首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Nitrogen monoxide (NO) affects cellular iron metabolism due to its high affinity for this metal ion. Indeed, NO has been shown to increase the mRNA binding activity of the iron-regulatory protein 1, which is a major regulator of iron homeostasis. Recently, we have shown that NO generators increase (59)Fe efflux from cells prelabeled with (59)Fe-transferrin (Wardrop, S. L., Watts, R. N., and Richardson, D. R. (2000) Biochemistry 39, 2748-2758). The mechanism involved in this process remains unknown, and in this investigation we demonstrate that it is potentiated upon adding d-glucose (d-Glc) to the reincubation medium. In d-Glc-free or d-Glc-containing media, 5.6 and 16.5% of cellular (59)Fe was released, respectively, in the presence of S-nitrosoglutathione. This difference in (59)Fe release was observed with a variety of NO generators and cell types and was not due to a change in cell viability. Kinetic studies showed that d-Glc had no effect on the rate of NO production by NO generators. Moreover, only the metabolizable monosaccharides d-Glc and d-mannose could stimulate NO-mediated (59)Fe mobilization, whereas other sugars not easily metabolized by fibroblasts had no effect. Hence, metabolism of the monosaccharides was essential to increase NO-mediated (59)Fe release. Incubation of cells with the citric acid cycle intermediates, citrate and pyruvate, did not enhance NO-mediated (59)Fe release. Significantly, preincubation with the GSH-depleting agents, l-buthionine-[S,R]-sulfoximine or diethyl maleate, prevented NO-mediated (59)Fe mobilization. This effect was reversed by incubating cells with N-acetyl-l-cysteine that reconstitutes GSH. These results indicate that GSH levels are essential for NO-mediated (59)Fe efflux. Hence, d-Glc metabolism via the hexose monophosphate shunt resulting in the generation of GSH may be essential for NO-mediated (59)Fe release. These results have important implications for intracellular signaling by NO and also NO-mediated cytotoxicity of activated macrophages that is due, in part, to iron release from tumor target cells.  相似文献   

2.
Nitrogen monoxide (NO) is a vital effector and messenger molecule that plays roles in a variety of biological processes. Many of the functions of NO are mediated by its high affinity for iron (Fe) in the active centres of proteins. Indeed, NO possesses a rich coordination chemistry with this metal and the formation of dinitrosyl-dithiolato-Fe complexes (DNICs) is well known to occur intracellularly. In mammals, NO produced by activated macrophages acts as a cytotoxic effector against tumour cells by binding and releasing cancer cell Fe that is vital for proliferation. Glucose metabolism and the subsequent generation of glutathione (GSH) are critical for NO-mediated Fe efflux and this process occurs by active transport. Our previous studies showed that GSH is required for Fe mobilisation from tumour cells and we hypothesized it was effluxed with Fe as a dinitrosyl-diglutathionyl-Fe complex (DNDGIC). It is well known that Fe and GSH release from cells induces apoptosis, a crucial property for a cytotoxic effector like NO. Furthermore, NO-mediated Fe release is mediated from cells expressing the GSH transporter, multi-drug resistance protein 1 (MRP1). Interestingly, the glutathione-S-transferase (GST) enzymes act to bind DNDGICs with high affinity and some members of the GST family act as storage intermediates for these complexes. Since the GST enzymes and MRP1 form a coordinated system for removing toxic substances from cells, it is possible to hypothesize these molecules regulate NO levels by binding and transporting DNDGICs.  相似文献   

