首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Ferritin utilizes ferroxidase activity to incorporate iron. Iron uptake kinetics of bovine spleen apoferritin (H: L = 1 : 1.1) were compared with those of recombinant H chain ferritin and L chain ferritin homopolymers. H chain ferritin homopolymer showed an iron uptake rate identical to bovine spleen apoferritin (0.19 and 0.21 mmol/min/micromol of protein, respectively), and both showed iron concentration-dependent uptake. In contrast, the L chain homopolymer, which lacks ferroxidase, did not incorporate iron and showed the same level of iron autoxidation in the absence of ferritin. Bovine spleen apoferritin was shown to have two iron concentration-dependent uptake pathways over a range of 0.02-0.25 mM ferrous ammonium sulfate (FAS) by an Eadie-Scatchard plot (v/[FAS] versus v), whereas the H chain ferritin homopolymer was found to have only one pathway. Of the two Km values found in bovine spleen apoferritin, the lower mean Km value was 9.0 microM, while that of the H chain homopolymer was 11.0 microM. H chain ferritin homopolymer reached a saturating iron uptake rate at 0.1 mM FAS, while bovine spleen apoferritin incorporated more iron even at 0.25 mM FAS. These results suggest that the intrinsic ferroxidase of ferritin plays a significant role in iron uptake, and the L chain cooperates with the H chain to increase iron uptake.  相似文献   

2.
This study compared the effect of loading apoferritin either with ferrous ammonium sulfate in various buffers or with ceruloplasmin and chelated ferrous iron. It was shown that loading of apoferritin with ferrous ammonium sulfate was dependent on buffer and pH, and was directly related to the rate of iron autoxidation. The ceruloplasmin-dependent loading of apoferritin, however, was unaffected by these factors. Isoelectric focusing and amino acid analysis of the differently loaded ferritins showed that ferrous ammonium sulfate loading of apoferritin resulted in the depletion of the basic amino acids, lysine and histidine, probably as a result of protein oxidation. No significant differences in amino acid composition was noted for ceruloplasmin-loaded ferritin. Furthermore, ferritin loaded with ferrous ammonium sulfate released more iron than either native or ceruloplasmin-loaded ferritin when either paraquat or EDTA was used as an iron mobilizing agent. We suggest that the loading of apoferritin with ferrous ammonium sulfate occurred as a result of iron autoxidation and may result in oxidation of amino acids and loss of integrity of the protein, and that ceruloplasmin may act as a catalyst for the incorporation of iron into apoferritin in a manner more closely related to that occurring in vivo.  相似文献   

3.
Uptake of iron by apoferritin from a ferric dihydrolipoate complex   总被引:1,自引:0,他引:1  
A study was made on the uptake of iron by horse spleen apoferritin, by using as an iron source the same ferric dihydrolipoate complex which represents the major product in the anaerobic removal of ferritin-bound iron by dihydrolipoate at neutral pH. The ferric dihydrolipoate complex was chemically synthesized and used as an iron donor to apoferritin. Iron uptake was studied, at slightly alkaline pH and in anaerobic conditions, as a function of the concentration of both the iron donor and apoferritin. Isolation of ferritin from mixtures of ferric dihydrolipoate and apoferritin, and subsequent identification of the oxidation state of ferritin-bound iron, showed that the first metal atoms were taken up in the ferrous form and that this early step was accompanied by accumulation of ferric iron. Total iron uptake increased with the molar ratio of complex to apoprotein and ranged over 25-40% of the iron being supplied. The amount of ferrous iron found inside the protein did not exceed 50-60 mol iron/mol ferritin after a 48-h incubation. At this time, ferric iron represented a significant fraction of the iron found in the isolated ferritin. Analytical and spectroscopic data indicated that fractional rates and equilibria for disassembly of the ferric complex in the presence of apoferritin were independent of the concentration of the protein and of the complex itself.  相似文献   

