首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 360 毫秒
1.
The effects of burning, incorporation and surface mulching after one year of natural regrowth (NF) and Pueraria cover crop fallows on soil P fractions and maize and cassava yields were assessed. Data were collected between 1998 and 2000 as part of an on-going long-term fallow management trial established in 1989 at the International Institute of Tropical Agriculture (IITA), Ibadan, in the derived savanna zone of southwestern Nigeria. After NF in 1998, burning temporarily increased resin- (63%) and NaOH- (19%) extractable inorganic P fractions when compared with mulching and incorporation. Organic P and total extractable P decreased as the season progressed. Fallow systems and residue management options had no consistent and significant effect on P fractions. For both years after NF, and in 1998, after Pueraria fallow, residue management options had no significant effect on cassava yield. However, in 1999 (wetter year), compared with burning and surface mulching, incorporation of Pueraria fallow residues improved maize and cassava yields. Similarly, maize yield was improved in 1999 with incorporation of NF residues. Maize yield increases due to incorporation of NF residues were 23% compared with burning and 49% compared with mulching. Maize yield increases due to incorporation of Pueraria residues were 37% compared with burning and 47% compared with mulching. Cassava yield was increased by 31% compared with burning and by 26% compared with mulching. Longer period of time may be required to assess whether differences in soil P fractions and crop yields will occur between fallow systems.  相似文献   

2.
A long-term field experiment was established on a kaolinitic Alfisol in Ibadan, Nigeria, in 1972. The land was cleared manually from secondary forest and used for (i) continuous no-till cropping with maize (Zea mays L.) and maize/cassava (Manihot esculenta Crantz) intercropping, (ii) planted fallow of guinea grass (Panicum maximum Jacq.), leucaena (Leucaena leucocephala de Wit), and pigeon pea (Cajanus cajan Millsp.), and (iii) natural bush regrowth in a randomized complete block design with three replications. At the end of 15 years, the fallow plots were cleared manually and cropped with maize for three years. The chemical and physical soil properties and crop performance of the newly-cleared plots were compared with those under 15 years of continuous cultivation. A total of 26 woody species were identified on the bush regrowth plots. Above-ground biomass accumulation of the bush plots was 157 Mg ha-1 containing 1316 kg N ha-1. Guinea grass, leucaena and natural bush regrowth plots had comparable organic C concentrations (approximately 20 g kg-1) in the surface soil (0 to 10 cm) after 15 years. The organic C concentration in the surface soil under pigeon pea was the lowest (9.5 g kg-1) among the four fallow treatments. Soil under 15 years of continuous no-till maize with and without residue mulch, respectively, contained approximately half (10 g kg-1) and a quarter (5.7 g kg-1) of the organic C under natural bush or guinea grass fallow. The levels of exchangeable Ca, K, Mg and effective cation exchange capacity (ECEC) were lower in the soils under continuous cultivation than in those under natural bush and planted fallow. Soil acidification occurred in soils under continuous cropping as depicted by the lower pH values and greater exchangeable Al and Mn concentrations compared to the fallow plots. Grain yield of maize (3 to 5 Mg ha-1) without fertilizer application in the plots newly cleared from natural bush, guinea grass and leucaena fallow was comparable with that of continuous no-till maize with residue mulch and chemical fertilizer (N, P, K, Mg, Zn) applications. Among the four fallow treatments, maize grain and stover yields were the lowest in plots cleared from pigeon pea fallow.  相似文献   

3.
Fallows improve soil fertility and allow sustainable agriculture. Soil fertility was assessed under different types of fallow through pH, nutrient concentrations and particulate organic matter (POM) quantity and quality. The two year-fallows were under Chromolaena odorata, Calliandra calothyrsus and Pueraria phaseoloides on a Typic Kandiudult. Soils were sampled from 0–10 cm and 10–20 cm depth. The weight of POM was 2 mg g−1 of soil under Calliandra, 3.9 mg g−1 under Chromolaena and 3.7 mg g−1 under Pueraria in the 0–10 cm layer. The tPOM-C (proportion of C in the total POM) and tPOM-N (proportion of N in total POM) were 26.1% and 14.5% under Calliandra, 39.6% and 18.8% under Chromolaena and 37.0% and 16.7% under Pueraria. However, despite the improvement of soil fertility under Pueraria as compared to planted Calliandra, the effect of Pueraria on nutrient concentration and POM status remained similar to that of Chromolaena. Calliandra increased soil acidity and allowed a deterioration of nutrient concentration (Ca, K), ECEC and an impoverishment of POM status.  相似文献   

