首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Isolated mitochondrial outer membrane vesicles (OMV) are a suitable system for studying various functions of the mitochondrial outer membrane. For studies on mitochondrial lipid import as well as for studies on the role of lipids in processes occurring in the outer membrane, knowledge of the phospholipid composition of the outer membrane is indispensable. Recently, a mild subfractionation procedure was described for the isolation of highly purified OMV from mitochondria of Neurospora crassa (Mayer, A., Lill, R. and Neupert, W. (1993) J. Cell Biol. 121, 1233–1243). This procedure, which consists of swelling and mechanical disruption of mitochondria followed by two steps of sucrose density gradient centrifugation, was adapted for the isolation of OMV from rat liver mitochondria. Using the appropriate enzyme markers it is shown that the resulting OMV are obtained in a yield of 25%, and that their purity is superior to that of previous OMV preparations. Analysis of the phospholipid composition of the OMV showed that phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol are the major phospholipid constituents, and that cardiolipin is only present in trace amounts. The phospholipid composition is very similar to that of the highly purified OMV from mitochondria of Neurospora crassa, although the latter still contain a small amount of cardiolipin.  相似文献   

2.
Mitochondrial outer membrane vesicles (OMV) from the yeast Saccharomyces cerevisiae were prepared by osmotic swelling and mechanical disruption of mitochondria that had been isolated at pH 6.0 and purified by density gradient centrifugation. The OMV were obtained in a yield of 1% (protein/protein) with respect to the mitochondria. The OMV were shown to be essentially free of mitochondrial inner membrane protein markers, while contamination with endoplasmic reticulum was around 5% (protein-based). The very low phosphatidylserine synthase activity present in the OMV preparation indicated that contamination with mitochondria-associated membranes (MAM) was negligible. The resistance of the outer membrane protein Tom40 to digestion by trypsin demonstrated the sealed nature and right-side out orientation of the OMV. Analysis of the phospholipid composition revealed that the contents of phosphatidylcholine and phosphatidylinositol are higher and the content of phosphatidylethanolamine is lower in the mitochondrial outer membrane as compared to whole mitochondria. Cardiolipin is largely depleted in the OMV.  相似文献   

3.
Mitochondrial outer membrane vesicles (OMV) from the yeast Saccharomyces cerevisiae were prepared by osmotic swelling and mechanical disruption of mitochondria that had been isolated at pH 6.0 and purified by density gradient centrifugation. The OMV were obtained in a yield of 1% (protein/protein) with respect to the mitochondria. The OMV were shown to be essentially free of mitochondrial inner membrane protein markers, while contamination with endoplasmic reticulum was around 5% (protein-based). The very low phosphatidylserine synthase activity present in the OMV preparation indicated that contamination with mitochondria-associated membranes (MAM) was negligible. The resistance of the outer membrane protein Tom40 to digestion by trypsin demonstrated the sealed nature and right-side out orientation of the OMV. Analysis of the phospholipid composition revealed that the contents of phosphatidylcholine and phosphatidylinositol are higher and the content of phosphatidylethanolamine is lower in the mitochondrial outer membrane as compared to whole mitochondria. Cardiolipin is largely depleted in the OMV.  相似文献   

