首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 379 毫秒
1.
2.
3.
Although Chinese hamster ovary (CHO) cells, with their unique characteristics, have become a major workhorse for the manufacture of therapeutic recombinant proteins, one of the major challenges in CHO cell line generation (CLG) is how to efficiently identify those rare, high‐producing clones among a large population of low‐ and non‐productive clones. It is not unusual that several hundred individual clones need to be screened for the identification of a commercial clonal cell line with acceptable productivity and growth profile making the cell line appropriate for commercial application. This inefficiency makes the process of CLG both time consuming and laborious. Currently, there are two main CHO expression systems, dihydrofolate reductase (DHFR)‐based methotrexate (MTX) selection and glutamine synthetase (GS)‐based methionine sulfoximine (MSX) selection, that have been in wide industrial use. Since selection of recombinant cell lines in the GS‐CHO system is based on the balance between the expression of the GS gene introduced by the expression plasmid and the addition of the GS inhibitor, L‐MSX, the expression of GS from the endogenous GS gene in parental CHOK1SV cells will likely interfere with the selection process. To study endogenous GS expression's potential impact on selection efficiency, GS‐knockout CHOK1SV cell lines were generated using the zinc finger nuclease (ZFN) technology designed to specifically target the endogenous CHO GS gene. The high efficiency (~2%) of bi‐allelic modification on the CHO GS gene supports the unique advantages of the ZFN technology, especially in CHO cells. GS enzyme function disruption was confirmed by the observation of glutamine‐dependent growth of all GS‐knockout cell lines. Full evaluation of the GS‐knockout cell lines in a standard industrial cell culture process was performed. Bulk culture productivity improved two‐ to three‐fold through the use of GS‐knockout cells as parent cells. The selection stringency was significantly increased, as indicated by the large reduction of non‐producing and low‐producing cells after 25 µM L‐MSX selection, and resulted in a six‐fold efficiency improvement in identifying similar numbers of high‐productive cell lines for a given recombinant monoclonal antibody. The potential impact of GS‐knockout cells on recombinant protein quality is also discussed. Biotechnol. Bioeng. 2012; 109:1007–1015. © 2011 Wiley Periodicals, Inc.  相似文献   

4.
Bioreactor stresses, including nutrient deprivation, shear stress, and byproduct accumulation can cause apoptosis, leading to lower recombinant protein yields and increased costs in downstream processing. Although cell engineering strategies utilizing the overexpression of antiapoptotic Bcl‐2 family proteins such as Bcl‐2 and Bcl‐xL potently inhibit apoptosis, no studies have examined the use of the Bcl‐2 family protein, Mcl‐1, in commercial mammalian cell culture processes. Here, we overexpress both the wild type Mcl‐1 protein and a Mcl‐1 mutant protein that is not degraded by the proteasome in a serum‐free Chinese hamster ovary (CHO) cell line producing a therapeutic antibody. The expression of Mcl‐1 led to increased viabilities in fed‐batch culture, with cell lines expressing the Mcl‐1 mutant maintaining ~90% viability after 14 days when compared with 65% for control cells. In addition to enhanced culture viability, Mcl‐1‐expressing cell lines were isolated that consistently showed increases in antibody production of 20–35% when compared with control cultures. The quality of the antibody product was not affected in the Mcl‐1‐expressing cell lines, and Mcl‐1‐expressing cells exhibited 3‐fold lower caspase‐3 activation when compared with the control cell lines. Altogether, the expression of Mcl‐1 represents a promising alternative cell engineering strategy to delay apoptosis and increase recombinant protein production in CHO cells. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

5.
6.
MicroRNAs (miRNAs) play important roles in global gene regulation. Researchers in recombinant protein production have proposed miRNAs as biomarkers and cell engineering targets. However, miRNA expression remains understudied in Chinese Hamster Ovary cells, one of the most commonly used host cell systems for therapeutic protein production. To profile highly conserved miRNA expression, we used the miRCURY? miRNA array for screening miRNAs in CHO cells. The selection criteria for further miRNA profiling included positive hybridization signals and experimentally validated predicted regulatory targets. On the basis of screening, we selected 16 miRNAs for quantitative RT‐PCR profiling. We profiled miR expression in parental CHO DG44 and CHO K1 cell lines as well as four recombinant DG44‐derived CHO lines producing a recombinant human IgG. We observed that miR‐221 and miR‐222 were significantly downregulated in all IgG‐producing cell lines when compared with parental DG44, whereas miR‐125b was significantly downregulated in one IgG‐producing line. In another IgG‐producing line, miR‐19a was significantly upregulated. miRNA expression was also profiled in two of these lines that were amplified by stepwise increase of methotrexate. In both amplified cell lines, let‐7b and miR‐221 were significantly downregulated. In parental CHO K1, let‐7b, miR‐15b, and miR‐17 were significantly downregulated when compared with DG44. The results reported here are the first steps toward profiling highly conserved miRNAs and studying the clonal difference in miRNA expression in CHO cells and may shed light on using miRNAs in cell engineering. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

7.
Chinese hamster ovary (CHO) cells are widely used in the biopharmaceutical industry. In the creation of mammalian cell lines plasmid DNA carrying the gene‐of‐interest integrates randomly into the host cell genome, which results in variable levels of gene expression between cell lines due to gene silencing mechanisms. In addition, cell lines often show unstable protein production during long‐term culture. This means that a large number of clones need to be screened in order to isolate stable, high producing cell lines making mammalian cell line development a long and laborious process. In this study an expression platform incorporating a Ubiquitous Chromatin Opening Element (UCOE; which are proposed to maintain chromatin in an open state) has been utilised for the expression of eGFP in CHO cells. Cell lines containing a UCOE vector, showed a significantly higher and more consistent eGFP expression than the non‐UCOE cell lines without DHFR amplification. To further improve recombinant protein production cell lines were amplified with methotrexate (MTX). UCOE cell lines showed improved growth in MTX therefore amplification to 250 nM MTX was achieved following a one‐step amplification procedure. However, non‐UCOE cell lines showed higher levels of eGFP production following MTX amplification. In addition, UCOE cell lines did not improve stability during long‐term culture in the absence of selective pressure. Stable eGFP production was achieved for all cell lines when MTX is present. Finally, UCOE cell lines displayed more consistent response to external stimuli than non‐UCOE cell lines, suggesting that UCOE cell lines are less prone to clonal variability. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1014–1025, 2015  相似文献   