4.
Gérard  B.  Hiernaux  P.  Muehlig-Versen  B.  Buerkert  A. 《Plant and Soil》2001,228(2):265-273
Little is known about the residual effects of crop residue (CR) and phosphorus (P) application on the fallow vegetation following repeated cultivation of pearl millet [Pennisetum glaucum (L.) R. Br.] in the Sahel. The objective of this study, therefore, was (i) to measure residual effects of CR, mulched at annual rates of 0, 500, 1000 and 2000 kg CR ha–1, broadcast P at 0 and 13 kg P ha–1 and P placement at 0, 1, 3, 5 and 7 kg P ha–1 on the herbaceous dry matter (HDM) 2 years after the end of the experiment and (ii) to test a remote sensing method for the quantitative estimation of HDM. Compared with unmulched plots, a doubling of HDM was measured in plots that had received at least 500 kg CR ha–1. Previous broadcast P application led to HDM increases of 14% compared with unfertilised control plots, whereas no residual effects of P placement were detected. Crop residue and P treatments caused significant shifts in flora composition. Digital analysis of colour photographs taken of the fallow vegetation and the bare soil revealed that the number of normalised green band pixels averaged per plot was highly correlated with HDM (r = 0.86) and that red band pixels were related to differences in soil surface crusting. Given the traditional use of fallow vegetation as fodder, the results strongly suggest that for the integrated farming systems of the West African Sahel, residual effects of soil amendments on the fallow vegetation should be included in any comprehensive analysis of treatment effects on the agro-pastoral system.  相似文献   

5.
Grass fallow shifting cultivation is an important land use practice in the highlands of Bhutan. Part of the nutrient pool contained in soil organic matter is made available for the traditional buckwheat (Fagopyrum tataricum) crop through a highly labor intensive system exposing 250–500 MT soil ha−1 to temperatures of 500°C and above. Dry topsoil is collected in mounds and burned using plant biomass or manure and soil organic matter as fuel. Labor input ranged from 150–401 days ha−1 with land preparation accounting for 65–85% of the total requirement. The burning increased soil pH from 6.0 to 6.9 and available K from 34 to 69 mg kg−1. Soil organic C and total N were reduced from 3.3 and 0.17% to 0.8 and 0.08%, respectively. Release of P from soil organic matter and plant material and reduction in C/N ratio resulting in increased N availability are considered the most essential effects required for good crop yields. Through the burning about 16 MT of C and 470 kg N ha−1 are released into the atmosphere. Fallow periods of 15–20 years are required for the system to be sustainable. The research was supported by the Department of Agriculture. Royal Government of Bhuttan and the Swiss Association for Technical Assistance The research was supported by the Department of Agriculture. Royal Government of Bhuttan and the Swiss Association for Technical Assistance  相似文献   

6.
Bañuelos  G. S.  Sharmarsakar  S.  Cone  D.  Stuhr  G. 《Plant and Soil》2003,249(1):229-236
Water reuse is a proposed strategy for utilizing or disposing of poor quality drainage water produced in the westside of central California. This 2-year field study evaluated the ability of two potential forage species to tolerate irrigation with water high in salinity, boron (B), and selenium (Se). The species used were: Sporobulus airoides var. salado (alkali sacaton) and Medicago sativa var. salado (alfalfa). After first year establishment with good quality water (<1 dS m–1), the two species were furrow-irrigated with drainage effluent that had an average composition of sulfate-dominated salinity ((electrical conductivity (EC) of 6.2 dS m–1)) B (5 mg l–1), and Se (0.245 mg l–1). Both crops were clipped monthly from June to October of each year. Total dry matter yields averaged between 11 and 12 mg ha–1 for both crops irrigated with effluent for two growing seasons. Plant concentrations of Se ranged from a low of 1.3 mg kg–1 in alkali sacaton to a high of 2.5 mg kg–1 in alfalfa, while B concentrations ranged from a low of 60 mg kg–1 in alkali sacaton to a high of 170 mg kg–1 in alfalfa. Chemical composition of the soil changed as follows from preplant to post-irrigation after two seasons with drainage effluent: EC from 2.78 to 6.5 dS m–1, extractable B from 1.9 to 5.6 mg l–1, and no change in extractable Se at 0.012 mg l–1 between 0 and 45 cm. Between 45 and 90 cm, EC values increased from 4.95 to 6.79 dS m–1, extractable B from 2.5 to 4.8 mg l–1, and no change in extractable Se at 0.016 mg l–1. Increased salinity and extractable B levels in the soil indicate that management of soil salinity and B will be necessary over time to sustain long term reuse with poor quality water.  相似文献   