4.
The process of transmembrane movement of phosphatidylcholine (PC) across the outer membrane of mitochondria was investigated in vitro in mitochondrial outer membrane vesicles (OMV) from the yeast Saccharomyces cerevisiae. Phosphatidylcholine-transfer protein (PC-TP) was used to extract radiolabeled PC from OMV, with small unilamellar vesicles serving as acceptor system. Endogenously radiolabeled PC synthesized either via the CDP-choline pathway or via methylation of phosphatidylethanolamine can be extracted completely from the OMV with a t(1/2) of 1 min or less at 30 degrees C. The size of the pool of PC in OMV available for exchange by PC-TP is not affected by pretreatment of the OMV with proteinase K or sulfhydryl reagents. In the reverse experiment where radiolabeled PC was introduced into the OMV, similar characteristics for the exchange were found. The accessibility of labeled PC to externally added phospholipase A(2) was used as a measure for its transmembrane distribution. It was found that PC is not exclusively located in the outer leaflet of the OMV. Only 30-35% can be degraded in intact OMV by phospholipase A(2), irrespective of whether the PC is introduced by PC-TP or endogenously synthesized via either of the pathways of biosynthesis. The results demonstrate the occurrence of rapid bidirectional transbilayer movement of both endogenous and in vitro introduced PC in OMV. Furthermore, there appears to be no preference for mitochondrial import of PC synthesized by either of the pathways in vivo.  相似文献   

5.
The composition of the mitochondrial outer membrane is notoriously difficult to deduce by orthology to other organisms, and biochemical enrichments are inevitably contaminated with the closely associated inner mitochondrial membrane and endoplasmic reticulum. In order to identify novel proteins of the outer mitochondrial membrane in Arabidopsis (Arabidopsis thaliana), we integrated a quantitative mass spectrometry analysis of highly enriched and prefractionated samples with a number of confirmatory biochemical and cell biology approaches. This approach identified 42 proteins, 27 of which were novel, more than doubling the number of confirmed outer membrane proteins in plant mitochondria and suggesting novel functions for the plant outer mitochondrial membrane. The novel components identified included proteins that affected mitochondrial morphology and/or segregation, a protein that suggests the presence of bacterial type lipid A in the outer membrane, highly stress-inducible proteins, as well as proteins necessary for embryo development and several of unknown function. Additionally, proteins previously inferred via orthology to be present in other compartments, such as an NADH:cytochrome B5 reductase required for hydroxyl fatty acid accumulation in developing seeds, were shown to be located in the outer membrane. These results also revealed novel proteins, which may have evolved to fulfill plant-specific requirements of the mitochondrial outer membrane, and provide a basis for the future functional characterization of these proteins in the context of mitochondrial intracellular interaction.  相似文献   

6.
In contrast to the well established multiple cellular roles of membrane vesicles in eukaryotic cell biology, outer membrane vesicles (OMV) produced via blebbing of prokaryotic membranes have frequently been regarded as cell debris or microscopy artifacts. Increasingly, however, bacterial membrane vesicles are thought to play a role in microbial virulence, although it remains to be determined whether OMV result from a directed process or from passive disintegration of the outer membrane. Here we establish that the human oral pathogen Porphyromonas gingivalis has a mechanism to selectively sort proteins into OMV, resulting in the preferential packaging of virulence factors into OMV and the exclusion of abundant outer membrane proteins from the protein cargo. Furthermore, we show a critical role for lipopolysaccharide in directing this sorting mechanism. The existence of a process to package specific virulence factors into OMV may significantly alter our current understanding of host-pathogen interactions.  相似文献   

7.
Xenorhabdus nematophilus secretes a large number of proteins into the culture supernatant as soluble proteins and also as large molecular complexes associated with the outer membrane. Transmission electron micrographs of X. nematophilus cells showed that there was blebbing of the outer membrane from the surface of the bacterium. The naturally secreted outer membrane vesicles (OMVs) were purified from the culture supernatant of X. nematophilus and analyzed. Electron microscopy revealed a vesicular organization of the large molecular complexes, whose diameters varied from 20 to 100 nm. A sodium dodecyl sulfate-polyacrylamide gel electrophoresis profile of the vesicles showed that in addition to outer membrane proteins, several other polypeptides were also present. The membrane vesicles contained lipopolysaccharide, which appeared to be of the smooth type. Live cells of X. nematophilus and the OMV proteins derived from them exhibited oral insecticidal activity against neonatal larvae of Helicoverpa armigera. The proteins present in the OMVs are apparently responsible for the biological activity of the OMVs. The soluble proteins left after removal of the OMVs and the outer membrane proteins also showed low levels of oral toxicity to H. armigera neonatal larvae. The OMV protein preparations were cytotoxic to Sf-21 cells in an in vitro assay. The OMV proteins showed chitinase activity. This is the first report showing toxicity of outer membrane blebs secreted by the insect pathogen X. nematophilus into the extracellular medium.  相似文献   

