首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The four most important non-specific carboxylesterases from rat liver were assayed for their ability to hydrolyse retinyl esters. Only the esterases with pI 6.2 and 6.4 (= esterase ES-4) are able to hydrolyse retinyl palmitate. Their specific activities strongly depend on the emulsifier used (maximum rate: 440 nmol of retinol liberated/h per mg of esterase). Beside retinyl palmitate, these esterases cleave palmitoyl-CoA and monoacylglycerols with much higher rates, as well as certain drugs (e.g. aspirin and propanidid). However, no transacylation between palmitoyl-CoA and retinol occurs. Retinyl acetate also is a substrate for the above esterases and for another one with pI 5.6 (= esterase ES-3). Again the emulsifier influences the hydrolysis by these esterases (maximum rates: 475 nmol/h per mg for ES-4 and 200 nmol/h per mg for ES-3). Differential centrifugation of rat liver homogenate reveals that retinyl palmitate hydrolase activity is highly enriched in the plasma membranes, but only moderately so in the endoplasmic reticulum, where the investigated esterases are located. Since the latter activity can be largely inhibited with the selective esterase inhibitor bis-(4-nitrophenyl) phosphate, it is concluded that the esterases with pI 6.2 and 6.4 (ES-4) represent the main retinyl palmitate hydrolase of rat liver endoplasmic reticulum. In view of this cellular localization, the enzyme could possibly be involved in the mobilization of retinol from the vitamin A esters stored in the liver. However, preliminary experiments in vivo have failed to demonstrate such a biological function.  相似文献   

2.
Six carboxylesterases previously isolated from rat liver microsomes, characterized in Brussels and in Kiel, were compared with genetically defined liver esterases of various reference strains using polyacrylamide gel electrophoresis and isoelectric focusing. The six liver carboxylesterases were identified as alloenzymic forms of ES-3, ES-4, ES-8/ES-10 and ES-15 according to the genetic nomenclature recommended by van Zutphen (Van Zutphen, L.F.M. (1983) Transplant. Proceed. 15, 1687-1688). The genetic and biochemical characteristics of the four isoenzymes are summarized, and their identity with several other drug-metabolizing esterases/amidases and lipases of rat liver endoplasmic reticulum is discussed.  相似文献   

3.
The comparative substrate specificities of five purified serine hydrolases from rat liver microsomes have been investigated, especially their action upon natural lipoids. All enzymes had high carboxylesterase activities with simple aliphatic and aromatic esters and thioesters. The broad pH optima were in the range of pH 6-10. Synthetic amides were less potent substrates. The hydrolytic activities towards palmitoyl-CoA and monoacyl glycerols were generally high, whereas phospholipids and palmitoyl carnitine were cleaved at moderate rates. Acetyl-CoA, acetyl carnitine, and ceramides were not cleaved at all. The closely related hydrolases with the highest isoelectric points (pI 6.2 and 6.4) were most active with palmitoyl-CoA and palmitoyl glycerol. One of these enzymes might also be responsible for the low cholesterol oleate-hydrolyzing capacity of rat liver microsomes. Among the other hydrolases, that with pI 6.0 showed significant activities with simple butyric acid esters, 1-octanoyl glycerol, and octanoylamide. The esterase with pI 5.6 had the relatively highest activities with palmitoyl carnitine and lysophospholipids. The purified enzyme with pI 5.2 showed some features of the esterase pI 5.6, but generally had lower specific activities, except with 4-nitrophenyl acetate. The lipoid substrates competitively inhibited the arylesterase activity of the enzymes. The varying activities of the individual hydrolases were influenced in parallel by a variety of inhibitors, indicating that the purified hydrolases possessed a relatively broad specificity and were not mixtures of more specific enzymes. The nomenclature of the purified hydrolases is discussed.  相似文献   

4.
The subcellular and organ distributions of microsomal epoxide hydrolases measured with cis-stilbene oxide and cholesterol 5,6 alpha-epoxide as substrates have been investigated. These two enzyme activities were found to have essentially the same subcellular distribution, with the highest total and specific activities localized in rough and smooth endoplasmic reticulum. Among the tissues studied (i.e., liver, kidney, lung, testis, spleen, brain and intestinal epithelium), the highest specific activities were recovered in liver microsomes, where the activities were at least 5-fold greater than in any of the other microsomal preparations.  相似文献   