7.
Ståhl  Lena  Nyberg  Gert  Högberg  Peter  Buresh  Roland J. 《Plant and Soil》2002,243(1):103-117
The effects of planted fallows of Sesbania sesban (L.) Merr. and Calliandra calothyrsus (Meissner) on soil inorganic nitrogen dynamics and two subsequent maize crops were evaluated under field conditions in the highlands of eastern Kenya. Continuous unfertilised maize, maize/bean rotation and natural regrowth of vegetation (weed fallow) were used as control treatments. The proportion of symbiotic N2-fixation was estimated by measuring both leaf 15N enrichment and whole-plant 15N enrichment by the 15N dilution technique for Sesbania and Calliandra, using Eucalyptus saligna (Sm.) and Grevillea robusta (A. Cunn) as reference species. Above- and below-ground biomass and N contents were examined in Sesbania, Calliandra, Eucalyptus and Grevillea 22 months after planting. Both the content of inorganic N in the topsoil and the quantity of N mineralised during rainy seasons were higher after the Sesbania fallows than after the other treatments. Compared to the continuous unfertilised maize treatment, both residual crop yields were significantly higher when mineral N (one application of 60 kg N ha–1) was added. Furthermore, the second crop following the Sesbania fallow was significantly higher than the continuous maize crop. The above-ground biomass of the trees at final harvest were 31.5, 24.5, 32.5 and 43.5 Mg ha–1 for the Sesbania, Calliandra, Grevillea and Eucalyptus, respectively. For the total below-ground biomass the values for these same tree species were 11.1, 15.5, 17.7, and 19.1 Mg ha–1, respectively, of which coarse roots (>2 mm), including tap roots, amounted to 70–90%. About 70–90% of the N in Sesbania, and 50–70% in Calliandra, was derived from N2-fixation. Estimates based on leaf 15N enrichment and whole-plant 15N enrichment were strongly correlated. The N added by N2-fixation amounted to 280–360 kg N ha–1 for Sesbania and 120–170 kg N ha–1 for Calliandra, resulting in a positive N balance after two maize cropping seasons of 170–250 kg N ha–1 and 90–140 kg N ha–1, for Sesbania and Calliandra, respectively. All the other treatments gave negative N balances after two cropping seasons. We conclude that Sesbania sesban is a tree species well suited for short duration fallows due to its fast growth, high nutrient content, high litter quality and its ability to fix large amounts of N2 from the atmosphere.  相似文献   

8.
Vanlauwe  B.  Aihou  K.  Houngnandan  P.  Diels  J.  Sanginga  N.  Merckx  R. 《Plant and Soil》2001,228(1):61-71
Although the West-African moist savanna zone has a high potential for crop production, yields on farmers' fields are, on average, far below this potential, mainly due to the low use of external sources of nutrients. Since the mid-1990s, it has become clear that in order to upgrade crop production to levels needed to sustain the growing population without further degrading the soil resource base, inorganic fertilizers are required. Due to the physico-chemical nature of these soils and the relatively high cost of inorganic fertilizers, a general consensus exists in the research and development community that these inorganic inputs need to be complemented with organic matter. Here, we explore options to produce organic matter in-situ and evaluate the impact of combining inorganic and organic sources of N on maize yields, focusing on the densely populated derived savanna (DS) benchmark of Benin Republic. Although most of the farmers (93%) in this benchmark use inorganic fertilizer, applications rates are low (on average, 27 kg N ha–1). A significant response to N was observed for 96% of the studied farmers' fields.Grain and herbaceous legumes were observed to produce between 383 and 8700 kg dry matter ha–1 in the benchmark area. Inoculation with Rhizobia and inorganic P additions were shown to significantly improve biomass production on sites with low contents of Rhizobia and P. Although maize grain yield was observed to increase significantly following a legume compared with following a maize crop or natural fallow, these increases were insufficient in the case of a cowpea crop or were obtained at the cost of leaving the field `idle' for a whole year in the case of a herbaceous Mucuna fallow. Topping up a cowpea haulms equivalent of 45 kg N ha–1 with 45 kg urea–N ha–1 was shown to give maize yields similar to the yields obtained after applying 90 kg urea–N ha–1 on the poorest fields. Moreover, on these fields, a positive interaction between cowpea–N and urea–N sources of 200 kg grain ha–1 was observed. On the richest fields, the effects of applied organic matter and fertilizer were additive.Agroforestry systems are alternative cropping systems that produce organic matter in-situ. As tree roots go down below the rooting depth of food crops, sub-soil fertility was observed to influence tree biomass production. Yield increases in tree-crop intercrop systems – such as alley cropping – in the absence of inorganic inputs are often reduced by the occurrence of tree-crop competition. In cut-and-carry systems, where tree prunings are harvested from a field adjacent to the crop land, increases in maize grain yield caused by addition of those prunings were observed to be on the low side. Mixing these residues with urea, however, was shown to lead to added benefits of about 500 kg grains ha–1, relative to the treatments with sole inputs of organic matter or urea. Although residue quality was shown to affect maize N uptake in a pot trial, its impact under field conditions was minimal for the range of considered residue qualities. In an alley cropping trial, maize yield was shown to be sustained on a non-degraded site and enhanced on a degraded site, when a minimal amount of mineral fertilizer was added with the prunings, whereas fertilizer application alone failed to do so in both cases.  相似文献   

