首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Ribosomal RNA and the major lines of evolution: a perspective   总被引:1,自引:0,他引:1  
M A Ragan 《Bio Systems》1988,21(3-4):177-187
Does the "universal tree" based on small-subunit ribosomal RNA sequences show the phylogenetic relationship of all modern organisms? The answer is "yes" only if all these rRNAs are orthologous. Herein I argue that the major rRNA lineages (e.g. eubacterial, one or more archaebacterial and eukaryotic nucleocytoplasmic) probably arose from a divergent population of rRNAs in the progenote, antedating the universal common ancestral organism. Thus the major lineages of rRNA are probably not orthologous, but paralogous. The extrapolated date for the origin of the common ancestral small-subunit rRNA (3.6-4.7 x 10(9) years ago) is consistent with major rRNA lineages being paralogous. This perspective on the early evolution of genes and organisms rationalizes the presence of unexpected ribosomal characters in microsporidia, and bears on xenogenous and endogenous theories of the origin of the organelles in eukaryotes.  相似文献   

2.
A brief note concerning archaebacterial phylogeny   总被引:1,自引:0,他引:1  
Critical analysis of the recently proposed alternative to the normal archaebacterial tree, the new eocyte tree, shows that the latter's central topology, in which the eubacteria branch from an entirely different section of the unrooted archaebacterial tree than the eukaryotes, is consistent with an artifact. The effects of the alignment used and the particular composition of the sequence quartets analyzed to infer this tree are discussed in detail.  相似文献   

3.
Archaeal phylogeny based on ribosomal proteins   总被引:9,自引:0,他引:9  
Until recently, phylogenetic analyses of Archaea have mainly been based on ribosomal RNA (rRNA) sequence comparisons, leading to the distinction of the two major archaeal phyla: the Euryarchaeota and the Crenarchaeota. Here, thanks to the recent sequencing of several archaeal genomes, we have constructed a phylogeny based on the fusion of the sequences of the 53 ribosomal proteins present in most of the archaeal species. This phylogeny was remarkably congruent with the rRNA phylogeny, suggesting that both reflected the actual phylogeny of the domain Archaea even if some nodes remained unresolved. In both cases, the branches leading to hyperthermophilic species were short, suggesting that the evolutionary rate of their genes has been slowed down by structural constraints related to environmental adaptation. In addition, to estimate the impact of lateral gene transfer (LGT) on our tree reconstruction, we used a new method that revealed that 8 genes out of the 53 ribosomal proteins used in our study were likely affected by LGT. This strongly suggested that a core of 45 nontransferred ribosomal protein genes existed in Archaea that can be tentatively used to infer the phylogeny of this domain. Interestingly, the tree obtained using only the eight ribosomal proteins likely affected by LGT was not very different from the consensus tree, indicating that LGT mainly brought random phylogenetic noise. The major difference involves organisms living in similar environments, suggesting that LGTs are mainly directed by the physical proximity of the organisms rather than by their phylogenetic proximity.  相似文献   

4.
The three-domains tree, which depicts eukaryotes and archaebacteria as monophyletic sister groups, is the dominant model for early eukaryotic evolution. By contrast, the ‘eocyte hypothesis’, where eukaryotes are proposed to have originated from within the archaebacteria as sister to the Crenarchaeota (also called the eocytes), has been largely neglected in the literature. We have investigated support for these two competing hypotheses from molecular sequence data using methods that attempt to accommodate the across-site compositional heterogeneity and across-tree compositional and rate matrix heterogeneity that are manifest features of these data. When ribosomal RNA genes were analysed using standard methods that do not adequately model these kinds of heterogeneity, the three-domains tree was supported. However, this support was eroded or lost when composition-heterogeneous models were used, with concomitant increase in support for the eocyte tree for eukaryotic origins. Analysis of combined amino acid sequences from 41 protein-coding genes supported the eocyte tree, whether or not composition-heterogeneous models were used. The possible effects of substitutional saturation of our data were examined using simulation; these results suggested that saturation is delayed by among-site rate variation in the sequences, and that phylogenetic signal for ancient relationships is plausibly present in these data.  相似文献   