5.
Abstract— A comprehensive study has been undertaken on the subcellular and subsynaptosomal distribution of a number of markers for subcellular organelles in preparations from rat brain. Although the activity of most enzymatic markers was decreased by freezing and storage at - 70oC, no significant changes were noted in the distribution of these activities. This demonstrates that contamination of brain fractions by subcellular organelles can be accurately assessed after freezing and thawing. A marked discrepancy was noted between the distribution of three putative markers for endoplasmic reticulum. CDP-choline-diacylglycerol cholinephosphotransferase (EC 2.7.8.1) activity was mainly limited to the microsomal fraction and was present to a lesser extent in the synaptosomal fraction than the other putative markers for endoplasmic reticulum. Estrone sulfate sulfohydrolase (EC 3.1.6.2) activity demonstrated a bimodal distribution between the crude nuclear and microsomal fractions. However, considerable activity was associated with the synaptosomal fraction. NADPH-cytochrome c reductase (EC 2.3.1.15) activity sedimented in the microsomal and the synaptosomal fractions. Calculations based on the relative specific activities of the microsomal and synaptic plasma membrane fraction indicated that the contamination of the synaptic plasma membranes by endoplasmic reticulum was 44.5% (NADPH-cytochrome c reductase), 38.0% (estrone sulfatase) and 9.0% (cholinephosphotransferase). Since it is believed that virtually all of the synthesis of phosphatidylcholine by cholinephosphotransferase occurs in the neuronal and glial cell bodies, it was concluded that cholinephosphotransferase is a satisfactory marker for the endoplasmic reticulum derived from these sources. The results suggest that NADPH-cytochrome c reductase and estrone sulfatase may be present in the smooth endoplasmic reticulum system responsible for the fast transport of macromolecules along the axon to the nerve endings as well as in the endoplasmic reticulum of the cell bodies. The possible relation between that portion of the smooth endoplasmic reticulum involved in fast axonal transport and the GERL (Golgi, Endoplasmic Reticulum, Lysosomes) complex discovered by Novikoff and his coworkers (Novikoff , 1976) is discussed.  相似文献   

6.
1. 14C-Labelled methyl 2,6-di-O-pivaloyl-alpha-D-glucopyranoside (1) was used as a novel substrate for esterases from mouse serum and liver. 2. Stepwise de-esterification of the diester substrate 1 was achieved, and data on time-course experiments are reported. 3. Kinetic studies were undertaken to compare deacylation rates for the enzymatic de-esterification of the diester substrate 1 using both, mice sera and liver microsomal fractions. 4. Serum and liver esterase activities were studied in mice treated with an immunostimulating agent, peptidoglycan monomer (PGM), and a comparison made with esterases from untreated mice.  相似文献   

7.
1. The galactosylhydroxylysylglucosyltransferase (GGT) specific to collagen is located in the RER (rough endoplasmic reticulum), SER (smooth endoplasmic reticulum) and Golgi apparatus for the chick embryo liver. 2. The UDP-glucose collagen glucosyltransferase activities in chick embryo liver were solubilized by Nonidet P-40. 3. The mechanism of collagen glucosyltransferase reaction was studied with enzyme preparation of Golgi apparatus CF2, smooth endoplasmic reticulum CF4 and rough endoplasmic reticulum CF8. 4. For the three fractions, data obtained in experiments were consistent with a sequential ordered mechanism in which the substrates are bound to the enzyme in the following order: Mn2+, collagen and UDP-glucose substrate, with different values for Km and Vmax.  相似文献   

8.
Activities of membrane-associated phospholipases A1 and A2, and membrane-associated as well as soluble lysophospholipases were measured in different subcellular fractions of rat liver, using suspensions of stereospecifically labelled radioactive phospholipids as substrates. Plasma membranes and endoplasmic reticulum were shown to contain phospholipase A1 and lysophospholipase activities, both of which could be stimulated by Ca2+, mitochondria Ca2+-dependent phospholipase A2 and cytosol Ca2+-independent lysophospholipase activities. Each of these lipolytic enzymes could be inhibited by antimalarial drugs (chloroquine, mepacrine, primaquine) at concentrations above 1 x 10(-4) M. Inhibition of the alkaline cytosolic lysophospholipase by these drugs was noncompetitive with respect to the substrate, and the inhibitory potency increased, when the pH was raised.  相似文献   