9.
Montás Ramírez  L.  Claassen  N.  Amílcar Ubiera  A.  Werner  H.  Moawad  A.M. 《Plant and Soil》2002,239(2):197-206
During the period January–August 1996, an investigation was carried out in La Mata, Cotuí, Dominican Republic with the objective to study the effect of P, K and Zn fertilizers on Fe toxicity in the rice varieties JUMA-57 (sensitive to Fe toxicity), ISA-40 and PSQ-4 (both tolerant to Fe toxicity). The rate of fertilizer application was 22 and 62 kg P ha–1; 58 and 116 kg K ha–1; 3 and 7 kg Zn ha–1 and a constant dose of 140 kg N ha–1 and 40 kg S ha–1 on all fertilized plots. The control received no fertilizer. JUMA-57 was the only variety that showed symptoms of Fe toxicity. The observed symptoms showed a yellow to orange colour. Symptoms of Fe toxicity appeared first one week after transplanting (WAT), decreased at the fourth WAT, but returned six WAT and continued until the end of the experiment. Fertilizer application reduced symptom intensity and increased grain yield in all varieties, but only JUMA-57 did not reach the maximum yield typical for that variety. Fertilizer application did not completely overcome the toxicity effect, i.e. in symptom intensity and grain yield. The positive effect of fertilizer application could not be attributed to a specific nutrient. Intensity of symptoms was not related to Fe concentration in the leaves. The average Fe concentration of 108 mg kg–1 was not high enough to be considered toxic. Symptoms could not be explained through Mn toxicity (average Mn concentration in the leaves was 733 mg kg–1) nor Zn deficiency (average Zn concentration in the leaves was 20 mg kg–1). There was a clear relationship, though, between soil DTPA extractable Fe and symptom intensity or grain yield. The toxic effect was observed when the DTPA extractable Fe in the flooded soil was above 200 mg kg–1. From these results, we concluded that the Fe toxicity resulted from high Fe in the root zone and not from high Fe concentrations in the leaves.  相似文献   

10.
Decline in soil fertility accelerated by shorter fallow periods was expected to be a major constraint in slash-and-burn rice production systems in northern Laos. In this paper we describe relationships between fallow period, soil fertility parameters, weeds and rice yield. Soil infertility is not perceived a major yield constraint by the farmers. Of the various soil parameters observed only soil organic matter showed consistent association with rice yield (r=0.42, p<0.01). Fallow period and rice yield showed no association and the relationship between fallow and organic matter was very weak (r=0.16, p<0.01). Rice yield was negatively related to densities of Ageratum conyzoides and Lygodium flexuosum. Soil loss during the cropping period ranged from 300–29.300 kg ha–1. For the same period organic matter, total N, available P and available K content in the top 0–3 cm decreased by 11,12,17, and 17%, respectively, and loss of total N for the soil depth of 0–25 cm was estimated at 400 kg ha–1. Soil physical properties, moisture stress and available N are the most likely detriments to rice yields. Further attempts to relate soil properties to rice yield should include repeated measurements during the cropping season and observations on soil physical properties.The research presented was supported by the Provincial Agriculture Service, Luang Prabang, Laos, and the Swiss Development Cooperation.  相似文献   