5.
Determining the relationships among the major groups of cellular life is important for understanding the evolution of biological diversity, but is difficult given the enormous time spans involved. In the textbook ‘three domains’ tree based on informational genes, eukaryotes and Archaea share a common ancestor to the exclusion of Bacteria. However, some phylogenetic analyses of the same data have placed eukaryotes within the Archaea, as the nearest relatives of different archaeal lineages. We compared the support for these competing hypotheses using sophisticated phylogenetic methods and an improved sampling of archaeal biodiversity. We also employed both new and existing tests of phylogenetic congruence to explore the level of uncertainty and conflict in the data. Our analyses suggested that much of the observed incongruence is weakly supported or associated with poorly fitting evolutionary models. All of our phylogenetic analyses, whether on small subunit and large subunit ribosomal RNA or concatenated protein-coding genes, recovered a monophyletic group containing eukaryotes and the TACK archaeal superphylum comprising the Thaumarchaeota, Aigarchaeota, Crenarchaeota and Korarchaeota. Hence, while our results provide no support for the iconic three-domain tree of life, they are consistent with an extended eocyte hypothesis whereby vital components of the eukaryotic nuclear lineage originated from within the archaeal radiation.  相似文献   

6.
7.
The origin of the eukaryotes is a fundamental scientific question that for over 30 years has generated a spirited debate between the competing Archaea (or three domains) tree and the eocyte tree. As eukaryotes ourselves, humans have a personal interest in our origins. Eukaryotes contain their defining organelle, the nucleus, after which they are named. They have a complex evolutionary history, over time acquiring multiple organelles, including mitochondria, chloroplasts, smooth and rough endoplasmic reticula, and other organelles all of which may hint at their origins. It is the evolutionary history of the nucleus and their other organelles that have intrigued molecular evolutionists, myself included, for the past 30 years and which continues to hold our interest as increasingly compelling evidence favours the eocyte tree. As with any orthodoxy, it takes time to embrace new concepts and techniques.  相似文献   

8.
Summary Available sequences that correspond to the E. coli ribosomal proteins L11, L1, L10, and L12 from eubacteria, archaebacteria, and eukaryotes have been aligned. The alignments were analyzed qualitatively for shared structural features and for conservation of deletions or insertions. The alignments were further subjected to quantitative phylogenetic analysis, and the amino acid identity between selected pairs of sequences was calculated. In general, eubacteria, archaebacteria, and eukaryotes each form coherent and well-resolved nonoverlapping phylogenetic domains. The degree of diversity of the four proteins between the three groups is not uniform. For L11, the eubacterial and archaebacterial proteins are very similar whereas the eukaryotic L11 is clearly less similar. In contrast, in the case of the L12 proteins and to a lesser extent the L10 proteins, the archaebacterial and eukaryotic proteins are similar whereas the eubacterial proteins are different. The eukaryotic L1 equivalent protein has yet to be identified. If the root of the universal tree is near or within the eubacterial domain, our ribosomal protein-based phylogenies indicate that archaebacteria are monophyletic. The eukaryotic lineage appears to originate either near or within the archaebacterial domain. Correspondence to: P. Dennis  相似文献   