9.
Rat liver homogenate or cell fractions deacylate 12-O-tetradecanoyl phorbol 13-acetate (TPA) in vitro mainly by conversion to phorbol 13-acetate. The highest specific activity is located in the microsomal fraction. The deacylation is inhibited by bis-(4-nitrophenyl) phosphate, a selective inhibitor of nonspecific carboxylesterases. Only two of five purified esterases from rat liver endoplasmic reticulum deacylate TPA. These two esterases have formerly been characterized as acylcarnitine hydrolases and the more active one is also a potent diacylglycerol lipase. Its TPA-hydrolyzing activity is inhibited by other substrates like 1-naphthylacetate, lauroylcarnitine, or dioleoyl glycerol. The results support the view that phorbol esters act like structural analogs of diacylglycerols, not only with respect to their activating effect on protein kinase C, but also as substrates for the same lipases.  相似文献   

10.
Two purified carboxylesterases that were isolated from a rat liver microsomal fraction in a Norwegian and a German laboratory were compared. The Norwegian enzyme preparation was classified as palmitoyl-CoA hydrolase (EC 3.1.2.2) in many earlier papers, whereas the German preparation was termed monoacylglycerol lipase (EC 3.1.1.23) or esterase pI 6.2/6.4 (non-specific carboxylesterase, EC 3.1.1.1). Antisera against the two purified enzyme preparations were cross-reactive. The two proteins co-migrate in sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Both enzymes exhibit identical inhibition characteristics with Mg2+, Ca2+ and bis-(4-nitrophenyl) phosphate if assayed with the two substrates palmitoyl-CoA and phenyl butyrate. It is concluded that the two esterase preparations are identical. However, immunoprecipitation and inhibition experiments confirm that this microsomal lipase differs from the palmitoyl-CoA hydrolases of rat liver cytosol and mitochondria.  相似文献   

11.
Palmitoyl-CoA hydrolase (EC 3.1.2.2) and palmitoyl-L-carnitine hydrolase (EC 3.1.1.28) activities from rat liver were investigated. 1. Microsomal and mitochondrial-matrix palmitoyl-CoA hydrolase activities had similar pH and temperature optima, although the activities showed different temperature stability. They were inhibited by Pb2+ and Zn2+. The palmitoyl-CoA hydrolase activities in microsomal fraction and mitochondrial matrix were differently affected by the addition of Mg2+, Ca2+, Co2+, K+ and Na+ to the reaction mixture. ATP, ADP and NAD+ stimulated the microsomal activity and inhibited the mitochondrial-matrix enzyme. The activity of both the microsomal and mitochondrial-matrix hydrolase enzymes was specific for long-chain fatty acyl-CoA esters (C12-C18), with the highest activity for palmitoyl-CoA. The apparent Km for palmitoyl-CoA was 47 microM for the microsomal enzyme and 17 microM for the mitochondrial-matrix enzyme. 2. The palmitoyl-CoA hydrolase and palmitoyl-L-carnitine hydrolase activities of microsomal fraction had similar pH optima and were stimulated by dithiothreitol, but were affected differently by the addition of Pb2+, Mg2+, Ca2+, Mn2+ and cysteine. The two enzymes had different temperature-sensitivities. 3. The data strongly suggest that palmitoyl-CoA hydrolase and palmitoyl-L-carnitine hydrolase are separate microsomal enzymes, and that the hydrolysis of palmitoyl-CoA in the microsomal fraction and mitochondria matrix was catalysed by two different enzymes.  相似文献   

12.
Cholic acid:CoA ligase (EC 6.2.1.7, choloyl-CoA synthetase) and deoxycholic acid:CoA ligase catalyze the synthesis of choloyl-CoA and deoxycholoyl-CoA from their respective bile acids in rat liver. A modification of the phase partition assay was introduced which yields significantly (3-fold) higher specific activities for cholic acid:CoA ligase than previously reported. An independent method of separating choloyl-CoA from the substrates by high-pressure liquid chromatography was also developed and validates the modification. Both enzymic activities were found to be localized predominantly in the endoplasmic reticulum of rat liver. The level of either ligase in other purified, active subcellular fractions is consistent with the level of contamination by endoplasmic reticulum, estimated by using marker enzymes. Hence, the ligase assay can be used as a sensitive enzymic marker for endoplasmic reticulum in rat liver. The kinetic parameters of both enzymic activities were determined by using purified rough endoplasmic reticulum from rat liver. While the apparent maximal velocities for the two substrates are similar, the Michaelis constant for deoxycholate is significantly lower than that for cholate. Taurocholate and deoxycholate are shown to be competitive inhibitors of cholic acid:CoA ligase. The inhibition constant of deoxycholate is similar to its Michaelis constant for the deoxycholoyl-CoA-synthesizing reaction, suggesting that the same enzyme is responsible for both ligase activities.  相似文献   