11.
Precipitation of Ca phosphates negatively affects recovery by plants of P fertilizer applied to calcareous soils, but organic matter slows the precipitation of poorly soluble Ca phosphates. To study the effect of high molecular weight organic compounds on the recovery of applied P, a mixture of humic and fulvic acids was applied to calcareous soils with different levels of salinity and Na saturation which were fertilized with 200 and 2000 mg P kg–1 as NH4H2PO4. Recovery was measured as the ratio of increment in Olsen P-to-applied P after 30, 60 and 150 days, and associated P forms were studied using sequential chemical fractionation and 31P NMR spectroscopy. Application of the humic-fulvic acid mixture (HFA) increased the amount of applied P recovered as Olsen P in all the soils except in one soil with the highest Na saturation. In soils with high Ca saturation and high Olsen P, recovery increased from < 15% in the absence of amendment to > 40% at a 5 g HFA kg–1 amendment rate (30 days incubation and 200 mg P kg–1 fertilizer rate). This is ascribed to inhibition of the precipitation of poorly soluble Ca phosphates, consistent with the sequential chemical extraction (reduction of the HCl extractable P) and P concentration in 0.01 M CaCl2 (1:10 soil:solution ratio) extracts. 31P NMR spectra revealed that in non-amended samples, most spectral shifts were due to poorly soluble P compounds (carbonate apatite); on the other hand, at the 5 g HFA kg–1 rate, significant amounts of amorphous Ca phosphate and dicalcium phosphate dihydrate (DCDP) were identified. The increase in the recovery of applied P due to HFA reveals a positive effect of the application of organic matter as soil amendments on the efficiency of P fertilizers and also explains that manures and other organic sources of P were more efficient increasing available P than inorganic P fertilizers in calcareous soils.  相似文献   

12.
No information is available on the decomposition and nutrient release pattern of Piper aduncum and Imperata cylindrica despite their importance in shifting cultivation systems of Papua New Guinea and other tropical regions. We conducted a litter bag study (24 weeks) on a Typic Eutropepts in the humid lowlands to assess the rate of decomposition of Piper aduncum, Imperata cylindrica and Gliricidia sepium leaves under sweet potato (Ipomoea batatas). Decomposition rates of piper leaf litter were fastest followed closely by gliricidia, and both lost 50% of the leaf biomass within 10 weeks. Imperata leaf litter decomposed much slower and half-life values exceeded the period of observation. The decomposition patterns were best explained by the lignin plus polyphenol over N ratio which was lowest for piper (4.3) and highest for imperata (24.7). Gliricidia leaf litter released 79 kg N ha–1, whereas 18 kg N ha–1 was immobilised in the imperata litter. The mineralization of P was similar for the three species, but piper litter released large amounts of K. The decomposition and nutrient release patterns had significant effects on the soil. The soil contained significantly more water in the previous imperata plots at 13 weeks due to the relative slow decomposition of the leaves. Soil N levels were significantly reduced in the previous imperata plots due to immobilisation of N. Levels of exchangeable K were significantly increased in the previous piper plots due to the large addition of K. It can be concluded that piper leaf litter is a significant and easily decomposable source of K which is an important nutrient for sweet potato. Gliricidia leaf litter contained much N, whereas imperata leaf litter releases relatively little nutrients and keeps the soil more moist. Gliricidia fallow is more attractive than an imperata fallow for it improves the soil fertility and produces fuelwood as additional saleable products.  相似文献   

13.
Ryan  M.H.  Angus  J.F. 《Plant and Soil》2003,250(2):225-239
Few field studies have investigated the contribution of arbuscular mycorrhizal fungi (AMF) to agricultural systems. In this study, the role of AMF in nutrition and yield of dryland autumn-sown wheat and field pea was examined through a 2-year crop sequence experiment on a red loam (Kandosol) in SE Australia. The soil was P-deficient and had low levels of root pathogens. In Year 1, levels of AMF were increased by growing subterranean clover or LinolaTM and decreased by growing canola or through maintenance of bare fallow with herbicides or tillage. In Year 2, hosts of AMF (wheat and field pea) and non-mycorrhizal canola were grown with 0 P or 20 kg ha–1 of P as superphosphate. Yields of all Year 2 crops were increased by P-fertiliser. Year 1 treatment led to 2–3 fold variation in colonisation by AMF at each P-level for Year 2 wheat and field pea. High colonisation did not correspond with greater crop growth, yield, or uptake of P, K, Ca, Cu or S in wheat or field pea. However, total crop Zn-uptake and grain Zn concentration were positively correlated with colonisation by AMF, due to enhanced Zn-uptake after anthesis. For wheat, high colonisation also corresponded with reduced Mn-uptake and lower grain Mn concentrations. In a glasshouse experiment using a second P-deficient Kandosol, inoculation of wheat with Glomus intraradices and Scutellospora calospora enhanced uptake of Zn and P when no P-fertiliser was applied. We conclude that high colonisation by AMF is unimportant for productivity of the major field crops grown on the Kandosol soils that occupy large areas of cropland in temperate SE Australia, even under P-limiting conditions. Investigation of the factors that control functioning of arbuscular mycorrhizae under field conditions, especially temperature, is required.  相似文献   

