs from previously studied arylacetonitrilases by its low enantiospecificity during the turnover of mandelonitrile and by the large amounts of amides that are formed in the course of this reaction. In the sequence of the nitrilase from P. fluorescens, a cysteine residue (Cys163) is present in direct neighborhood (toward the amino terminus) to the catalytic active cysteine residue, which is rather unique among bacterial nitrilases. Therefore, this cysteine residue was exchanged in the nitrilase from P. fluorescens EBC191 for various amino acid residues which are present in other nitrilases at the homologous position. The influence of these mutations on the reaction specificity and enantiospecificity was analyzed with (R,S)-mandelonitrile and (R,S)-2-phenylpropionitrile as substrates. The mutants obtained demonstrated significant differences in their amide-forming capacities. The exchange of Cys163 for asparagine or glutamine residues resulted in significantly increased amounts of amides formed. In contrast, a substitution for alanine or serine residues decreased the amounts of amides formed. The newly discovered mutation was combined with previously identified mutations which also resulted in increased amide formation. Thus, variants which possessed in addition to the mutation Cys163Asn also a deletion at the C terminus of the enzyme and/or the modification Ala165Arg were constructed. These constructs demonstrated increased amide formation capacity in comparison to the mutants carrying only single mutations. The recombinant plasmids that encoded enzyme variants which formed large amounts of mandeloamide or that formed almost stoichiometric amounts of mandelic acid from mandelonitrile were used to transform Escherichia coli strains that expressed a plant-derived (S)-hydroxynitrile lyase. The whole-cell biocatalysts obtained in this way converted benzaldehyde plus cyanide either to (S)-mandeloamide or (S)-mandelic acid with high yields and enantiopurities.Nitrilases (EC 3.5.5.1) are hydrolytic enzymes found in many bacteria, fungi, and plants which convert nitriles to the corresponding carboxylic acids and ammonia. They are members of the CN hydrolase (or nitrilase) superfamily of enzymes, which also encompasses other enzymes which attack C-N bonds, such as aliphatic amidases, carbamoylases, and N-acyltransferases (1). Nitrilases possess a catalytic triad which is composed of a cysteine, a glutamate, and a lysine residue and form during the catalytic cycle a covalent adduct between the cysteine residue and the carbon atom of the nitrile group (11, 12, 29). Nitriles are important intermediates in chemical industry, and several processes which utilize the chemo-, regio-, or enantioselectivity of nitrilases for the production of commercially interesting products have been investigated (13, 16, 17, 18, 22, 26, 27, 33, 34). There is also growing biotechnological interest in nitrilases because they form (as other members of the so-called nitrilase superfamily) spiral quaternary structures which can be studied by electron microscopy and which might be useful as templates in nanotechnology (30, 31).We are currently investigating a nitrilase from Pseudomonas fluorescens EBC191 which converts various substituted phenylacetonitriles [e.g., 2-phenylpropionitrile (2-PPN), mandelonitrile (2-hydroxyphenylacetonitrile), or phenylglycinonitrile (2-aminophenylacetonitrile)] and also aliphatic 2-acetoxynitriles with moderate enantioselectivities into the corresponding α-substituted carboxylic acids. This enzyme forms with certain nitriles also significant amounts of the corresponding amides as side products (3, 5, 8, 15, 19, 24). The enzyme has recently been studied intensively in order to analyze the molecular basis for the substrate specificity, reaction specificity, and enantiospecificity of nitrilases (9, 10). In the course of these investigations, the effects of various carboxy-terminal mutations and mutations in close proximity to the catalytic active cysteine residue were analyzed. These experiments demonstrated that deletions of 47 to 67 amino acids (aa) from the carboxy terminus of the nitrilase resulted in variant forms that demonstrated increased amide formation and an increased formation of the (R)-acids (9). In addition, it was demonstrated that the size of the amino acid residue in direct proximity to the catalytic active cysteine residue (toward the C terminus) is determinative of the enantioselectivity of acid formation. Thus, it was found that only enzyme variants with large amino acid residues at this position showed a high degree of enantioselectivity for the formation of (R)-mandelic acid from racemic mandelonitrile (10). In the present study, we investigated a set of enzyme variants that carried mutations located in the amino-terminal part of the enzyme (in relation to the catalytic active cysteine residue). Thus, several mutations that resulted in changes in the enantioselectivity of the reactions and increased formation of amides were identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号