9.
The Universal Ancestor and the Ancestor of Bacteria Were Hyperthermophiles   总被引:4,自引:0,他引:4  
The definition of the node of the last universal common ancestor (LUCA) is justified in a topology of the unrooted universal tree. This definition allows previous analyses based on paralogous proteins to be extended to orthologous ones. In particular, the use of a thermophily index (based on the amino acids propensity to enter the [hyper] thermophile proteins more frequently) and its correlation with the optimal growth temperature of the various organisms allow inferences to be made on the habitat in which the LUCA lived. The reconstruction of ancestral sequences by means of the maximum likelihood method and their attribution to the set of mesophilic or hyperthermophilic sequences have led to the following conclusions: the LUCA was a hyperthermophile organism, as were the ancestors of the Archaea and Bacteria domains, while the ancestor of the Eukarya domain was a mesophile. These conclusions are independent of the presence of hyperthermophile bacteria in the sample of sequences used in the analysis and are therefore independent of whether or not these are the first lines of divergence in the Bacteria domain, as observed in the topology of the universal tree of ribosomal RNA. These conclusions are thus more easily understood under the hypothesis that the origin of life took place at a high temperature.  相似文献   

10.
A comprehensive investigation of ribosomal genes in complete genomes from 66 different species allows us to address the distribution of r-proteins between and within the three primary domains. Thirty-four r-protein families are represented in all domains but 33 families are specific to Archaea and Eucarya, providing evidence for specialisation at an early stage of evolution between the bacterial lineage and the lineage leading to Archaea and Eukaryotes. With only one specific r-protein, the archaeal ribosome appears to be a small-scale model of the eukaryotic one in terms of protein composition. However, the mechanism of evolution of the protein component of the ribosome appears dramatically different in Archaea. In Bacteria and Eucarya, a restricted number of ribosomal genes can be lost with a bias toward losses in intracellular pathogens. In Archaea, losses implicate 15% of the ribosomal genes revealing an unexpected plasticity of the translation apparatus and the pattern of gene losses indicates a progressive elimination of ribosomal genes in the course of archaeal evolution. This first documented case of reductive evolution at the domain scale provides a new framework for discussing the shape of the universal tree of life and the selective forces directing the evolution of prokaryotes.  相似文献   

11.
Summary Phylogenies were inferred from both the gene and the protein sequences of the translational elongation factor termed EF-2 (for Archaea and Eukarya) and EF-G (for Bacteria). All treeing methods used (distance-matrix, maximum likelihood, and parsimony), including evolutionary parsimony, support the archaeal tree and disprove the eocyte tree (i.e., the polyphyly and paraphyly of the Archaea). Distance-matrix trees derived from both the amino acid and the DNA sequence alignments (first and second codon positions) showed the Archaea to be a monophyletia-holophyletic grouping whose deepest bifurcation divides a Sulfolobus branch from a branch comprising Methanococcus, Halobacterium, and Thermoplasma. Bootstrapped distance-matrix treeing confirmed the monophyly-holophyly of Archaea in 100% of the samples and supported the bifurcation of Archaea into a Sulfolobus branch and a methanogen-halophile branch in 97% of the samples. Similar phylogenies were inferred by maximum likelihood and by maximum (protein and DNA) parsimony. DNA parsimony trees essentially identical to those inferred from first and second codon positions were derived from alternative DNA data sets comprising either the first or the second position of each codon. Bootstrapped DNA parsimony supported the monophyly-holophyly of Archaea in 100% of the bootstrap samples and confirmed the division of Archaea into a Sulfolobus branch and a methanogen-halophile branch in 93% of the bootstrap samples. Distance-matrix and maximum likelihood treeing under the constraint that branch lengths must be consistent with a molecular clock placed the root of the universal tree between the Bacteria and the bifurcation of Archaea and Eukarya. The results support the division of Archaea into the kingdoms Crenarchaeota (corresponding to the Sulfolobus branch and Euryarchaeota). This division was not confirmed by evolutionary parsimony, which identified Halobacterium rather than Sulfolobus as the deepest offspring within the Archaea.Offprint requests to: P. Cammarano  相似文献   