8.
The role of plant mitochondrial outer membrane proteins in the process of preprotein import was investigated, as some of the principal components characterized in yeast have been shown to be absent or evolutionarily distinct in plants. Three outer membrane proteins of Arabidopsis thaliana mitochondria were studied: TOM20 (translocase of the outer mitochondrial membrane), METAXIN, and mtOM64 (outer mitochondrial membrane protein of 64 kD). A single functional Arabidopsis TOM20 gene is sufficient to produce a normal multisubunit translocase of the outer membrane complex. Simultaneous inactivation of two of the three TOM20 genes changed the rate of import for some precursor proteins, revealing limited isoform subfunctionalization. Inactivation of all three TOM20 genes resulted in severely reduced rates of import for some but not all precursor proteins. The outer membrane protein METAXIN was characterized to play a role in the import of mitochondrial precursor proteins and likely plays a role in the assembly of beta-barrel proteins into the outer membrane. An outer mitochondrial membrane protein of 64 kD (mtOM64) with high sequence similarity to a chloroplast import receptor was shown to interact with a variety of precursor proteins. All three proteins have domains exposed to the cytosol and interacted with a variety of precursor proteins, as determined by pull-down and yeast two-hybrid interaction assays. Furthermore, inactivation of one resulted in protein abundance changes in the others, suggesting functional redundancy. Thus, it is proposed that all three components directly interact with precursor proteins to participate in early stages of mitochondrial protein import.  相似文献   

9.
Xenorhabdus nematophilus secretes a large number of proteins into the culture supernatant as soluble proteins and also as large molecular complexes associated with the outer membrane. Transmission electron micrographs of X. nematophilus cells showed that there was blebbing of the outer membrane from the surface of the bacterium. The naturally secreted outer membrane vesicles (OMVs) were purified from the culture supernatant of X. nematophilus and analyzed. Electron microscopy revealed a vesicular organization of the large molecular complexes, whose diameters varied from 20 to 100 nm. A sodium dodecyl sulfate-polyacrylamide gel electrophoresis profile of the vesicles showed that in addition to outer membrane proteins, several other polypeptides were also present. The membrane vesicles contained lipopolysaccharide, which appeared to be of the smooth type. Live cells of X. nematophilus and the OMV proteins derived from them exhibited oral insecticidal activity against neonatal larvae of Helicoverpa armigera. The proteins present in the OMVs are apparently responsible for the biological activity of the OMVs. The soluble proteins left after removal of the OMVs and the outer membrane proteins also showed low levels of oral toxicity to H. armigera neonatal larvae. The OMV protein preparations were cytotoxic to Sf-21 cells in an in vitro assay. The OMV proteins showed chitinase activity. This is the first report showing toxicity of outer membrane blebs secreted by the insect pathogen X. nematophilus into the extracellular medium.  相似文献   