3.
The mechanism of action of the hydroxamate iron chelators desferrioxamine (DFO), rhodotorulic acid (RHA) and cholylhydroxamic acid (CHA) was studied using rat hepatocytes in culture. Each chelator affected both the uptake and, to a much smaller extent, the release of transferrin-125I-59Fe from the cells. All chelators reduced the 59Fe uptake and incorporation into ferritin in a concentration-dependent manner. Uptake of 59Fe into the membrane (stromal-mitochondrial) fraction was also decreased by DFO and RHA but increased by CHA. Transferrin-125I binding was reduced slightly by DFO and RHA and increased by CHA. All chelators released 59Fe transferrin-125I from hepatocytes prelabelled by incubation with rat transferrin-125I-59Fe and washed before reincubation in the presence of the chelators. DFO decreased membrane 59Fe but had little effect on ferritin-59Fe. RHA decreased 59Fe in both membrane and ferritin fractions. CHA decreased hepatocyte-59Fe but increased 59Fe in the hepatocyte membrane fraction. Higher concentrations of the chelators had little further effect on 59Fe release but promoted transferrin-125I release from hepatocytes. All chelators appeared to act on kinetically important iron pools of limited size and hence are likely to be most effective when given by continuous infusion rather than bolus injection.  相似文献   

4.
Nitrogen monoxide (NO) plays a role in the cytotoxic mechanisms of activated macrophages against tumor cells by inducing iron release. We showed that NO-mediated iron efflux from cells required glutathione (GSH) (Watts, R. N., and Richardson, D. R. (2001) J. Biol. Chem. 276, 4724-4732) and that the GSH-conjugate transporter, multidrug resistance-associated protein 1 (MRP1), mediates this release potentially as a dinitrosyl-dithiol iron complex (DNIC; Watts, R. N., Hawkins, C., Ponka, P., and Richardson, D. R. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 7670-7675). Recently, glutathione S-transferase P1-1 (GST P1-1) was shown to bind DNICs as dinitrosyl-diglutathionyl iron complexes. Considering this and that GSTs and MRP1 form an integrated detoxification unit with chemotherapeutics, we assessed whether these proteins coordinately regulate storage and transport of DNICs as long lived NO intermediates. Cells transfected with GSTP1 (but not GSTA1 or GSTM1) significantly decreased NO-mediated 59Fe release from cells. This NO-mediated 59Fe efflux and the effect of GST P1-1 on preventing this were observed with NO-generating agents and also in cells transfected with inducible nitric oxide synthase. Notably, 59Fe accumulated in cells within GST P1-1-containing fractions, indicating an alteration in intracellular 59Fe distribution. Furthermore, electron paramagnetic resonance studies showed that MCF7-VP cells transfected with GSTP1 contain significantly greater levels of a unique DNIC signal. These investigations indicate that GST P1-1 acts to sequester NO as DNICs, reducing their transport out of the cell by MRP1. Cell proliferation studies demonstrated the importance of the combined effect of GST P1-1 and MRP1 in protecting cells from the cytotoxic effects of NO. Thus, the DNIC storage function of GST P1-1 and ability of MRP1 to efflux DNICs are vital in protection against NO cytotoxicity.  相似文献   

5.
Nitric oxide mediates iron release from ferritin   总被引:16,自引:0,他引:16  
Nitric oxide (NO) synthesis by cytotoxic activated macrophages has been postulated to result in a progressive loss of iron from tumor target cells as well as inhibition of mitochondrial respiration and DNA synthesis. In the present study, the addition of an NO-generating agent, sodium nitroprusside, to the iron storage protein ferritin resulted in the release of iron from ferritin and the released iron-catalyzed lipid peroxidation. Hemoglobin, which binds NO, and superoxide anion, which reacts with NO, inhibited nitroprusside-dependent iron release from ferritin, thereby providing evidence that NO can mobilize iron from ferritin. These results suggest that NO generation in vivo could lead to the mobilization of iron from ferritin disrupting intracellular iron homeostasis and increasing the level of reactive oxygen species.  相似文献   

6.
Ferritin and its protein subunits in rat hepatoma cell clone M-5123-C1 were biosynthetically labeled with [14C]leucine and 59Fe. Radioimmunoassays of ferritin/apoferritin and of protein subunits in the free polyribosome, membrane-bound polyribosome, smooth membrane, and cytosol fractions were done with ferritin-specific and subunit-specific rabbit IgG antibodies at various time intervals after pulsing. Much more 59Fe was bound by ferritin/apoferritin than by subunits in all of the cell fractions. Binding of iron to subunits may have been a random process. When hepatoma cells were simultaneously pulse-labeled with 59Fe and [14C]leucine, uptake of much of the 59Fe by ferritin occurred relatively early, in comparison to incorporation of [14C]leucine, in all of the cell fractions examined. Thus, 59Fe was readily incorporated into pre-existing ferritin. We conclude that most, if not nearly all, of the iron is incorporated after assembly of protein subunits.  相似文献   

