首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
As an efficient and cost-effective nitrogen removal process, anaerobic ammonium oxidation (ANAMMOX) could be well operated at suitable pH condition. However, pH shock occurred in different kinds of wastewater and affected ANANNOX process greatly. The present research aimed at studying the performance and kinetics of ANAMMOX granular sludge with pH shock. When influent pH was below 7.5, effluent \({\text{NH}}_{4}^{ + }\)–N and \({\text{NO}}_{2}^{ - }\)–N increased with decreasing pH. At Ph 6.0, effluent \({\text{NO}}_{2}^{ - }\)–N approached 100 mg/L, and the ratios of \(\Delta {\text{NO}}_{2}^{ - } - {\text{N}}:\Delta {\text{NH}}_{4}^{ + } - {\text{N and }}\Delta {\text{NO}}_{3}^{ - } - {\text{N}}:\Delta {\text{NH}}_{4}^{ + } - {\text{N}}\) approached 2.2 and 1.3, respectively. Both greatly deviated from theoretical values. When influent pH was above 7.5, effluent \({\text{NH}}_{4}^{ + }\)–N and \({\text{NO}}_{2}^{ - }\)–N increased with increasing pH. At pH 9.0, ammonium removal rate (ARR) and nitrite removal rate (NRR) decreased to 0.011 ± 0.004 and 0.035 ± 0.004 kg/(m3·d), respectively. Besides, \(\Delta {\text{NO}}_{2}^{ - }\)–N:\(\Delta {\text{NH}}_{4}^{ + }\)–N deviated from theoretical value. Longer recovery time from pH 9.0 than from pH 6.0 indicated that alkaline surroundings inhibited anaerobic ammonium oxidizing bacteria (AAOB) greater. The sludge settling velocity was 2.15 cm/s at pH 7.5. However, it decreased to 2.02 cm/s when pH was 9.0. Acidic pH had little effect on sludge size, but disintegration of ANAMMOX granule was achieved with pH of 9.0. The Bell-shaped (A) model and the Ratkowsky model were more applicable to simulate the effect resulting from pH shock on ANAMMOX activity (R2 > 0.95), and both could describe ANAMMOX activity well with pH shock. They indicated that qmax was 0.37 kg \(\Delta {\text{NH}}_{4}^{ + }\)–N/(kgMLSS·d) at the optimum pH value (7.47) in present study. The minimum pH during which ANAMMOX occurred was 5.68 while the maximum pH for ANAMMOX reaction was 9.26. Based on nitrogen removal performance with different pH, strongly acidic (pH ≤ 6.5) or alkaline (pH ≥ 8.5) inhibited ANAMMOX process. Besides, ANAMMOX appeared to be more susceptible to alkaline wastewater. Compared to extremely acidic condition (low pH), extremely alkaline condition (high pH) affected ANAMMOX granules much more.  相似文献   

2.
The enantiomers of the aromatase inhibitors 3-(4-aminophenyl)-pyrrolidine-2,5-dione (WSP-3, II ), its N-pentyl derivative ( III ), and the antifungal econazole ( IV ), all possessing a benzylic proton at the chiral centre, are rapidly racemised in vitro in phosphate buffer (0.01 M) at pH 7.4 and 23°C with t½ values of 7, 6, and 5 h respectively. In vivo studies in rats show that (+)-econazole is racemised after intraperitoneal injection with t½ = 1.24h. The enantiomers of the antifungal 1-[(benzofuran-2-yl)-4-chlorophenylmethyl] imidazole ( V ) were stable at pH 7.4, attributable to steric hindrance to carbanion formation in the racemisation step. © 1994 Wiley-Liss, Inc.  相似文献   

3.
Eighty-five strains of bacteria were screened for selection of microorganisms suitable for industrial production of polynucleotides. Among these bacteria, Achromobacter sp. KR 170-4 (ATCC 21942) was found to be rich in polynucleotide Phosphorylase (PNPase) in its “salt-shockate” as compared with the other strains tested. PNPase was purified about 50-fold from the “salt-shockate” of Achromobacter sp. KR 170-4, and properties of the enzyme were elucidated. Optimal pH for reaction was 10.1. Stable pH range at 37°C was between pH 6.5 and 10.5. Optimal temperatures were 46°C for polymerization of ADP or IDP, and 43°C for CDP or UDP. The enzyme was stable below 55°C at pH 9.2. The enzyme required Mn2+ rather than Mg2+ unlike the other PNPases reported. Optimal concentration of Mn2+ was 6 mM.  相似文献   