4.
The effects of iron sources with different speciation and anionic moieties (ferric chloride, ferrous chloride, ferric EDTA, ferrous EDTA, ferric ammonium sulfate, and ferrous ammonium sulfate) on the cell growth and the production of energy storage (lipid and carbohydrate) from Dunaliella tertiolecta were investigated. The influence of iron dosage was also compared in the range from 0.65 mg/L (1X) to 6.5 mg/L (10X) as Fe concentration. Best cell growth rate was achieved when ferrous ammonium sulfate was used. Ferric EDTA resulted in higher lipid content than other iron sources, while ferrous ammonium sulfate favored the accumulation of carbohydrate among six iron sources. The accumulations of lipid and carbohydrate as energy storage competed each other and thus both contents did not increase together. In the presence of ferric EDTA, lipid content is increasing, while carbohydrate content is decreasing. On the contrary, lipid content is decreasing while carbohydrate is increasing in the presence of ferric ammonium sulfate. Because the overall carbohydrate content was larger than that of lipid, bioethanol production would be more advantageous than biodiesel production with the present D. tertiolecta strain if the carbohydrate in D. tertiolecta contains a high fraction of glucose with a good saccharification yield.  相似文献   

5.
《Free radical research》2013,47(3):149-160
Iron autoxidation in Mops and Hepes buffers is characterized by a lag phase that becomes shorter with increasing FeCl2 concentration and pH. During iron oxidation in these buffers a yellow colour develops in the solution. When the reaction is conducted in the presence of nitro blue tetrazolium (NBT), blue formazan is formed. Of the many OH' scavengers tested, mannitol and sorbitol are most effective in inhibiting Fe2+ oxidation, yellow colour development and NBT reduction. Some inhibition was also noted with catalase. The iron product of the oxidative reaction differs from Fe3+ in its absorption spectrum and its low reactivity with thiocyanate. Similar results are obtained when iron autoxidation is studied in unbuffered solutions brought to alkaline pH with NaOH. In phosphate buffer, no lag phase is evident and the absorption spectrum of the final solution is identical to that of Fe3+ in this buffer. The iron product reacts immediately with thiocyanate. When iron oxidation is conducted in the presence of NBT the formation of formazan is almost undetectable. Of the many compounds tested only catalase inhibits iron autoxidation in this buffer. The sequence of reactions leading to iron autoxidation in Good-type buffers1 thus resembles that occurring in unbuffered solutions brought to alkaline pH with NaOH and greatly differs from that occurring in phosphate buffer. These results are in agreement with the observation that these buffers have very low affinity for iron.1 The data presented define experimental conditions where Fe2+ is substantially stable for a considerable length of time in Mops buffer.  相似文献   

6.
Bifidobacterium breve transports ferrous iron in preference to the ferric form in a saturable, concentration-dependent manner with an optimum pH of 6. Iron transport is highly temperature sensitive. Two transport systems with apparent Km's of 86 +/- 27 and 35 +/- 20 microM (p greater than 0.01) were distinguished, one operating at high iron concentrations, the other at low iron concentrations. Iron uptake could not be accounted for by surface binding. Uptake of iron was inhibited by iron chelators, a protein ionophore, and ATPase inhibitors, and it was stimulated by potassium ionophores. The presence of a ferri reductase in the insoluble cell fraction of B. breve and its "spent" growth medium was demonstrated. The hypothesis is presented that iron uptake by bifidobacteria is related to the nutritional immunity phenomenon.  相似文献   