10.
Lee EY  Bang JY  Park GW  Choi DS  Kang JS  Kim HJ  Park KS  Lee JO  Kim YK  Kwon KH  Kim KP  Gho YS 《Proteomics》2007,7(17):3143-3153
Gram-negative bacteria constitutively secrete native outer membrane vesicles (OMVs) into the extracellular milieu. Although recent progress in this area has revealed that OMVs are essential for bacterial survival and pathogenesis, the mechanism of vesicle formation and the biological roles of OMVs have not been clearly defined. Using a proteomics approach, we identified 141 protein components of Escherichia coli-derived native OMVs with high confidence; two separate analyses yielded identifications of 104 and 117 proteins, respectively, with 80 proteins overlapping between the two trials. In the group of identified proteins, the outer membrane proteins were highly enriched, whereas inner membrane proteins were lacking, suggesting that a specific sorting mechanism for vesicular proteins exists. We also identified proteins involved in vesicle formation, the removal of toxic compounds and attacking phage, and the elimination of competing organisms, as well as those involved in facilitating the transfer of genetic material and protein to other bacteria, targeting host cells, and modulating host immune responses. This study provides a global view of native bacterial OMVs. This information will help us not only to elucidate the biogenesis and functions of OMV from nonpathogenic and pathogenic bacteria but also to develop vaccines and antibiotics effective against pathogenic strains.  相似文献   

11.
Gram-negative bacteria produce outer membrane vesicles (OMVs) and contain bacterial cargo including nucleic acids and proteins. The proteome of OMVs can be altered by various factors including bacterial growth stage, growth conditions, and environmental factors. However, it is currently unknown if the mechanism of OMV biogenesis can determine their proteome. In this study, we examined whether the mechanisms of OMV biogenesis influenced the production and protein composition of Pseudomonas aeruginosa OMVs. OMVs were isolated from three P. aeruginosa strains that produced OMVs either by budding alone, by explosive cell lysis, or by both budding and explosive cell lysis. We identified that the mechanism of OMV biogenesis dictated OMV quantity. Furthermore, a global proteomic analysis comparing the proteome of OMVs to their parent bacteria showed significant differences in the identification of proteins in bacteria and OMVs. Finally, we determined that the mechanism of OMV biogenesis influenced the protein composition of OMVs, as OMVs released by distinct mechanisms of biogenesis differed significantly from one another in their proteome and functional enrichment analysis. Overall, our findings reveal that the mechanism of OMV biogenesis is a main factor that determines the OMV proteome which may affect their subsequent biological functions.  相似文献   

12.
The purpose of this study was to determine whether immunization with purified outer membrane vesicles (OMV) from Treponema pallidum (T.p. ) could elicit Abs capable of killing this organism. It is well established that the immunization of rabbits or mice with killed T.p. or with recombinant T.p. Ags has failed to generate serum killing activity comparable with that of infection-derived immunity. Because of the small amount of T.p. OMV obtainable, a single mouse was immunized with purified OMV. The mouse anti-OMV serum and infection-derived immune rabbit serum (IRS) were compared by reactivities on two-dimensional T.p. immunoblots and by the T.p. immobilization test, a complement-dependent killing assay. Whereas IRS detected >40 Ags, the anti-OMV serum identified only 6 Ags corresponding to proteins identified previously in the outer membrane. T.p. immobilization testing showed that IRS had a 100% killing titer of 1:44 and a 50% killing titer of 1:662. By comparison, the mouse anti-OMV serum had a significantly greater 100% killing titer of 1:1,408 and a 50% killing titer of 1:16,896. Absorption of the anti-OMV serum to remove Ab against outer membrane-associated lipoproteins did not change the 100% killing titer. Freeze-fracture analysis of T.p. incubated in IRS or anti-OMV serum showed that T.p. rare membrane-spanning outer membrane proteins were aggregated. This is the first demonstration of high-titer killing Abs resulting from immunization with defined T.p. molecules; our study indicates that the targets for these Abs are T. p. rare outer membrane proteins.  相似文献   