12.
Archaea and the prokaryote-to-eukaryote transition.   总被引:19,自引:1,他引:18       下载免费PDF全文
Since the late 1970s, determining the phylogenetic relationships among the contemporary domains of life, the Archaea (archaebacteria), Bacteria (eubacteria), and Eucarya (eukaryotes), has been central to the study of early cellular evolution. The two salient issues surrounding the universal tree of life are whether all three domains are monophyletic (i.e., all equivalent in taxanomic rank) and where the root of the universal tree lies. Evaluation of the status of the Archaea has become key to answering these questions. This review considers our cumulative knowledge about the Archaea in relationship to the Bacteria and Eucarya. Particular attention is paid to the recent use of molecular phylogenetic approaches to reconstructing the tree of life. In this regard, the phylogenetic analyses of more than 60 proteins are reviewed and presented in the context of their participation in major biochemical pathways. Although many gene trees are incongruent, the majority do suggest a sisterhood between Archaea and Eucarya. Altering this general pattern of gene evolution are two kinds of potential interdomain gene transferrals. One horizontal gene exchange might have involved the gram-positive Bacteria and the Archaea, while the other might have occurred between proteobacteria and eukaryotes and might have been mediated by endosymbiosis.  相似文献   

13.
Cytochrome oxidase is a key enzyme in aerobic metabolism. All the recorded eubacterial (domain Bacteria) and archaebacterial (Archaea) sequences of subunits 1 and 2 of this protein complex have been used for a comprehensive evolutionary analysis. The phylogenetic trees reveal several processes of gene duplication. Some of these are ancient, having occurred in the common ancestor of Bacteria and Archaea, whereas others have occurred in specific lines of Bacteria. We show that eubacterial quinol oxidase was derived from cytochrome c oxidase in Gram-positive bacteria and that archaebacterial quinol oxidase has an independent origin. A considerable amount of evidence suggests that Proteobacteria (Purple bacteria) acquired quinol oxidase through a lateral gene transfer from Gram-positive bacteria. The prevalent hypothesis that aerobic metabolism arose several times in evolution after oxygenic photosynthesis, is not sustained by two aspects of the molecular data. First, cytochrome oxidase was present in the common ancestor of Archaea and Bacteria whereas oxygenic photosynthesis appeared in Bacteria. Second, an extant cytochrome oxidase in nitrogen-fixing bacteria shows that aerobic metabolism is possible in an environment with a very low level of oxygen, such as the root nodules of leguminous plants. Therefore, we propose that aerobic metabolism in organisms with cytochrome oxidase has a monophyletic and ancient origin, prior to the appearance of eubacterial oxygenic photosynthetic organisms.  相似文献   

14.
Generalized structures of the 5S ribosomal RNAs.   总被引:15,自引:14,他引:1       下载免费PDF全文
The sequences of 5S ribosomal RNAs from a wide-range of organisms have been compared. All sequences fit a generalized 5S RNA secondary structural model. Twenty-three nucleotide positions are found universally, i.e., in 5S RNAs of eukaryotes, prokaryotes, archaebacteria, chloroplasts and mitochondria. One major distinguishing feature between the prokaryotic and eukaryotic 5S RNAs is the number of nucleotide positions between certain universal positions, e.g., prokaryotic 5S RNAs have three positions between the universal positions PuU40 and G44 (using the E. coli numbering system) and eukaryotic 5S RNAs have two. The archaebacterial 5S RNAs appear to resemble the eukaryotic 5S RNAs to varying degrees depending on the species of archaebacteria although all the RNAs conform with the prokaryotic "rule" of chain length between PuU40 and G44. The green plant chloroplast and wheat mitochondrial 5S RNAs appear prokaryotic-like when comparing the number of positions between universal nucleotides. Nucleotide positions common to eukaryotic 5S RNAs have been mapped; in addition, nucleotide sequences, helix lengths and looped-out residues specific to phyla are proposed. Several of the common nucleotides found in the 5S RNAs of metazoan somatic tissue differ in the 5S RNAs of oocytes. These changes may indicate an important functional role of the 5S RNA during oocyte maturation.  相似文献   