7.
Summary Iron uptake and micelle formation in ferritin and apoferritin have been followed both spectrophotometrically and by means of sedimentation velocity experiments. Information was thus obtained on the molecular weight distribution of the reconstitution product.To achieve incorporation native ferritin (whole ferritin as purified from horse spleen), native apoferritin (apoferritin prepared by fractionation of ferritin preparations) and reduced apoferritin (apoferritin prepared by reduction of ferritin by dithionite or ascorbic acid) have been incubated with ferrous salts in the presence of oxidizing agents under different experimental conditions.Although some iron is incorporated in native ferritin, full saturation is not achieved and the molecular weight distribution of the incubated products remains heterogeneous.Native and reduced apoferritin show a similar iron incorporation, but the reconstitution products markedly differ in terms of their iron distribution.Ferritin reconstituted from native apoferritin has a broad molecular weight distribution, while that reconstituted from reduced apoferritin is characterized by a narrow, homogeneous molecular weight distribution. However treatment of apoferritin with reducing or oxidizing agents prior to the incubation alters the characteristics of the iron distribution without changing the iron incorporation properties.These results point to a role of the protein moiety not only in iron oxidation, but also in micelle formation.  相似文献   

8.
Symbiosomes and bacteroids isolated from soybean (Glycine max Merr.) nodules are able to take up ferrous iron. This uptake activity was completely abolished in the presence of ferrous-iron chelators. The kinetics of uptake were characterized by initially high rates of iron internalization, but no saturation was observed with increasing iron concentration. This process does not appear to involve the ferric reductase of the peribacteroid membrane. The transport of ferrous iron was inhibited by other transition metals, particularly copper. Ferrous iron was taken up by symbiosomes more efficiently than the ferric form. This indicates that the iron transport from the plant host cell to the microsymbiont in vivo may occur mainly as the ferrous form. Received: 11 February 1998 / Accepted: 29 May 1998  相似文献   

9.
Quinolinate (pyridine-2,3-dicarboxylic acid, Quin) is a neurotoxic tryptophan metabolite produced mainly by immune-activated macrophages. It is implicated in the pathogenesis of several brain disorders including HIV-associated dementia. Previous evidence suggests that Quin may exert its neurotoxic effects not only as an agonist on the NMDA subtype of glutamate receptor, but also by a receptor-independent mechanism. In this study we address ability of ferrous quinolinate chelates to generate reactive oxygen species. Autoxidation of Quin-Fe(II) complexes, followed in Hepes buffer at pH 7.4 using ferrozine as the Fe(II) detector, was found to be markedly slower in comparison with iron unchelated or complexed to citrate or ADP. The rate of Quin-Fe(II) autoxidation depends on pH (squared hydroxide anion concentration), is catalyzed by inorganic phosphate, and in both Hepes and phosphate buffers inversely depends on Quin concentration. These observations can be explained in terms of anion catalysis of hexaaquairon(II) autoxidation, acting mainly on the unchelated or partially chelated pool of iron. In order to follow hydroxyl radical generation in the Fenton chemistry, electron paramagnetic resonance (EPR) spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) was employed. In the mixture consisting of 100 mM DMPO, 0.1 mM Fe(II), and 8.8 mM hydrogen peroxide in phosphate buffer pH 7.4, 0.5 mM Quin approximately doubled the yield of DMPO-OH adduct, and higher Quin concentration increased the spin adduct signal even more. When DMPO-OH was pre-formed using Ti3+/hydrogen peroxide followed by peroxide removal with catalase, only addition of Quin-Fe(II), but not Fe(II), Fe(III), or Quin-Fe(III), significantly promoted decomposition of pre-formed DMPO-OH. Furthermore, reaction of Quin-Fe(II) with hydrogen peroxide leads to initial iron oxidation followed by appearance of iron redox cycling, detected as slow accumulation of ferrous ferrozine complex. This phenomenon cannot be abolished by subsequent addition of catalase. Thus, we propose that redox cycling of iron by a Quin derivative, formed by initial attack of hydroxyl radicals on Quin, rather than effects of iron complexes on DMPO-OH stability or redox cycling by hydrogen peroxide, is responsible for enhanced DMPO-OH signal in the presence of Quin. The present observations suggest that Quin-Fe(II) complexes display significant pro-oxidant characteristics that could have implications for Quin neurotoxicity.  相似文献   