13.
Cdc48p/p97 is a cytosolic essential AAA chaperone, which regulates multiple cellular reactions in a ubiquitin-dependent manner. We have recently shown that Cdc48p exhibits positively cooperative ATPase activity and loss of the positive cooperativity results in yeast cell death. Here we show that loss of the positive cooperativity of the yeast Cdc48p ATPase activity led to severe mitochondrial aggregation. The actin cytoskeleton and distribution of the ER-mitochondria tethering complex (ERMES) were eliminated from the cause of the mitochondrial aggregation. Instead, a mitochondrial outer membrane protein Fzo1p, which is required for mitochondrial fusion, and components of ERMES, which is involved in mitochondrial morphology, were remarkably stabilized in the Cdc48p mutants. In the last couple of years, it was shown that Vms1p functions as a cofactor of Cdc48p for the function of protein degradation of mitochondrial outer membrane proteins. Nevertheless, we found that Vms1p was not involved in the Cdc48p-dependent mitochondrial aggregation and loss of Vms1p did not significantly affect degradation rates of proteins anchored to the mitochondrial outer membrane. These results suggest that Cdc48p controls mitochondrial morphology by regulating turnover of proteins involved in mitochondrial morphology in a Vms1p-independent manner.  相似文献   

14.
Neisseria meningitidis serogroup B (MC58) is a leading cause of meningitis and septicaemia, principally infects the infants and adolescents. No vaccine is available for the prevention of these infections because the serogroup B capsular polysaccharide is unable to stimulate an immune response, due to its similarity with polysialic acid. To overcome these obstacles, we proposed to develop a peptide based epitope vaccine from outer membrane protein contained in outer membrane vesicles (OMV) based on our computational analysis. In OMV a total of 236 proteins were identified, only 15 (6.4%) of which were predicted to be located in outer membrane. The major requirement is the identification and selection of T-cell epitopes that act as a vaccine target. We have selected 13 out of 15 outer membrane proteins from OMV proteins. Due to similarity of the fkpA and omp85 with the human FKBP2 and SAMM50 protein, we removed these two sequences from the analysis as their presence in the vaccine is likely to elicit an autoimmune response. ProPred and ProPred1 were used to predict promiscuous helper T Lymphocytes (HTL) and cytotoxic T Lymphocytes (CTL) epitopes and MHCPred for their binding affinity in N. meningitidis serogroup B (MC58), respectively. Binding peptides (epitopes) are distinguished from nonbinding peptides in properties such as amino acid preference on the basis of amino acid composition. By using this dataset, we compared physico-chemical and structural properties at amino acid level through amino acid composition, computed from ProtParam server. Results indicate that porA, porB, opc, rmpM, mtrE and nspA are more suitable vaccine candidates. The predicted peptides are expected to be useful in the design of multi-epitope vaccines without compromising the human population coverage.  相似文献   

15.
Vipond C  Suker J  Jones C  Tang C  Feavers IM  Wheeler JX 《Proteomics》2006,6(11):3400-3413
In the absence of a suitable carbohydrate-based vaccine, outer membrane vesicle (OMV) vaccines have been used to disrupt outbreaks of serogroup B meningococcal disease for more than 20 years. Proteomic technology provides physical methods with the potential to assess the composition and consistency of these complex vaccines. 2-DE, combined with MS, were used to generate a proteome map of an OMV vaccine, developed to disrupt a long-running outbreak of group B disease in New Zealand. Seventy four spots from the protein map were identified including the outer membrane protein (OMP) antigens: PorA, PorB, RmpM and OpcA. Protein identification indicates that, in addition to OMPs, OMV vaccines contain periplasmic, membrane-associated and cytoplasmic proteins. 2-D-DIGE technology highlighted differences between preclinical development batches of vaccines from two different manufacturers.  相似文献   

16.
Mitochondria consist of four compartments-outer membrane, intermembrane space, inner membrane, and matrix--with crucial but distinct functions for numerous cellular processes. A comprehensive characterization of the proteome of an individual mitochondrial compartment has not been reported so far. We used a eukaryotic model organism, the yeast Saccharomyces cerevisiae, to determine the proteome of highly purified mitochondrial outer membranes. We obtained a coverage of approximately 85% based on the known outer membrane proteins. The proteome represents a rich source for the analysis of new functions of the outer membrane, including the yeast homologue (Hfd1/Ymr110c) of the human protein causing Sj?gren-Larsson syndrome. Surprisingly, a subclass of proteins known to reside in internal mitochondrial compartments were found in the outer membrane proteome. These seemingly mislocalized proteins included most top scorers of a recent genome-wide analysis for mRNAs that were targeted to mitochondria and coded for proteins of prokaryotic origin. Together with the enrichment of the precursor form of a matrix protein in the outer membrane, we conclude that the mitochondrial outer membrane not only contains resident proteins but also accumulates a conserved subclass of preproteins destined for internal mitochondrial compartments.  相似文献   