14.
The long-term soil management effects on C and N stocks of soil physical fractions are still poorly understood for South American subtropical soils. This study aimed (i) to evaluate the influence of cereal- and legume-based cropping systems and N fertilisation on C and N stocks of the sand-, silt- and clay-size fractions of a no-tilled subtropical Acrisol in southern Brazil, (ii) to compute the Carbon Management Index (CMI) for those cropping systems using physical fractionation data, and (iii) to investigate the possible existence of finite capacity of those soil physical fractions to store C and N. Soil samples of a long-term experiment were collected from the 0–2.5 and 2.5–7.5 cm layers of three no-till cropping systems [fallow bare soil, oat/maize (O/M) and pigeon pea+maize (P+M)] under two N fertilisation levels (0 and 180 kg N ha–1). However, for fallow bare soil, only the non-fertilised sub-plot was sampled. An adjacent native grassland soil was sampled as a reference. The C and N stocks of the three soil physical fractions were higher in the legume-based cropping system (P+M) than in O/M and bare soil, because of the higher residue input in the former. The P+M cropping system restored the C and N stocks in sand- and silt-size fractions to the same levels found in grassland soil. Higher C and N stocks in all physical fractions were also obtained with N fertilisation. The C and N stocks and the C:N ratio were most affected by cropping systems in the sand- and least in the clay-size fraction. Particulate organic matter was found in the silt-size fraction, showing this fraction is not only constituted by mineral-associated organic mater, as commonly believed. Taking grassland soil as reference (CMI = 100), the CMI ranged from 46, in O/M no N, to 517, in P+M with N, pointing to a better soil management in the latter. The clay-size fraction tended to show a finite capacity to store C and N (48.8 g C kg–1 and 4.9 g N kg–1 of clay), which was not verified in sand- and silt-size fractions. The adoption of no-tillage and legume-based cropping systems with high residue input are adequate soil management strategies to improve soil quality and make the agricultural production systems more sustainable in subtropical regions.  相似文献   

15.
The effect of long-term (1983–1988) applications of crop residues (millet straw, 2–4 t ha-1 yr–1) and/or mineral fertilizer (30 kg N, 13 kg P and 25 kg K ha-1 yr-1) on uptake of phosphorus (P) and other nutrients, root growth and mycorrhizal colonization of pearl millet (Pennisetum glaucum L.) was examined for two seasons (1987 and 1988) on an acid sandy soil in Niger. Treatments of the long-term field experiment were: control (–CR–F), mineral fertilizer only (–CR+F), crop residues only (+CR–F), and crop residues plus mineral fertilizer (+CR+F).In both years, total P uptake was similar for +CR–F and –CR+F treatments (1.6–3.5 kg P ha-1), although available soil P concentration (Bray I P) was considerably lower in +CR–F (3.2 mg P kg-1 soil) than in –CR+F (7.4) soil. In the treatments with mineral fertilizers (–CR+F; +CR+F), crop residues increased available soil P concentrations (Bray I P) from 7.4 to 8.9 mg kg-1 soil, while total P uptake increased from 3.6 to 10.6 kg P ha-1. In 1987 (with 450 mm of rainfall), leaf P concentrations of 30-day-old millet plants were in the deficiency range, but highest in the +CR+F treatment. In 1988 (699 mm), leaf P concentrations were distinctly higher, and again highest in the +CR+F treatment. In the treatments without crop residues (–CR–F; –CR+F), potassium (K) concentrations in the leaves indicated K deficiency, while application of crop residues (+CR–F; +CR+F) substantially raised leaf K concentrations and total K uptake. Leaf concentrations of calcium (Ca) and magnesium (Mg) were hardly affected by the different treatments.In the topsoil (0–30 cm), root length density of millet plants was greater for +CR+F (6.5 cm cm-3) than for +CR–F (4.5 cm cm-3) and –CR+F (4.2 cm cm-3) treatments. Below 30 cm soil depth, root length density of all treatments declined rapidly from about 0.6 cm cm-3 (30–60 cm soil depth) to 0.2 cm cm-3 (120–180 cm soil depth). During the period of high uptake rates of P (42–80 DAP), root colonization with vesicular-arbuscular mycorrhizal (VAM) fungi was low in 1987 (15–20%), but distinctly higher in 1988 (55–60%). Higher P uptake of +CR+F plants was related to a greater total root length in 0–30 cm and also to a higher P uptake rate per unit root length (P influx). Beneficial effects of crop residues on P uptake were primarily attributed to higher P mobility in the soil due to decreased concentrations of exchangeable Al, and enhancement of root growth. In contrast, the beneficial effect of crop residues on K uptake was caused by direct K supply with the millet straw.  相似文献   