4.
Cell-free extracts of mycelial mats of Pgrenochaeta terrestris grown in stationary culture on synthetic glucose or sucrose - salts liquid media contained D-mannitol-1-Phosphate:NAD oxidoreductase (EC 1.1.1.17) activity. Greatest activity occurred early in the growth period. The optimum pH for the reduction of NAD+ in the presence of Fru-6-P was 7.4–7.5 while the optimum pH for the oxidation of NADH in the presence of Mtl-1-P was 8.1–8.2. The enzyme was stabilized to some extent in Tris-maleate buffer, pH 7.5, and by the addition of 10% (NH4)2SO4, to this buffer. A 10- to 16-fold purification was attained by a combination of (NH4)2SO4 fractionation and gel filtration on Sephadex G-100. The enzyme was relatively specific in its substrate and coenzyme requirements. The Km values were determined as: Fru-6-P - 3 × 10?4 M, Mtl-1-P - 1 × 10?4 M, and NAD+ and NADH - 3 × 10?5 M.  相似文献   

5.
Cerebral proteinases in the growing rat   总被引:3,自引:1,他引:2  
—The proteolytic activity of brain homogenates obtained from 1-, 5-, 14-, 60-, 150-, and 300-day-old rats was assayed with urea-denatured haemoglobin and casein, endogenous tissue proteins, Nα-benzoyl-dl-arginine 2-naphtylamide (BANA), Nα-benzoyl-dl-arginine methyl ester (BAME), Nα-toluene p-sulphonyl-dl-arginine methyl ester (TAME), Nα-benzoyl-dl-phenylalanine 2-naphthyl ester (BPANE), and Nα-acetyl-dl-tyrosine ethyl ester (ATEE) as substrates. Several peaks of activity were detected with all these substrates in different pH ranges. Activity was highest with protein substrates at pH 3·0-4·0, with smaller peaks of activity at pH 5·5-6·5 and 8·0-9·0. At pH 3·0 the activity with trypsin substrates, viz. BANA, BAME and TAME, was also relatively high, but much less with chymotrypsin substrates, ATEE or BPANE. With BAME, TAME, BPANE and ATEE the hydrolysis rate was highest at neutral or slightly alkaline pH. During postnatal development the hydrolysis of protein substrates increased three-fold at pH 3·0 and about two-fold at pH 6·5 and 8·5. The rate of hydrolysis of BANA, BAME and TAME generally increased during the first 2 postnatal weeks and thereafter decreased, whereas no marked increase in the rate of hydrolysis of BPANE and ATEE occurred until the age of about 2 weeks. The results were less consistent with synthetic substrates than with protein substrates, indicating the existence of non-uniform alterations during development in the activity of the individual hydrolytic enzymes participating in the breakdown of brain proteins.  相似文献   

6.
The kinetics of O·-2 reaction with semi-oxidized tryptophan radicals in lysozyme, Trp·(Lyz) have been investigated at various pHs and conformational states by pulse radiolysis. The Trp·(Lyz) radicals were formed by Br·-2 oxidation of the 3–4 exposed Trp residues in the protein. At pH lower than 6.2, the apparent bimolecular rate is about 2 × 108M-1s-1; but drops to 8 × 107M-1s-1 or less above pH 6.3 and in CTAC micelles. Similarly, the apparent bimolecular rate constant for the intermolecular Trp·(Lyz) + Trp·(Lyz) recombination reaction is about (4-7 × 106M-1s-1) at/or below pH 6.2 then drops to 1.3-1.6 × 106M-1s-1 at higher pH or in micelles. This behavior suggests important conformational and/or microenvironmental rearrangement with pH, leading to less accessible semioxidized Trp· residues upon Br·-2 reaction. The kinetics of Trp·(Lyz) with ascorbate, a reducing species rather larger than O·-2 have been measured for comparison. The well-established long range intramolecular electron transfer from Tyr residues to Trp radicals-leading to the repair of the semi-oxidized Trp·(Lyz) and formation of the tyrosyl phenoxyl radical is inhibited by the Trp·(Lyz)+O·-2 reaction, as is most of the Trp·(Lyz)+Trp·(Lyz) reaction. However, the kinetic behavior of Trp·(Lyz) suggests that not all oxidized Trp residues are involved in the intermolecular recombination or reaction with O·-2. As the kinetics are found to be quite pH sensitive, this study demonstrates the effect of the protein conformation on O·-2 reactivity. To our knowledge, this is the first report on the kinetics of a protein-O·-2 reaction not involving the detection of change in the redox state of a prosthetic group to probe the reactivity of the superoxide anion.  相似文献   