13.
P Wang  J Meijer  F P Guengerich 《Biochemistry》1982,21(23):5769-5776
Epoxide hydrolase (EC 3.3.2.3) was purified to electrophoretic homogeneity from human liver cytosol by using hydrolytic activity toward trans-8-ethylstyrene 7,8-oxide (TESO) as an assay. The overall purification was 400-fold. The purified enzyme has an apparent monomeric molecular weight of 58 000, significantly greater than the 50 000 found for human (or rat) liver microsomal epoxide hydrolase or for another TESO-hydrolyzing enzyme also isolated from human liver cytosol. Purified cytosolic TESO hydrolase catalyzes the hydrolysis of cis-8-ethylstyrene 7,8-oxide 10 times more rapidly than does the microsomal enzyme, catalyzes the hydrolysis of TESO and trans-stilbene oxide as rapidly as the microsomal enzyme, but catalyzes the hydrolysis of styrene 7,8-oxide, p-nitrostyrene 7,8-oxide, and naphthalene 1,2-oxide much less effectively than does the microsomal enzyme. Purified cytosolic TESO hydrolase does not hydrolyze benzo[a]pyrene 4,5-oxide, a substrate for the microsomal enzyme. The activities of the purified enzymes can explain the specific activities observed with subcellular fractions. Anti-human liver microsomal epoxide hydrolase did not recognize cytosolic TESO hydrolase in purified form or in cytosol, as judged by double-diffusion immunoprecipitin analysis, precipitation of enzymatic activity, and immunoelectrophoretic techniques. Cytosolic TESO hydrolase and microsomal epoxide hydrolase were also distinguished by peptide mapping. The results provide evidence that physically different forms of epoxide hydrolase exist in different subcellular fractions and can have markedly different substrate specificities.  相似文献   

14.
Six carboxylesterase isozymes (viz. ES-1, ES-6, ES-9, ES-20, ES-22 and ES-24), governed by esterase gene cluster 1 on chromosome 8 of the house mouse, were identified electrophoretically in liver supernatants using their biochemical, genetic and developmental characteristics. ES-1 and ES-20 were expressed as liver-specific forms. The peri- and postnatal development of the six isozymes indicated that they were individually regulated at the genetic level, although the isozymes were regulated as a group when compared to genetically unrelated esterases. The concept of evolutionary divergence following repeated gene duplication of an ancestral esterase structural gene was extended to cover divergence of the temporal (regulatory) genes associated with the multigene family. Allelic variation of the temporal genes was more limited than that of the corresponding structural genes.  相似文献   

15.
16.
The polyisoprenyl phosphate dephosphorylating activity of rat liver has been investigated with regard to substrate specificity, subcellular distribution, and transmembrane orientation. Total liver microsomes were employed as a source of enzymatic activity against a variety of 32P-labeled substrates. Susceptibility to dephosphorylation followed the order solanesyl phosphate greater than alpha-cis-polyprenyl 19-phosphate = alpha-trans-polyprenyl 19-phosphate = dihydrosolanesyl phosphate greater than (S)-dolichyl 19-phosphate = (R)-dolichyl 19-phosphate = (R,S)-dolichyl 11-phosphate. There appeared to be no major effect of chain length from 11 to 20 isoprenes. Data obtained from inhibition studies using solanesyl [32P]phosphate as substrate were consistent with the substrate specificity studies and suggested that a single activity is responsible. With dolichyl [32P]phosphate as substrate, the phosphatase specific activity of the subcellular fractions prepared from rat liver was found to follow the sequence Golgi = smooth endoplasmic reticulum greater than plasma membrane greater than lysosomes = rough endoplasmic reticulum greater than nuclei greater than mitochondria. Transmembrane topography studies, using enzyme latency as a criterion, were consistent with an orientation of the active site facing the cytoplasm.  相似文献   