15.
Methods to infer the ancestral conditions of life are commonly based on geological and paleontological analyses. Recently, several studies used genome sequences to gain information about past ecological conditions taking advantage of the property that the G+C and amino acid contents of bacterial and archaeal ribosomal DNA genes and proteins, respectively, are strongly influenced by the environmental temperature. The adaptation to optimal growth temperature (OGT) since the Last Universal Common Ancestor (LUCA) over the universal tree of life was examined, and it was concluded that LUCA was likely to have been a mesophilic organism and that a parallel adaptation to high temperature occurred independently along the two lineages leading to the ancestors of Bacteria on one side and of Archaea and Eukarya on the other side. Here, we focus on Archaea to gain a precise view of the adaptation to OGT over time in this domain. It has been often proposed on the basis of indirect evidence that the last archaeal common ancestor was a hyperthermophilic organism. Moreover, many results showed the influence of environmental temperature on the evolutionary dynamics of archaeal genomes: Thermophilic organisms generally display lower evolutionary rates than mesophiles. However, to our knowledge, no study tried to explain the differences of evolutionary rates for the entire archaeal domain and to investigate the evolution of substitution rates over time. A comprehensive archaeal phylogeny and a non homogeneous model of the molecular evolutionary process allowed us to estimate ancestral base and amino acid compositions and OGTs at each internal node of the archaeal phylogenetic tree. The last archaeal common ancestor is predicted to have been hyperthermophilic and adaptations to cooler environments can be observed for extant mesophilic species. Furthermore, mesophilic species present both long branches and high variation of nucleotide and amino acid compositions since the last archaeal common ancestor. The increase of substitution rates observed in mesophilic lineages along all their branches can be interpreted as an ongoing adaptation to colder temperatures and to new metabolisms. We conclude that environmental temperature is a major factor that governs evolutionary rates in Archaea.  相似文献   

16.
A ribosomal protein which exhibits cross-reaction between organisms belonging to the eubacterial, archaebacterial and eukaryotic groups was studied by immunoblotting analysis. It was identified as the equivalent of the E. coli ribosomal protein L2.  相似文献   

17.
The nature of the last universal ancestor to all extent cellular organisms and the rooting of the universal tree of life are fundamental questions which can now be addressed by molecular evolutionists. Several scenarios have been proposed during the last years, based on the phylogenies of ribosomal RNA and of duplicated proteins, which suggest that the last universal ancestor was either an RNA progenote or an hyperthermophilic prokaryote. We discuss these hypotheses in the light of new data on the evolution of DNA metabolizing enzymes and of contradictions between different protein phylogenies. We conclude that the last universal ancestor was a member of the DNA world already containing several DNA polymerases and DNA topoisomerases. Furthermore, we criticize current data which suggest that the rooting of the universal tree of life is located in the eubacterial branch and we conclude that both rooting the universal tree and the nature of the last universal ancestor are still open questions.  相似文献   

18.
A heuristic approach to search for the maximum-likelihood (ML) phylogenetic tree based on a genetic algorithm (GA) has been developed. It outputs the best tree as well as multiple alternative trees that are not significantly worse than the best one on the basis of the likelihood criterion. These near-optimum trees are subjected to further statistical tests. This approach enables ones to infer phylogenetic trees of over 20 taxa taking account of the rate heterogeneity among sites on practical time scales on a PC cluster. Computer simulations were conducted to compare the efficiency of the present approach with that of several likelihood-based methods and distance-based methods, using amino acid sequence data of relatively large (5–24) taxa. The superiority of the ML method over distance-based methods increases as the condition of simulations becomes more realistic (an incorrect model is assumed or many taxa are involved). This approach was applied to the inference of the universal tree based on the concatenated amino acid sequences of vertically descendent genes that are shared among all genomes whose complete sequences have been reported. The inferred tree strongly supports that Archaea is paraphyletic and Eukarya is specifically related to Crenarchaeota. Apart from the paraphyly of Archaea and some minor disagreements, the universal tree based on these genes is largely consistent with the universal tree based on SSU rRNA. Received: 4 January 2001 / Accepted: 16 May 2001  相似文献   