7.
A xylanase gene, xynA4-2, was obtained from the genome sequence of thermoacidophilic Alicyclobacillus sp. A4 and expressed in Escherichia coli BL21 (DE3). xynA4-2 encodes a mature protein of 411 residues with a calculated molecular weight of 46.8 kDa. Based on the amino acid sequence similarities (highest identity of 61%), the enzyme was confined into glycoside hydrolase family 10. The purified recombinant XynA4-2 exhibited maximum activity at pH 6.2 and 55°C. The enzyme was stable over a broad pH range, retaining more than 90% of the original activity at pH 5.8–12.0, 37°C for 1 h. The substrate specificity of XynA4-2 was relatively narrow, exhibiting 100, 93, and 35% of the relative activity towards birchwood xylan, oat spelt xylan, and wheat arabinoxylan, respectively. Supplementation of XynA4-2 to mash caused the reduction of mash filtration rate (5.6%) and viscosity (4.0%). When combined with the commercial glucanase from Sunson, higher reduction was detected in the filtration rate (12.0%) and viscosity (17.2%). These favorable properties make XynA4-2 a good candidate in the brewing industry.  相似文献   

8.
The stabilizing action of carboxymethyl cellulose (CMC-1 and CMC-2) on caseins was studied in the acidic pH region. CMC-1 stabilized 1% whole, α-, αS- and β-casein at pH 4.6 and 5.0, and at 5°C. But CMC-2 could not completely stabilize these caseins at pH 5.0. Interaction between κ-casein and CMC-1 commenced when pH was adjusted to 6.3, but CMC-2 interacted with κ-casein below pH 5.6. An αS- and κ-casein mixture (4 : 1) with CMC-2 was destabilized by the addition of 0.02 m NaCl or NaH2PO4 at pH 5.0. The αS/κ ratio of the precipitated casein was about 10. But the same system with CMC-1 was not destabilized by the salts.  相似文献   

9.
The modification of myeloperoxidase and lactoperoxidase with 2-(O-methoxypolethylene glycol)-4, 6-dichloro-s-triazine, an activated polyethylene glycol (PEG1), was investigated. The modification caused a shift of the Soret band in the light absorption spectrum, from 430 nm to 418 nm in the case of myeloperoxidase (native ferric form), and from 412 nm to 406 nm in the case of lactoperoxidase (native ferric form). PEG1-modified myeloperoxidase and PEG1-modified lactoperoxidase both failed to bind with antiserum to the respective native enzyme, but both retained respectively 4·5±0·3 per cent (mean±SE, n=5) and 0·6±0·2 per cent (mean±SE, n=5) of the activities of peroxidation of the hydrogen donor o-methoxyphenol in comparison with the native enzyme, and 1·5±0·2 per cent (mean±SE, n=5) and 1·2±0·2 per cent (mean±SE, n=5) of the activities of destruction of fuchsin basic in the presence of hydrogen peroxide and a halide, bromide. The pH dependencies of the peroxidating activities were almost the same as those of the corresponding native enzymes, but both the optimal pHs of the reactions involving the destruction of fuchsin basic were shifted by approximately 1·0 pH unit toward neutral pH compared with the respective native enzymes. © 1998 John Wiley & Sons, Ltd.  相似文献   

10.
用正交试验方法研究了酶浓度、底物浓度、反应体系pH值、反应温度、反应时间5个因素对黑翅土白蚁Odontotermes formosanus (Shiraki)乙酰胆碱酯酶(AChE)活性测定的影响。通过对正交试验结果进行极差和方差分析,明确了测定黑翅土白蚁AChE活性的最适反应条件是酶浓度为12.5 g/L,底物浓度为8 mmol/L,pH值8.0,反应温度40℃,反应时间5 min。此外,研究了6种药剂对黑翅土白蚁体内AChE活性的影响。结果表明:灭多威、辛硫磷、三唑磷、丙溴磷、马拉硫磷和氧化乐果6种药剂对黑翅土白蚁AChE抑制中浓度(IC50)分别为3.52×10-4,1.86×10-3,5.13×10-3,9.55×10-4,8.81×10-3,和1.39×10-2 mol/L。在3.3×10-7~5×10-3 mol/L的浓度范围内,上述6种药剂对黑翅土白蚁体内AChE活性的抑制作用都具有明显的剂量效应关系。  相似文献   