7.
Release of iron from ferritin requires lysosomal activity   总被引:4,自引:0,他引:4  
How ferritin-Fe becomes available for cell functions is unknown. Our previous studies with rat hepatoma cells indicated ferritin had to be degraded to release its Fe. In these studies, we investigated whether this occurs in other cell types and whether lysosomes are required. Release of ferritin-Fe was induced with desferoxamine (DFO) in 59Fe-preloaded hepatoma, Caco2, and erythroid K562 cells and measured by rocket immunoelectrophoresis and autoradiography. The half-lives for ferritin-59Fe and protein were parallel (23, 16, and 11 h for the hepatic, Caco2, and K562 cells, respectively). Co-treatment with 180 µM Fe, leupeptin, chymostatin, or chloroquine markedly decreased rates of ferritin-Fe release and ferritin degradation. Lactacystin had no effect except for a small one in erythroid cells. Fractionation of hepatoma cell lysates on iodixanol gradients showed rapid depletion of cytosolic ferritin by DFO treatment but no accumulation in lysosomes. We conclude that regardless of cell type, release of Fe from ferritin occurs mainly through lysosomal proteolysis. degradation; proteasomes  相似文献   

8.
A commercially available enzyme immunoassay was used to determine ferritin content and subsequently the loading and release of iron from ferritin in neuroblastoma cells. LS cells were incubated with 59Fe for 24 h, lysed, and the cytoplasmic ferritin was bound to monoclonal antibodies coupled to globules. After determination of the ferritin content the same globules with bound radioactive ferritin were measured in a gamma-counter. To illustrate the applicability of this test system, increased iron loading of cellular ferritin could be demonstrated in cycloheximide-treated cells; furthermore, release of iron was documented after incubation of LS cells with a combination of 6-hydroxydopamine and ascorbate. The assay turned out to be a simple method for determination of changes in 59Fe content of ferritin in neuroblastoma cells.  相似文献   

9.
The subcellular localization of ferritin and its iron taken up by rat hepatocytes was investigated by sucrose-density-gradient ultracentrifugation of cell homogenates. After incubation of hepatocytes with 125I-labelled [59Fe]ferritin, cells incorporate most of the labels into structures equilibrating at densities where acid phosphatase and cytochrome c oxidase are found, suggesting association of ferritin and its iron with lysosomes or mitochondria. Specific solubilization of lysosomes by digitonin treatment indicates that, after 8 h incubation, most of the 125I is recovered in lysosomes, whereas 59Fe is found in mitochondria as well as in lysosomes. As evidenced by gel chromatography of supernatant fractions, 59Fe accumulates with time in cytosolic ferritin. To account for these results a model is proposed in which ferritin, after being endocytosed by hepatocytes, is degraded in lysosomes, and its iron is released and re-incorporated into cytosolic ferritin and, to a lesser extent, into mitochondria.  相似文献   

10.
Intracellular ferritin in newt (Triturus cristatus) erythroblasts was accessible to the chelating effects of EDTA and pyridoxal phosphate. EDTA (0.5-1 mM) promoted release of radioactive iron from ferritin of pulse-labelled erythroblasts during chase incubation, but its continuous presence was not necessary for ferritin iron mobilization. Brief exposure to EDTA was sufficient to release 60-70% of ferritin 59Fe content during ensuing chase in EDTA-free medium. EDTA also suppressed cellular iron uptake and utilization for heme synthesis, but these activities were restored upon its removal. Pyridoxal-5'-phosphate (0.5-5 mM) also stimulated loss of radioactive iron from ferritin; however, ferritin iron release by pyridoxal phosphate required its continued presence. Unlike EDTA, pyridoxal phosphate did not interfere with iron uptake or its utilization for heme synthesis. Chelator-mobilized ferritin iron accumulated initially in the hemolysate as a low-molecular-weight component and appeared to be eventually released into the medium. No radioactive ferritin was found in the medium of chelator-treated cells, indicating that secretion or loss of ferritin was not responsible for decreasing cellular ferritin 59Fe content. Moreover, there was no transfer of radioactive iron between the low-molecular-weight component released into the medium and plasma transferrin. These results indicate that chelator-released ferritin iron is not available for cellular utilization in heme synthesis and that ferritin iron released by this process is not an alternative or complementary iron source for heme synthesis. Correlation of these data with effects of succinylacetone inhibition of heme synthesis and with previous studies indicates that the main role of erythroid cell ferritin is absorption and storage of excess iron not used for heme synthesis.  相似文献   