19.
The existence of a correlation between the optimal growth temperature of various organisms and a thermophily index (based on the propensity of amino acids to enter more frequently into the proteins of thermophiles/hyperthermophiles) allows inferences to be made on the mesophilic or thermophilic nature of the last universal common ancestor (LUCA). By reconstructing the ancestral sequences of the various ancestors using methods based on maximum likelihood and maximum parsimony, these sequences can be attributed to the mesophiles or (hyper)thermophiles and the following conclusions can be drawn. (1) There is no evidence that the LUCA might have been a mesophile and observations seem to imply that the LUCA was a thermophile or a hyperthermophile; (2) The ancestors of the Archaea and Bacteria domains seem to be (hyper)thermophiles while that of the Eukarya domain turns out to be a mesophile. These conclusions are independent of both (i) where the root is located on the topology of the universal tree (based on that of the small subunit ribosomal RNA) and (ii) the presence of hyperthermophile bacteria near the node of the Bacteria domain ancestor. These conclusions are easier to interpret in the light of the hypotheses that see the origin of life taking place at a high temperature.  相似文献   

20.
S-Adenosylhomocysteine hydrolase (SahH) is involved in the degradation of the compound which inhibits methylation reactions. Using a Bayesian approach and other methods, we reconstructed a phylogenetic tree of amino acid sequences of this protein originating from all three major domains of living organisms. The SahH sequences formed two major branches: one composed mainly of Archaea and the other of eukaryotes and majority of bacteria, clearly contradicting the three-domain topology shown by small subunit rRNA gene. This topology suggests the occurrence of lateral transfer of this gene between the domains. Poor resolution of eukaryotes and bacteria excluded an ultimate conclusion in which out of the two domains this gene appeared first, however, the congruence of the secondary branches with SS rRNA and/or concatenated ribosomal protein datasets phylogenies suggested an "early" acquisition by some bacterial and eukaryotic phyla. Similarly, the branching pattern of Archaea reflected the phylogenies shown by SS rRNA and ribosomal proteins. SahH is widespread in Eucarya, albeit, due to reductive evolution, it is missing in the intracellular parasite Encephalitozoon cuniculi. On the other hand, the lack of affinity to the sequences from the alpha-Proteobacteria and cyanobacteria excludes a possibility of its acquisition in the course of mitochondrial or chloroplast endosymbioses. Unlike Archaea, most bacteria carry MTA/SAH nucleosidase, an enzyme involved also in metabolism of methylthioadenosine. However, the double function of MTA/SAH nucleosidase may be a barrier to ensure the efficient degradation of S-adenosylhomocysteine, specially when the intensity of methylation processes is high. This would explain the presence of S-adenosylhomocysteine hydrolase in the bacteria that have more complex metabolism. On the other hand, majority of obligate pathogenic bacteria due to simpler metabolism rely entirely on MTA/SAH nucleosidase. This could explain the observed phenetic pattern in which bacteria with larger (>6 Mb-million base pairs) genomes carry SAH hydrolase, whereas bacteria that have undergone reductive evolution usually carry MTA/SAH nucleosidase. This suggests that the presence or acquisition of S-adenosylhomocysteine hydrolase in bacteria may predispose towards higher metabolic, and in consequence, higher genomic complexity. The good examples are the phototrophic bacteria all of which carry this gene, however, the SahH phylogeny shows lack of congruence with SSU rRNA and photosyntethic genes, implying that the acquisition was independent and presumably preceded the acquisition of photosyntethic genes. The majority of cyanobacteria acquired this gene from Archaea, however, in some species the sahH gene was replaced by a copy from the beta- or gamma-Proteobacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号