11.
Summary Dextran (MW=7.2×104), carboxymethylcellulose (MW=2.5×104, substitution degree=0.7) and Ficoll (MW=6.9×104) were derivatized with 1,4-diaminobutane and covalently attached to bovine pancreatic trypsin through a transglutaminase-catalysed reaction. The conjugates contained an average of 0.7–1.8 mol of polymers per mol of protein, and retained about 61–82% of the original esterolytic activity of trypsin. The optimum pH for trypsin was shifted to alkaline values after enzymatic glycosidation. The thermostability of the polymer–enzyme complexes was increased in about 13.7–50.0 °C over 10 min incubation. The prepared conjugates were also more stable against thermal incubation at different temperatures ranging from 50 °C to 60 °C. In comparison with native trypsin, the enzyme-polymer complexes were about 22- to 48-fold more resistant to autolytic degradation at pH 9.0. Transglutaminase-catalysed glycosidation also protected trypsin against denaturation in surfactant media, with 9- to 68–fold increased half-life times in the presence of 0.3% (w/v) sodium dodecylsulfate.  相似文献   

12.
The three previously cloned Cyprinus carpio muscle‐specific subisoforms of creatine kinase (CK, EC 2.7.3.2) designated M1‐, M2‐ and M3‐CK were examined. At temperatures <15° C and at pH >7·7, specific activities of M1‐CK were three to eight‐fold higher than specific activities of M3‐ and rabbit (R) M‐CK. At pH 8·0, M1‐CK exhibited its highest specific activity at 15° C. Michaelis constants of PCr () and ADP () of M1‐CK were relatively stable at pH between 7·1–8·0 and 25–5° C. Its calculated activation energy of catalysis (Ea) at pH 8·0 was lower than at pH 7·1. Circular dichroism spectroscopy results showed that changes in secondary structures in M1‐CK at the pH and temperatures studied were much less than in the cases of RM‐ and M3‐CK. The M1‐CK enzyme seemed to have evolved to adapt to the synchronized changes in body temperature and intracellular pH of C. carpio.  相似文献   

13.
This study comparatively evaluates the modelling efficiency of the Response Surface Methodology (RSM) and the Artificial Neural Network (ANN). Twenty-nine biohydrogen fermentation batches were carried out to generate the experimental data. The input parameters consisted of a concentration of molasses (50–150 g/l), pH (4–8), temperature (35–40 °C) and inoculum concentration (10–50 %). The obtained data were used to develop the RSM and ANN models. The ANN model was a committee of networks with a topology of 4-(6-10)-1 structured on multilayer perceptrons. RSM and ANN models gave R 2 values of 0.75 and 0.91, respectively, with predicted optimum conditions of 150 g/l, 8 and 35 °C for molasses, pH and temperature, respectively, with differences in inoculum concentrations (10.11 and 15 %) for RSM and ANN, respectively. Upon validation, 15.12 and 119.08 % prediction errors on hydrogen volume were found for ANN and RSM, respectively. These findings suggest that ANN has greater accuracy in modelling the relationships between the considered process inputs for fermentative biohydrogen production and thus, is more reliable to navigate the optimization space.  相似文献   

14.
In this study, a novel strain of Pichia jadinii, HBY61, capable of the biocatalysis of 4-hydroxy-2-butanone (4H2B) to (R)-1,3-BD was isolated. HBY61 produced (R)-1,3-BD with high activity and absolute stereochemical selectivity (100 % e.e). Glucose and beef extract were found to be the key factors governing the fermentation, and their optimal concentrations were determined to be 84.2 and 43.7 g/L, respectively. The optimal bioconversion conditions of 4H2B catalyzed by HBY61 were pH 7.4, 30 °C, and 250 rpm with 6 % (v/v) glucose as the co-substrate. Accordingly, when 45 g/L of 4H2B was divided into three equal parts and added successively into the system at set time intervals, the maximum (R)-1,3-BD concentration reached 38.3 g/L with high yield (85.1 %) and strict 100 % enantioselectivity. Compared with previously reported yields for the biocatalytic production of (R)-1,3-BD, the use of strain HBY61 provided a high yield with excellent stereoselectivity.  相似文献   