16.
Sikora  L. J.  Enkiri  N. K. 《Plant and Soil》2001,235(1):65-73
Composts are considered low analysis fertilizers because their nitrogen and phosphorus content are around 1% and the organic nitrogen mineralization rate is near 10%. If compost is added to agricultural land at the N requirement of grain crops (40 – 100 kg N ha–1), application rates approach 40–100 mg ha–1. Much lower rates may be advisable to avoid rapid accumulation of growth limiting constituents such as heavy metals found in some composts. Combining low amendment rates of composts with sufficient fertilizer to meet crop requirements is an appealing alternative which (a) utilizes composts at lower rates than those needed to supply all the crop N requirement, (b) reduces the amount of inorganic fertilizer applied to soils, and (c) reduces the accumulation of non-nutrient compost constituents in soils. A study was conducted to compare the effects of blends of biosolids compost (C) with 15N urea(U) or 15NH4 15NO3 (N) fertilizers to fertilizer alone on tall fescue (Festuca arundinacea L.) growth and N uptake. Blends which provided 0, 20, 40 or 60 mg N kg–1 application rate as compost N and 120, 100, 80 or 60 mg N kg–1 as fertilizer N, respectively, were added to Sassafras soil (Typic Hapludults). Fescue was grown on the blends in a growth chamber for 98 days. Fescue yields recorded by clippings taken at 23, 46 and 98 days and roots harvested after the 98-day clipping increased with increasing fertilizer level for both NH4NO3 and urea and with or without compost. Nitrogen uptake by fescue responded similarly to yield with increases recorded with increasing fertilizer levels with or without compost. Paired comparisons based on cumulative 98-day clippings data showed that yields from blends were equal to yields from fertilizer treatments containing the same percentage of fertilizer as the blends. These data indicated that compost did not provide sufficient plant-available N to increase yields or N uptake. None of the blends equaled 120 mg N kg–1 fertilizer rate except for 100 mg NH4NO3-or urea-N kg–1 –20 mg compost-N kg–1blends. The data suggest that biosolids compost blended with fertilizer at a rate of 2–6 mg ha –1 did not supply sufficient additional available N to increase yields or N uptake over those of fertilizer alone.  相似文献   

17.
It is generally assumed that phosphorus (P) availability for plant growth on highly weathered and P-deficient tropical soils may depend more on biologically mediated organic P (Po) turnover processes than on the release of adsorbed inorganic P (Pi). However, experimental evidence showing the linkages between Po, microbial activity, P cycling and soil P availability is scarce. To test whether land-use systems with higher soil Po are characterized by greater soil biological activity and increased P mineralization, we analyzed the partitioning of P among various organic and inorganic P fractions in soils of contrasting agricultural land-use systems and related it to biological soil properties. Isotopic labeling was used to obtain information on the turnover of P held in the microbial biomass. Soil samples were taken from grass–legume pasture (GL), continuous rice (CR) and native savanna (SAV) which served as reference. In agreement with estimated P budgets (+277, +70 and 0 kg P ha–1 for CR, GL and SAV, respectively), available P estimated using Bray-2 and resin extraction declined in the order CR > GL > SAV. Increases in Bray-2 and resin Pi were greater in CR than GL relative to total soil P increase. Organic P fractions were significantly less affected by P inputs than inorganic fractions, but were a more important sink in GL than CR soils. Extractable microbial P (Pchl) was slightly higher in GL (6.6 mg P kg–1) than SAV soils (5.4 mg P kg–1), and significantly lowest in CR (2.6 mg P kg–1). Two days after labeling the soil with carrier free 33P, 25, 10 and 2% of the added 33P were found in Pchl in GL, SAV and CR soils, respectively, suggesting a high and rapid microbial P turnover that was highest in GL soils. Indicators of P mineralization were higher in GL than CR soils, suggesting a greater transformation potential to render Po available. Legume-based pastures (GL) can be considered as an important land-use option as they stimulate P cycling. However, it remains to be investigated whether crops planted in pasture–crop rotations could benefit from the enhanced Po cycling in grass–legume soils. Furthermore, there is need to develop and test a direct method to quantify Po mineralization in these systems.  相似文献   