17.
《The Journal of cell biology》1993,121(6):1233-1243
Nuclear-encoded proteins destined for mitochondria must cross the outer or both outer and inner membranes to reach their final sub- mitochondrial locations. While the inner membrane can translocate preproteins by itself, it is not known whether the outer membrane also contains an endogenous protein translocation activity which can function independently of the inner membrane. To selectively study the protein transport into and across the outer membrane of Neurospora crassa mitochondria, outer membrane vesicles were isolated which were sealed, in a right-side-out orientation, and virtually free of inner membranes. The vesicles were functional in the insertion and assembly of various outer membrane proteins such as porin, MOM19, and MOM22. Like with intact mitochondria, import into isolated outer membranes was dependent on protease-sensitive surface receptors and led to correct folding and membrane integration. The vesicles were also capable of importing a peripheral component of the inner membrane, cytochrome c heme lyase (CCHL), in a receptor-dependent fashion. Thus, the protein translocation machinery of the outer mitochondrial membrane can function as an independent entity which recognizes, inserts, and translocates mitochondrial preproteins of the outer membrane and the intermembrane space. In contrast, proteins which have to be translocated into or across the inner membrane were only specifically bound to the vesicles, but not imported. This suggests that transport of such proteins involves the participation of components of the intermembrane space and/or the inner membrane, and that in these cases the outer membrane translocation machinery has to act in concert with that of the inner membrane.  相似文献   

18.
Cytochrome c release from mitochondria is a key event in apoptosis signaling that is regulated by Bcl-2 family proteins. Cleavage of the BH3-only protein Bid by multiple proteases leads to the formation of truncated Bid (tBid), which, in turn, promotes the oligomerization/insertion of Bax into the mitochondrial outer membrane and the resultant release of proteins residing in the intermembrane space. Bax, a monomeric protein in the cytosol, is targeted by a yet unknown mechanism to the mitochondria. Several hypotheses have been put forward to explain this targeting specificity. Using mitochondria isolated from different mutants of the yeast Saccharomyces cerevisiae and recombinant proteins, we have now investigated components of the mitochondrial outer membrane that might be required for tBid/Bax-induced cytochrome c release. Here, we show that the protein translocase of the outer mitochondrial membrane is required for Bax insertion and cytochrome c release.  相似文献   

19.
20.
Mitochondrial proteins are synthesized on cytosolic ribosomes and imported into mitochondria with the help of protein translocases. For the majority of precursor proteins, the role of the translocase of the outer membrane (TOM) and mechanisms of their transport across the outer mitochondrial membrane are well recognized. However, little is known about the mode of membrane translocation for proteins that are targeted to the intermembrane space via the redox-driven mitochondrial intermembrane space import and assembly (MIA) pathway. On the basis of the results obtained from an in organello competition import assay, we hypothesized that MIA-dependent precursor proteins use an alternative pathway to cross the outer mitochondrial membrane. Here we demonstrate that this alternative pathway involves the protein channel formed by Tom40. We sought a translocation intermediate by expressing tagged versions of MIA-dependent proteins in vivo. We identified a transient interaction between our model substrates and Tom40. Of interest, outer membrane translocation did not directly involve other core components of the TOM complex, including Tom22. Thus MIA-dependent proteins take another route across the outer mitochondrial membrane that involves Tom40 in a form that is different from the canonical TOM complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号