15.
The inhibition of brain choline kinase by hernicholinium-3   总被引:1,自引:0,他引:1  
Abstract— The calcium-dependent incorporation of choline, ethanolamine and L-serine into the phospholipids of isolated rat brain microsomes has been studied in vitro, and various properties of the incorporation have have been examined. The optimum pH for the incorporation of each base was found to vary inversely with the Ca2- concentration. Conversely, the optimal Ca2 + concentration for the exchange of the bases increased with decreasing pH values. The enzymic system for the incorporation of ethanolamine appeared to be saturated by two substrate concentrations, i.e. 0-2 and 1-7-2-0 mM. At low ethanolamine concentration (0-2 mM] much less incorporation of the base occurred into the alkenylacyl- and alkylacyl-derivatives of ethanolamine phosphoglycerides compared to that into the diacyl species, whereas the difference becomes smaller at a high substrate concentration (1-7 mM). At pH 81 and 2 mM-Ca2+ the apparent Km of ethanolamine at low substrate concentration was 80 × 10-5 M, and this value increased to 16-2 × 10-4.viat 10mM-Ca2+ concentration. At similar pH the Km values for choline and L-serine were 5.88 × 10-4M and 40 × 10-4 M at 2 mM- and 10mM-Ca2 + concentrations, respectively. The properties of the enzyme system show differences for the three substrates when various factors are changed during incubation. These and other results indicate that more than one enzyme is probably involved in the Ca2+-medialed exchange of nitrogenous bases.  相似文献   

16.
《Free radical research》2013,47(5):393-399
The one-electron reduction potential of 3-amino-l, 2, 4-benzotriazine 1, 4-dioxide, tirapazamine (SR 4233) in aqueous solution has been determined by pulse radiol-ysis. Reversible electron transfer was achieved between radiolytically-generated one-electron reduced radicals of tirapazamine (T), and quinones or benzyl viologen as redox standards. The reduction potential Em7(T/T±) was -0.45 ± 0.01 V vs. NHE at pH 7. From the pH dependence of the reduction potential, pKa = 5.6 ± 0.2 was estimated for the tirapazamine radical, a value similar to the pKa determined by other methods.  相似文献   

17.
7β-(4-Carboxybutanamido)cephalosporanic acid acylase (penicillin amidohydrolase, EC 3.5.1.11) was crystallized from cell-free extracts of a mutant derived from Pseudomonas SY-77-1. Purification of the enzyme was performed by a procedure involving ammonium sulfate fractionation and column chromatographies on DEAE-Sephadex, TEAE-cellulose and Sephadex G-200. The crystalline enzyme was homogeneous on polyacrylamide gel disc electrophoresis. The molecular weight of the acylase was estimated to be 1.3 × 105 by gel filtration. The enzyme was fully active at pH above 6.5 and was highly stable at a pH range of 6.0 to 8.0 and below 38°C. The Michaelis-Menten constant (Km) and Vmax for 7β-(4-carboxybutanamido)cephalosporanic acid were 0.16mM and 4.91 μmol/min/mg-protein, respectively. It was also indicated that this enzyme-protein occupied 2.3% of the dry-cell weight.  相似文献   