10.
Quinolinate (pyridine-2,3-dicarboxylic acid, Quin) is a neurotoxic tryptophan metabolite produced mainly by immune-activated macrophages. It is implicated in the pathogenesis of several brain disorders including HIV-associated dementia. Previous evidence suggests that Quin may exert its neurotoxic effects not only as an agonist on the NMDA subtype of glutamate receptor, but also by a receptor-independent mechanism. In this study we address ability of ferrous quinolinate chelates to generate reactive oxygen species. Autoxidation of Quin-Fe(II) complexes, followed in Hepes buffer at pH 7.4 using ferrozine as the Fe(II) detector, was found to be markedly slower in comparison with iron unchelated or complexed to citrate or ADP. The rate of Quin-Fe(II) autoxidation depends on pH (squared hydroxide anion concentration), is catalyzed by inorganic phosphate, and in both Hepes and phosphate buffers inversely depends on Quin concentration. These observations can be explained in terms of anion catalysis of hexaaquairon(II) autoxidation, acting mainly on the unchelated or partially chelated pool of iron. In order to follow hydroxyl radical generation in the Fenton chemistry, electron paramagnetic resonance (EPR) spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) was employed. In the mixture consisting of 100 mM DMPO, 0.1 mM Fe(II), and 8.8 mM hydrogen peroxide in phosphate buffer pH 7.4, 0.5 mM Quin approximately doubled the yield of DMPO-OH adduct, and higher Quin concentration increased the spin adduct signal even more. When DMPO-OH was pre-formed using Ti3+/hydrogen peroxide followed by peroxide removal with catalase, only addition of Quin-Fe(II), but not Fe(II), Fe(III), or Quin-Fe(III), significantly promoted decomposition of pre-formed DMPO-OH. Furthermore, reaction of Quin-Fe(II) with hydrogen peroxide leads to initial iron oxidation followed by appearance of iron redox cycling, detected as slow accumulation of ferrous ferrozine complex. This phenomenon cannot be abolished by subsequent addition of catalase. Thus, we propose that redox cycling of iron by a Quin derivative, formed by initial attack of hydroxyl radicals on Quin, rather than effects of iron complexes on DMPO-OH stability or redox cycling by hydrogen peroxide, is responsible for enhanced DMPO-OH signal in the presence of Quin. The present observations suggest that Quin-Fe(II) complexes display significant pro-oxidant characteristics that could have implications for Quin neurotoxicity.  相似文献   

11.
Hypotransferrinemic (HP) mice have a splicing defect inthe transferrin gene, resulting in <1% of the normal plasma levels of transferrin. They have severe anemia, suggesting that transferrin is essential for iron uptake by erythroid cells in the bone barrow. To clarify the significance of transferrin on iron delivery to the bone marrow, iron concentration and 59Fe distribution were determined in 7-day-old HP mice. Iron concentration in the femur, bone containing the bone marrow, of HP mice was approximately twice higher than in wild type mice. Twenty-four h after injection of 59FeCl3, 59Fe concentration in the bone and bone marrow of HP mice was also twice higher than in wild type mice. The present findings indicate that iron is abnormally delivered to the bone marrow of HP mice. However, the iron seems to be unavailable for the production of hemoglobin. These results suggest that transferrin-dependent iron uptake by erythroid cells in the bone marrow is essential for the development of erythrocytes.  相似文献   