11.
Mitochondria mobilize iron from ferritin by a mechanism that depends on external FMN. With rat liver mitochondria, the rate of mobilization of iron is higher from rat liver ferritin than from horse spleen ferritin. With horse liver mitochondria, the rate of iron mobilization is higher from horse spleen ferritin than from rat liver ferritin. The results are explained by a higher affinity between mitochondria and ferritins of the same species. The mobilization of iron increases with the iron content of the ferritin and then levels off. A maximum is reached with ferritins containing about 1 200 iron atoms per molecule. The results represent further evidence that ferritin may function as a direct iron donor to the mitochondria.  相似文献   

12.
Equilibrium-dialysis experiments with 59Fe-labelled Fe(III) chelate solutions show that ferritin is capable of binding a limited number of Fe(III) atoms. Some of this Fe(III) is readily removed, but up to about 200 Fe(III) atoms/molecule remain bound after extensive washing. Some exchange of labelled Fe(III) with endogenous unlabelled ferritin Fe occurs during prolonged dialysis against 59Fe(III)-citrate, but there is a net binding of Fe(III). Bound Fe(III) resembles endogenous Fe(III) in several respects. It appears to be attached to the micelle and not to the protein component of ferritin. Although the physiological mechanism of Fe incorporation into ferritin is unknown, our experiments suggest the possibility that some iron finds its way into ferritin as Fe(III) chelate.  相似文献   

13.
Nitrogen monoxide (NO) is a vital effector and messenger molecule that plays roles in a variety of biological processes. Many of the functions of NO are mediated by its high affinity for iron (Fe) in the active centres of proteins. Indeed, NO possesses a rich coordination chemistry with this metal and the formation of dinitrosyl–dithiolato–Fe complexes (DNICs) is well known to occur intracellularly. In mammals, NO produced by activated macrophages acts as a cytotoxic effector against tumour cells by binding and releasing cancer cell Fe that is vital for proliferation. Glucose metabolism and the subsequent generation of glutathione (GSH) are critical for NO-mediated Fe efflux and this process occurs by active transport. Our previous studies showed that GSH is required for Fe mobilisation from tumour cells and we hypothesized it was effluxed with Fe as a dinitrosyl–diglutathionyl–Fe complex (DNDGIC). It is well known that Fe and GSH release from cells induces apoptosis, a crucial property for a cytotoxic effector like NO. Furthermore, NO-mediated Fe release is mediated from cells expressing the GSH transporter, multi-drug resistance protein 1 (MRP1). Interestingly, the glutathione-S-transferase (GST) enzymes act to bind DNDGICs with high affinity and some members of the GST family act as storage intermediates for these complexes. Since the GST enzymes and MRP1 form a coordinated system for removing toxic substances from cells, it is possible to hypothesize these molecules regulate NO levels by binding and transporting DNDGICs.  相似文献   