18.
The new adduct 3-(2-carboxyethyl)cytosine (3-CEC) was isolated following in vitro reaction of the carcinogen β-propiolactone (BPL) with calf thymus DNA. The structure of 3-CEC was confirmed by synthesis from BPL and dCyd. Reaction of BPL with cCyd (pH 7.0–7.5, 37°C) gave 3-(2-carboxyethyl)deoxycytidine (3-CEdCyd) (9% yield) and 3,N4-bis(2-carboxyethyl)deoxycytidine (3,N4-BCEdCyd) (0.6% yield). 3-CEdCyd and 3,N4-BCEdCyd were hydrolyzed (1.5 N HC1, 100°C, 2 h) to 3-CEC and 3,N4-bis(2-carboxyethyl)cytosine (3,N4-BCEC), respectively. The structure of 3-CEC was assigned on the basis of UV and NMR spectra and the electron impact (EI) mass spectra of 3-CEC and a tri-trimethylsilyl (TMS) derivative of 3 CEC as well as deuterated (d27) tri-TMS derivative of 3-CEC. The structure of 3,N4-BCEC was assigned on the basis of UV spectra and the EI mass spectra of a tri-TMS derivative. EI and isobutane chemical ionization mass spectra of 3-methylcytosine (3-MeCyt) and a di-TMS derivative of 3-MeCyt were obtained and were helpful in deducing the structures of 3-CEC and 3,N4-BCEC. This is the first report of the alkylation by BPL of an exocyclic atom on a base in DNA. Compound 3,N4-BCEC was not detected in BPL-reacted calf thymus DNA. The relative amounts of 1-(2-carboxyethyl)adenine (1-CEA), 7-(2-carboxyethyl)guanine (7-CEG), 3-(2-carboxyethyl)thymine (3-CET) and 3-CEC isolated from BPL-reacted DNA following perchloric acid hydrolysis were 0.23, 1.00, 0.39 and 0.41 respectively, when the alkylation reaction was conducted in phosphate buffer at 0–5°C and pH 7.5 and 0.10, 1.00, 0.29 and 0.28 respectively when the reaction was conducted in H2O at 37°C and pH 7.0–7.5.  相似文献   

19.
Uptake of phosphate ions by 1 mm segments of isolated maize root cortex layers was studied. Cortex segments (from roots of 8 days old maize plants) absorb phosphate ions from 1 mM KH2PO4 in 0.2 mM CaSCO4 at the average rate of 34.3 ±3.2 μg Pi g?1 (fr. m.) h?1,i.e. 0.35± 0.02 μmol Pi g?1 (fr. m.) h?1. Phosphate uptake considerably increases after a certain period of “augmentation”,i.e. washing in aerated 0.2 mM CaSO4. This increase is completely blocked by the presence of 10 μg ml?1 cycloheximide. The relation of uptake rate to phosphate concentration in the medium was shown to have 3 phases in the concentration range of 0.02 - 40 mM. Transition points were found between 0.8–1 mM and 10–20 mM. Following Km and Vmax values were found: Km[mM] : 0.37 - 3.82 - 27.67 Vmax[μg Pi g?1 (fr. m.) h?1] : 3.33 - 39.40 - 66.67 We have found no sharp pH optimum for phosphate uptake. It proceeds at almost constant rate till pH 6.0 and then the uptake rate drops with increasing pH. At low phosphate concentrations (1 mM) the lowest uptake rate was found at 5 and 13 °C, while the uptake is higher at 5 °C than at 13 °C at phosphate concentrations higher than 1 mM. At these concentrations uptake rate at 35 °C is lower than at 25 °C. Phosphate uptake considerably decreased in anaerobic conditions. DNP and iodoacetate (0.1 mM) completely blocked phosphate uptake from 1 mM KH2PO4, while uptake from 5 and 10 mM KH2PO4 was left unaffected by these substances. The inhibitors of active - SH groups NEM and PCMB inhibited phosphate uptake: 10?3 M NEM by 81.6%, 104 M NEM by 42% and 10?4 M PCMB by 42%.  相似文献   

20.
Abstract

A simple and rapid procedure is developed for the quantitative flotation of mercury(II) from aqueous solutions. Thiosemicarbazide derivatives such as: 1-(amino-N-phenylmethanethio)-4-(pyridine-2-yl)thio-semicarbazide (H2PPS), N-phenyl-2-(pyridine-2-ylcarbamothioyl) hydrazinecarboxamide (H2PBO), 1-(amino(thioformyl)-N-phenylform)-4-(pyridine-2-yl)thiosemicarbazide (H2APO), and 1-(amino-N-(pyri-dine-3-yl)methanethio)-4-(pyridine-2-yl)thiosemicarbazide (H2PPY) are used as organic chelating agents and oleic acid (HOL) as surfactant. The different parameters affecting the flotation process namely, metal ion, ligands and surfactant concentrations, foreign ions (which are normally present in fresh and saline waters), pH and temperature are examined. Nearly 100% of mercury ions are floated at a metal:ligand ratio of 1: 4, pH ~ 4 and at room temperature (~25°C). The procedure was successfully applied to recover Hg2+ ions spiked into some water samples. A flotation mechanism is suggested based on some physical and chemical studies on the solid complexes isolated from aqueous and floated layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号