12.
Aktar Ali  Qi Zhang  Jisen Dai  Xi Huang 《Biometals》2003,16(2):285-293
The fluorescence quenching of calcein (CA) is not iron specific and results in a negative calibration curve. In the present study, deferoxamine (DFO), a strong iron chelator, was used to regenerate the fluorescence quenched by iron. Therefore, the differences in fluorescence reading of the same sample with or without addition of DFO are positively and specifically proportional to the amounts of iron. We found that the same iron species but different anions (e.g. ferric sulfate or ferric citrate) differed in CA fluorescence quenching, so did the same anions but different iron (e.g. ferrous or ferric sulfates). Excessive amounts of citrate competed with CA for iron and citrate could be removed by barium precipitation. After optimizing the experimental conditions, the sensitivity of the fluorescent CA assay is 0.02 M of iron, at least 10 times more sensitive than the colorimetric assays. Sera from 6 healthy subjects were tested for low molecular weight (LMW) chelator bound iron in the filtrates of 10 kDa nominal molecular weight limit (NMWL). The LMW iron was marginally detectable in the normal sera. However, increased levels of LMW iron were obtained at higher transferrin (Tf) saturation (1.64–2.54 M range at 80% Tf saturation, 2.77–3.15 M range at 100% Tf saturation and 3.09–3.39 M range at 120% Tf saturation). The application of the assay was further demonstrated in the filtrates of human liver HepG2 and human lung epithelial A549 cells treated with iron or iron-containing dusts.  相似文献   

13.
Aminoacetone (AA) is a threonine and glycine metabolite overproduced and recently implicated as a contributing source of methylglyoxal (MG) in conditions of ketosis. Oxidation of AA to MG, NH4+, and H
2
O
2
has been reported to be catalyzed by a copper-dependent semicarbazide sensitive amine oxidase (SSAO) as well as by copper- and iron ion-catalyzed reactions with oxygen. We previously demonstrated that AA-generated O2•al (AA
) induce dose-dependent Fe(II) release from horse spleen ferritin (HoSF); no reaction occurs under nitrogen. In the present study we further explored the mechanism of iron release and the effect of AA on the ferritin apoprotein. Iron chelators such as EDTA, ATP and citrate, and phosphate accelerated AA-promoted iron release from HoSF, which was faster in horse spleen isoferritins containing larger amounts of phosphate in the core. Incubation of apoferritin with AA (2.5-50 mM, after 6 h) changes the apoprotein electrophoretic behavior, suggesting a structural modification of the apoprotein by AA-generated ROS. Superoxide dismutase (SOD) was able to partially protect apoferritin from structural modification whereas catalase, ethanol, and mannitol were ineffective in protection. Incubation of apoferritin with AA (1-10 mM) produced a dose-dependent decrease in tryptophan fluorescence (13-30%, after 5 h), and a partial depletion of protein thiols (29% after 24 h). The AA promoted damage to apoferritin produced a 40% decrease in apoprotein ferroxidase activity and an 80% decrease in its iron uptake ability. The current findings of changes in ferritin and apoferritin may contribute to intracellular iron-induced oxidative stress during AA formation in ketosis and diabetes mellitus.  相似文献   

14.
Human porphyria cutanea tarda is an unusual consequence of common hepatic disorders such as alcoholic liver disease. Hepatic iron plays a key role in the expression of the metabolic lesions, i.e., defective hepatic decarboxylation of porphyrinogens, catalyzed by uroporphyrinogen decarboxylase. This prompted the present study to determine the in vitro effects of iron on the uroporphyrinogen substrate in the absence and presence of atmospheric oxygen. We observed that (i) unless oxygen is the limiting reactant, autoxidation of ferrous iron and iron-catalyzed oxidation of uroporphyrinogen occurred soon after initiating the reaction at pH 7.4 and 30 degrees C in buffers which are non- or poor chelators of iron; (ii) the rates of uroporphyrinogen oxidation were proportional to the initial concentration of ferrous ion; (iii) about 70% of the oxidations of uroporphyrinogen were accountable due to a free-radical chain reaction pathway involving superoxide radical and hence inhibitable by superoxide dismutase; (iv) uroporphyrinogen could be further oxidized to completion by the hydroxyl radical since the reaction was partially inhibited by both mannitol and catalase which prevent hydroxyl radical production; (v) the oxidizing effects of ferric ion on uroporphyrinogen were none or negligible as compared to those of ferrous ion. Ferric was reduced to ferrous ion in the presence of dithiothreitol. When the ferrous ion thus formed was reoxidized in the presence of atmospheric oxygen, minor but definite oxidations of both uroporphyrinogen and dithiothreitol were observed. The oxidations of Fe2+ and uroporphyrinogen could be blocked by 1,10-phenanthroline, a ferrous iron chelator. The data suggest that ferrous is the reactive form of iron that may contribute to pathogenic development of the disease by irreversibly oxidizing the porphyrinogen substrates to nonmetabolizable porphyrins, which accumulate in porphyric liver.  相似文献   