14.
Formation of the ferritin iron mineral occurs in plastids.   总被引:1,自引:0,他引:1       下载免费PDF全文
Ferritin in plants is a nuclear-encoded, multisubunit protein found in plastids; an N-terminal transit peptide targets the protein to the plastid, but the site for formation of the ferritin Fe mineral is unknown. In biology, ferritin is required to concentrate Fe to levels needed by cells (approximately 10(-7) M), far above the solubility of the free ion (10(-18) M); the protein directs the reversible phase transition of the hydrated metal ion in solution to hydrated Fe-oxo mineral. Low phosphate characterizes the solid-phase Fe mineral in the center of ferritin of the cytosolic animal ferritin, but high phosphate is the hallmark of Fe mineral in prokaryotic ferritin and plant (pea [Pisum sativum L.] seed) ferritin. Earlier studies using x-ray absorption spectroscopy showed that high concentrations of phosphate present during ferritin mineralization in vivo altered the local structure of Fe in the ferritin mineral so that it mimicked the prokaryotic type, whether the protein was from animals or bacteria. The use of x-ray absorption spectroscopy to analyze the Fe environment in pea-seed ferritin now shows that the natural ferritin mineral in plants has an Fe-P interaction at 3.26A, similar to that of bacterial ferritin; phosphate also prevented formation of the longer Fe-Fe interactions at 3.5A found in animal ferritins or in pea-seed ferritin reconstituted without phosphate. Such results indicate that ferritin mineralization occurs in the plastid, where the phosphate content is higher; a corollary is the existence of a plastid Fe uptake system to allow the concentration of Fe in the ferritin mineral.  相似文献   

15.
Pulse-chase analysis of newt (Triturus cristatus) erythroblasts has shown that ferritin is not a primary source of iron for heme synthesis. During chase incubation with and without non-radioactive plasma iron in the medium, no transfer of 59Fe from ferritin to hemoglobin was detected although the integrity of heme synthesis was maintained. In puromycin-inhibited cells where iron uptake was drastically curtailed, heme synthesis continued to occur, though at reduced levels; incorporation of 59Fe from the plasma appeared initially in heme and hemoglobin without any prior labelling of ferritin. These results indicate that ferritin is neither an obligatory iron intermediate in heme synthesis nor a cytosolic transport molecule involved in mobilization of iron from the transferrin-receptor complex. The most likely role for erythroid ferritin is storage of excess iron.  相似文献   

16.
Four aspects of iron metabolism were studied in cultured Friend erythroleukemia cells before and after induction of erythroid differentiation by dimethyl sulfoxide. (1) The binding of 125I-labeled transferrin was determined over a range of transferrin concentrations from 0.5 to 15 μM. Scatchard analysis of the binding curves demonstrated equivalent numbers of transferrin binding sites per cell: 7.78 ± 2.41 · 105 in non-induced cells and 9.28 ± 1.57 · 105 after 4 days of exposure to dimethyl sulfoxide. (2) The rate of iron transport was determined by measuring iron uptake from 59Fe-labeled transferrin. Iron uptake in non-induced cells was approx. 17 000 molecules of iron/cell per min; 24 h after addition of dimethyl sulfoxide it increased to 38 000, and it rose to maximal levels of approx. 130 000 at 72 h. (3) Heme synthesis, assayed qualitatively by benzidine staining and measured quantitatively by incorporation of 59Fe or [2-14C]glycine into cyclohexanone-extracted or crystallized heme, was not detected until 3 days after addition of dimethyl sulfoxide, when 12% of the cells were stained by benzidine and 6 pmol 59Fe and 32 pmol [2-14C]glycine were incorporated into heme per 108 cells/h. After 4 days, 60% of the cells were benzidine positive and 34 pmol 59Fe and 90 pmol [2-14C]glycine were incorporated into heme per 108 cells/h. (4) The rate of incorporation of 59Fe into ferritin, measured by immunoprecipitation of ferritin by specific antimouse ferritin immunoglobulin G, rose from 4.4 ± 0.6 cells to 18.4 ± 1.3 pmol 59Fe/h per 108 cells 3 days after addition of dimethyl sulfoxide, and then fell to 11.6 ± 3.1 pmol 4 days after dimethyl sulfoxide when heme synthesis was maximal. These studies indicate that one or more steps in cellular iron transport distal to transferrin binding is induced early by dimethyl sulfoxide and that ferritin may play an active role in iron delivery for heme synthesis.  相似文献   