18.
Plant lifeform composition and levels of nutrients accumulated by fallows aged 1, 2 and 3 years under shifting (milpa) cultivation in Belize were measured. Levels of N, P and K allocated to leaves rapidly reached a plateau in 1 year old fallows with little increase in 2 and 3 year old sites. In stem material, K was accumulated rapidly, with little increase after the first year of fallow growth, while N and P accumulation proceeded at steady rates during three years of fallow development. Total biomass in 3 year old fallows averaged 2070 g m–2 with 10.3 g m–2 N, 0.73 g m–2P and 13.2 g m–2K. Nutrient concentrations in early successional species were higher than in species of later successional status, suggesting different strategies for nutrient utilization.Woody lifeforms dominated the fallow vegetation, accounting for 80% of total biomass in first year fallows and eliminating herbaceous species after 2 and 3 years of fallow growth. The importance of rapid recovery of woody species is discussed as it relates to fallow management and weed control.  相似文献   

19.
Kahiluoto  Helena  Ketoja  Elise  Vestberg  Mauritz  Saarela  Into 《Plant and Soil》2001,231(1):65-79
The hypothesis of this study was that cumulative P fertilization decreases the contribution of arbuscular mycorrhiza (AM) to crop growth and nutrient uptake in Northern European field conditions. The modes of action of P fertilization were evaluated through effects on mycorrhization, crop dependence on AM, and AM fungal (AMF) community. Field studies were carried out within long-term experiments on soils with low and intermediate initial content of extractable P, where no P fertilization and 45 kg ha–1 a–1 P were applied for 20 years. AM effectiveness in terms of growth and nutrient uptake of flax, red clover and barley, percentage root length colonized by AMF, P response of flax, and spore densities and species composition of the AMF communities, were assessed. In the soil with low initial P supply, cumulative P fertilization decreased AM contribution to crop growth and nutrient uptake. The higher AM effectiveness in soil with no added P compensated the cumulative P fertilization (soil PH2O 2.5 v. 9.5 mg kg–1) for flax, but not completely for clover. In contrast, barley obtained no benefit from AM at harvest and only a slight benefit from cumulated P. In the soil with intermediate initial P supply, AM reduced growth of flax and barley, especially with no added P, and no response to AM was obtained on clover due to retarded mycorrhization. Cumulative P fertilization reduced yield losses of flax by AM (PH2O 18.8 v. 5.4 mg kg–1), because fertilization inhibited mycorrhization. In both soils, root colonization and spore density were decreased by cumulative P fertilization, but no changes in AMF species composition were observed.  相似文献   

20.
In phosphorus deficient soils and under smallscale farming systems, the development of efficient management strategies for P fertilizers is crucial to sustain food production. A field experiment was conducted on a P-fixing Acrisol in western Kenya to study possibilities of replenishing soil P with seasonal additions of small rates of P fertilizers. Triple superphosphate was applied at 0, 10, 25, 50 and 150 kg P ha–1 for 5 consecutive maize growing seasons followed by 4 seasons of residual crops. Maize yields and soil P fractions were determined. Although maize responded to additions of 10 kg P ha–1 with a cumulative grain yield of 16.8 Mg ha–1, at the end of the experiment, compared to 8.8 Mg ha–1 in the non-P fertilized plots, soil labile P did not increase correspondingly. Seasonal additions of 150 kg P ha–1 increased maize yields to a cumulative value of 39 Mg ha–1 at the end of the experiment, and increased all soil inorganic P fractions. At the third season of residual phase, treatment with a cumulative addition of 750 kg P ha–1 gave the highest yields compared to treatments in the same residual stage, but these yields were considered less than the maximum yield of the season. This indicates that the large build up of soil P was not available for crop uptake. The inorganic P fraction extracted by NaHCO3 was the most affected by changes in management, increasing during the input phase and decreasing after interruption of P addition, for all P rates. The decrease in this pool during the residual phase could be explained by the maize uptake. This study showed that seasonal additions of 25 kg P ha–1 can increase maize yield with gradual replenishment of soil P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号