15.
Dynamic equilibria in iron uptake and release by ferritin   总被引:7,自引:0,他引:7  
The function of ferritins is to store and release ferrous iron. During oxidative iron uptake, ferritin tends to lower Fe2+ concentration, thus competing with Fenton reactions and limiting hydroxy radical generation. When ferritin functions as a releasing iron agent, the oxidative damage is stimulated. The antioxidant versus pro-oxidant functions of ferritin are studied here in the presence of Fe2+, oxygen and reducing agents. The Fe2+-dependent radical damage is measured using supercoiled DNA as a target molecule. The relaxation of supercoiled DNA is quantitatively correlated to the concentration of exogenous Fe2+, providing an indirect assay for free Fe2+. After addition of ferrous iron to ferritin, Fe2+ is actively taken up and asymptotically reaches a stable concentration of 1–5 m. Comparable equilibrium concentrations are found with plant or horse spleen ferritins, or their apoferritins. After addition of ascorbate, iron release is observed using ferrozine as an iron scavenger. Rates of iron release are dependent on ascorbate concentration. They are about 10 times larger with pea ferritin than with horse ferritin. In the absence of ferrozine, the reaction of ascorbate with ferritins produces a wave of radical damage; its amplitude increases with increased ascorbate concentrations with plant ferritin; the damage is weaker with horse ferritin and less dependent on ascorbate concentrations.  相似文献   

16.
Nine strains of Frankia isolated from six Casuarinaceae (including four Casuarina sp., one Allocasuarina and one Gymnostoma) and one Elaeagnaceae (Hippophae¨ rhamnoides) were screened for growth and production of siderophores in an iron-deficient liquid medium. Siderophore production was detected only in four strains (Cj, G2, CH and G82) using the CAS and Arnow assays. Salicylates formed more than 90% and dihydroxybenzoates formed less than 10% of all catechol-type siderophores produced. Growth of the former strains was less affected by iron deficiency than that of strains Rif, Thr, URU, BR and RT which do not produce siderophores. Optimal siderophore production by strain Cj was noted when iron concentration reached 0.5m and was completely inhibited at an iron concentration of 10m. The kinetics of siderophore production by strain Cj showed that siderophore synthesis was detectable during the growth stationary phase. Growth of Cj (a siderophore-producing strain) and of RT (a non-siderophore-producing strain) differed when 2,2-dipyridyl or ethylene di(o-hydroxyphenyl) acetic acid (EDDHA) was added to the iron-deficient growth medium. Frankia strain RT was the most sensitive to the detrimental effect of both iron chelators.  相似文献   

17.
This study was aimed at developing an immobilized bioreactor system in which long-term continuous ferrous iron oxidation can be realized with no formation of jarosite, which causes clogging of support pores and reactor lines. For this purpose, a medium with no jarosite formation was developed first by selecting optimal nitrogen and phosphate sources and their concentrations. Then with the developed medium containing ammonium phosphate instead of ammonium sulfate and potassium phosphate, repeated batch and continuous operations of ferrous iron oxidation by Acidothiobacillus ferrooxidans cells immobilized in a depth filter were successfully performed for an extended period of time. For about 510 h of operation including 450 h of continuous operation at dilution rates of 0.1, 0.2, and 0.3 h(-)(1), no formation of jarosite and thus no clogging of the reactor system were observed. The maximum ferrous iron oxidation rate was as high as 2.6 g/(L.h) at a dilution rate of 0.3 h(-)(1).  相似文献   