17.
The subcellular distribution and metabolic fate of [59Fe]heme-[125I]-labeled hemopexin after receptor-mediated interaction with the liver was examined in the rat. After intravenous injection, [59Fe]heme from the complex and 59Fe from hepatic catabolism of this heme accumulate in the liver and undergo changes in their subcellular distribution over 2 hours. The amounts of [59Fe]heme and particularly of 59Fe increase in the cytosol while remaining constant or decreasing in membranous fractions. In contrast, [125I]-labeled hemopexin associated with the liver during heme transport is always a small fraction of the dose and is not measurably catabolized under these conditions.Gel filtration of the cytosol showed that 59Fe increased linearly with time in a high molecular weight fraction which was identified immunologically as ferritin. We conclude that heme transported by hemopexin is metabolized by the liver and the iron conserved.  相似文献   

18.
The early redox events involved in iron reduction and mobilization in mammalian ferritin have been investigated by several techniques. Sedimentation velocity measurements of ferritin samples with altered core sizes, prepared by partial reduction and Fe2+ chelation, suggest two different events occur during iron loss from the ferritin core. Reductive optical titrations confirm this biphasic behavior by showing that the first 20-30% of core reduction has different optical properties than the latter 70-80%. Proton uptake during initial core reduction is near zero, but as the percent core reduction increases, the proton uptake (H+/e) values increase to 2 H+/e (2 H+/Fe3+ reduced) as core reduction approaches 1 e/Fe3+. Coulometric reduction of ferritin by mediators of different redox potential and different cross-sectional areas show a two-phase sigmoidal reaction pattern in which initial core reduction occurs at a slower rate than later core reduction. The above experiments were all conducted in the absence of iron chelators so that the observed results were all attributed to core reduction rather than the combined effects of core reduction accompanied by Fe2+ chelation. The coulometric reduction of ferritin by various mediators shows a correlation more with reduction potential than with molecular cross-sectional area. The role of the ferritin channels in core reduction is considered in terms of the reported results.  相似文献   

19.
Ferric minerals in ferritins are protected from cytoplasmic reductants and Fe2+ release by the protein nanocage until iron need is signaled. Deletion of ferritin genes is lethal; two critical ferritin functions are concentrating iron and oxidant protection (consuming cytoplasmic iron and oxygen in the mineral). In solution, opening/closing (gating) of eight ferritin protein pores controls reactions between external reductant and the ferritin mineral; pore gating is altered by mutation, low heat, and physiological urea (1 mm) and monitored by CD spectroscopy, protein crystallography, and Fe2+ release rates. To study the effects of a ferritin pore gating mutation in living cells, we cloned/expressed human ferritin H and H L138P, homologous to the frog open pore model that was unexpressable in human cells. Human ferritin H L138P behaved like the open pore ferritin model in vitro as follows: (i) normal protein cage assembly and mineralization, (ii) increased iron release (t1/2) decreased 17-fold), and (iii) decreased alpha-helix (8%). Overexpression (> 4-fold), in HeLa cells, showed for ferritin H L138P equal protein expression and total cell 59Fe but increased chelatable iron, 16%, p < 0.01 (59Fe in the deferoxamine-containing medium), and decreased 59Fe in ferritin, 28%, p < 0.01, compared with wild type. The coincidence of decreased 59Fe in open pore ferritin with increased chelatable 59Fe in cells expressing the ferritin open pore mutation suggests that ferritin pore gating influences to the amount of iron (59Fe) in ferritin in vivo.  相似文献   

20.
In order to investigate the intracellular pathway of iron to ferritin, rabbit alveolar macrophages were incubated with 59FCl3, homogenized by sonification, and a soluble cell fraction separated from the stroma by centrifugation at 23 000 g. The soluble fraction was examined by gel filtration using Sephadex. Two peaks were identified in the eluate at 254 nm; peak I contained a group of proteins, including ferritin, and most of the eluted radioactivity. The 59Fe in this peak was confined to ferritin; no other 59Fe-binding protein was identified. Peak II contained a small amount of 59Fe. Chase experiments with ‘cold’ iron showed that peak I 59Fe was derived from 59Fe associated with the cell stroma. A protein carrier for 59Fe between the stroma and ferritin was not identified in the eluate of the soluble fraction. Rather it appeared that iron moved from the stroma through the cytoplasm to ferritin in a low molecular weight form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号