17.
Subcellular fractionation studies of rat liver localized the activity of palmitoyl-L-carnitine hydrolase to the microsomal fraction whereas palmitoyl-CoA hydrolase activity was found both in the microsomal fraction and in mitochrondria. An unusual biphasic sataration curve for palmitoyl-CoA was observed when intact mitochondrial hydrolase activity. Disruption of the mitochondrial structure doubled the palmitoyl-CoA hydrolysis. Discontinuous sucrose gradient centrifugation and digitonin fractionation of rat liver mitochondria demonstrated that a palmitoyl-CoA hydrolase was associated with the matrix fraction. Pure matrix and microsomal fractions showed that the two hydrolase activities were differently affected by the presence of divalent cations. Both the specific activity and the saturation concentration of palmitoyl-CoA were higher for the microsomal enzyme than for the matrix-associated enzyme.  相似文献   

18.
Liver peroxisomes from both rat and humans have previously been shown to contain enzymes that catalyze the oxidative cleavage of the C27-steroid side chain in the formation of bile acids. It has not been clear, however, whether the initial step, formation of the CoA-esters of the 5 beta-cholestanoic acids, also occurs in these organelles. In the present work the subcellular localization of 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestanoyl-CoA (THCA-CoA) ligase (THCA-CoA synthetase) and of 3 alpha,7 alpha-dihydroxy-5 beta-cholestanoyl-CoA (DHCA-CoA) ligase in rat liver has been investigated. Main subcellular fractions and peroxisome-rich density gradient fractions from rat liver were incubated with THCA or DHCA, CoA, ATP, and Mg2+. Formation of THCA-CoA and DHCA-CoA was determined after high pressure liquid chromatography of the incubation extracts. The microsomal fraction contained the highest specific (and also relative specific) activity both for the formation of THCA-CoA and DHCA-CoA. The rates of THCA-CoA formation were further increased from 124-159 nmol/mg.hr-1 in crude microsomal fractions to 184-220 nmol/mg.hr-1 when studied in purified rough endoplasmic reticulum fractions. Formation of THCA-CoA in peroxisomal fractions prepared in Nycodenz density gradients could be accounted for by a small contamination (3-7%) by microsomal protein. The distribution of THCA-CoA ligase was different from that of palmitoyl-CoA ligase that was found to be localized also to the peroxisomal fractions.  相似文献   

19.
Cholesterol ester hydrolase activity was determined at 3 h time intervals over 24 h in lysosomes, cytosol and microsomes from ad libitum-fed and 24 h food-deprived female rat liver. Diurnal rhythms were identified for the acid and neutral esterases, which were strikingly changed by fasting. In fed animals, lysosomal esterase specific activity exhibited a peak at noon and a sustained medium rate at early darkness, whereas total esterase was maximal at midnight. The circadian patterns of the cytosolic and the microsomal esterases paralleled each other, though the amplitude of rhythms differed, showing higher activities around midnight. After fasting, cholesterol esterase activity from all cell fractions reached a maximum near dark onset. These results are the first to indicate that cholesteryl ester hydrolysis may play a role in generating the diurnal rhythm of hepatic cholesterol.  相似文献   

20.
Changes in ultrastructural distribution patterns of nonspecific esterases (E.C. 3.1.19) are described quantitatively by means of morphometry. Esterases were demonstrated with O-acetyl-8-hydroxyquinoline (Q-O-2) and S-acetyl-8-mercaptoquinoline in livers of normally and exclusively fructose-fed mice. Conditions are discussed, under which the quantification of the ultrastructural products of enzyme histochemical reactions may be possible. Smooth endoplasmic reticulum and rough endoplasmic reticulum exhibit no alteration in enzyme distribution with both substrates since the enzyme-occupied proportion of each compartment remains the same despite an overall decrease of both compartments. Likewise an increase of O-acetyl-8-hydroxyquinoline-esterase at fat droplets corresponds to the increase in total surface of the fat. S-acetyl-8-mercaptoquinoline-positive fat surface however reveals an increase far beyond that of the total fat surface. The results support the hypothesis that a variety of esterases with different substrate spectra are present at the subcellular level in different cell compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号