18.
Rat adipocytes were incubated with 15 nM insulin in different buffers at 37°C. The cells were washed and reincubated at 16°C in the presence of 18 pM A14-[125I]monoiodoinsulin to determine the insulin receptor concentration. After incubation for 2 h in Tris buffer the binding decreased to about 30 %, whereas no decrease was found after incubation in Hepes, phosphate or bicarbonate buffers. Binding of tracer insulin reached a constant level by 45 min in Hepes buffer at 37°C, whereas it continued to increase in Tris buffer. Washout of tracer insulin after incubation in Tris buffer at 37°C showed a large, slowly dissociable fraction. It is suggested that the rapid down regulation of insulin receptors invitro is an artifact of the Tris buffer and that the phenomenon is due to a slowly reversible occupancy of a receptor pool with unlabelled insulin.  相似文献   

19.
Summary Geotrichum candidum (isolate 1–9) pathogenic on citrus fruits, appears to lack siderophore production. Iron uptake byG. candidum is mediated by two distinct iron-regulated, energy-and temperature-dependent transport systems that require sulfhydryl groups. One system exhibits specificity for either ferric or ferrous iron, whereas the other exhibits specificity for ferrioxamine-B-mediated iron uptake and presumably other hydroxamate siderophores. Radioactive iron uptake from59FeCl3 showed an optimum at pH 6 and 35° C, and Michaelis-Menten kinetics (apparentK m = 3 m,V max = 0.054 nmol · mg–1 · min–1). The maximal rate of Fe2+ uptake was higher than Fe3+ (V max = 0.25 nmol · mg–1 · min–1) but theK m was identical. Reduction of ferric to ferrous iron prior to transport could not be detected. The ferrioxamine B system exhibits an optimum at pH 6 and 40° C and saturation kinetics (K m = 2 M,V max = 0.22 nmol · mg–1 · min–1). The two systems were distinguished as two separate entities by negative reciprocal competition, and on the basis of differential response to temperature and phenazine methosulfate. Mössbauer studies revealed that cells fed with either57FeCl3 or57FeCl2 accumulated unknown ferric and ferrous binding metabolites.  相似文献   

20.
Bacterial oxidation of ferrous iron at low temperatures   总被引:1,自引:0,他引:1  
This study comprises the first report of ferrous iron oxidation by psychrotolerant, acidophilic iron-oxidizing bacteria capable of growing at 5 degrees C. Samples of mine drainage-impacted surface soils and sediments from the Norilsk mining region (Taimyr, Siberia) and Kristineberg (Skellefte district, Sweden) were inoculated into acidic ferrous sulfate media and incubated at 5 degrees C. Iron oxidation was preceded by an approximately 3-month lag period that was reduced in subsequent cultures. Three enrichment cultures were chosen for further work and one culture designated as isolate SS3 was purified by colony isolation from a Norilsk enrichment culture for determining the kinetics of iron oxidation. The 16S rRNA based phylogeny of SS3 and two other psychrotolerant cultures, SS5 from Norilsk and SK5 from Northern Sweden, was determined. Comparative analysis of amplified 16S rRNA gene sequences showed that the psychrotolerant cultures aligned within Acidithiobacillus ferrooxidans. The rate constant of iron oxidation by growing cultures of SS3 was in the range of 0.0162-0.0104 h(-1) depending on the initial pH. The oxidation kinetics followed an exponential pattern, consistent with a first order rate expression. Parallel iron oxidation by a mesophilic reference culture of Acidithiobacillus ferrooxidans was extremely slow and linear. Precipitates harvested from the 5 degrees C culture were identified by X-ray diffraction as mixtures of schwertmannite (ideal formula Fe(8)O(8)(OH)(6)SO(4)) and jarosite (KFe(3)(SO(4))(2)(OH)(6)). Jarosite was much more dominant in precipitates produced at 30 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号