8.
9.
10.
Chinese hamster ovary and murine myeloma NS0 cells are currently favored host cell types for the production of therapeutic recombinant proteins. In this study, we compared N-glycan processing in GS-NS0 and GS-CHO cells producing the same model recombinant glycoprotein, tissue inhibitor of metalloproteinases 1. By manipulation of intracellular nucleotide-sugar content, we examined the feasibility of implementing metabolic control strategies aimed at reducing the occurrence of murine-specific glycan motifs on NS0-derived recombinant proteins, such as Galalpha1,3Galbeta1,4GlcNAc. Although both CHO and NS0-derived oligosaccharides were predominantly of the standard complex type with variable sialylation, 30% of N-glycan antennae associated with NS0-derived TIMP-1 terminated in alpha1,3-linked galactose residues. Furthermore, NS0 cells conferred a greater proportion of terminal N-glycolylneuraminic (sialic) acid residues as compared with the N-acetylneuraminic acid variant. Inclusion of the nucleotide-sugar precursors, glucosamine (10 mM, plus 2 mM uridine) and N-acetylmannosamine (20 mM), in culture media were shown to significantly increase the intracellular pools of UDP-N-acetylhexosamine and CMP-sialic acid, respectively, in both NS0 and CHO cells. The elevated UDP-N-acetylhexosamine content induced by the glucosamine/uridine treatment was associated with an increase in the antennarity of N-glycans associated with TIMP-1 produced in CHO cells but not N-glycans associated with TIMP-1 from NS0 cells. In addition, elevated UDP-N-acetylhexosamine content was associated with a slight decrease in sialylation in both cell lines. The elevated CMP-sialic acid content induced by N-acetylmannosamine had no effect on the overall level of sialylation of TIMP-1 produced by both CHO and NS0 cells, although the ratio of N-glycolylneuraminic acid:N-acetylneuraminic acid associated with NS0-derived TIMP-1 changed from 1:1 to 1:2. These data suggest that manipulation of nucleotide-sugar metabolism can promote changes in N-glycan processing that are either conserved between NS0 and CHO cells or specific to either NS0 cells or CHO cells.  相似文献   

11.
The requirement for complex therapeutic proteins has resulted in mammalian cells, especially CHO cells, being the dominant host for recombinant protein manufacturing. In creating recombinant CHO cell lines, the expression vectors integrate into various parts of the genome leading to variable levels of expression and stability of protein production. This makes mammalian cell line development a long and laborious process. Therefore, with the intention to accelerate process development of recombinant protein production in CHO systems, UCOEs are utilized to diminish instability of production by maintaining an open chromatin surrounding in combination with MTX amplification. Chromosome painting and FISH analysis were performed to provide detailed molecular evaluation on the location of amplified genes and its relationship to the productivity and stability of the amplified cell lines. In summary, cell lines generated with vectors containing UCOEs retained stable GFP expression with MTX present (but instability was observed in the absence of MTX). UCOE cell lines displayed a higher frequency of integration into >1 chromosome than non‐UCOE group. Cell populations were more homogenous in terms of transgene location at the end of Long‐term culture (LTC). Overall our findings suggest variation in eGFP fluorescence may be attributed to changes in transgene integration profile over LTC.  相似文献   

12.
Transient gene expression systems in mammalian cells continue to grow in popularity due to their capacity to produce significant amounts of recombinant protein in a rapid and scalable manner, without the lengthy time periods and resources required for stable cell line development. Traditionally, production of recombinant monoclonal antibodies for pre-clinical assessment by transient expression in CHO cells has been hampered by low titers. In this report, we demonstrate transient monoclonal antibody titers of 140 mg/l with CHO cells using the episomal-based transient expression system, Epi-CHO. Such titers were achieved by implementing an optimized transfection protocol incorporating mild-hypothermia and through screening of a variety of chemically defined and serum-free media for their ability to support elevated and prolonged viable cell densities post-transfection, and in turn, improve recombinant protein yields. Further evidence supporting Epi-CHO’s capacity to enhance transgene expression is provided, where we demonstrate higher transgene mRNA and protein levels of two monoclonal antibodies and a destabilized enhanced green fluorescent protein with Epi-CHO compared to cell lines deficient in plasmid DNA replication and/or retention post-transfection. The results demonstrate the Epi-CHO system’s capacity for the rapid production of CHO cell-derived recombinant monoclonal antibodies in serum-free conditions.  相似文献   

13.
14.
15.
Engineering of mammalian production cell lines to improve titer and quality of biopharmaceuticals is a top priority of the biopharmaceutical manufacturing industry providing protein therapeutics to patients worldwide. While many engineering strategies have been successful in the past decade they were often based on the over‐expression of a single transgene and therefore limited to addressing a single bottleneck in the cell's production capacity. We provide evidence that ectopic expression of the global metabolic sensor and processing protein mammalian target of rapamycin (mTOR), simultaneously improves key bioprocess‐relevant characteristics of Chinese hamster ovary (CHO) cell‐derived production cell lines such as cell growth (increased cell size and protein content), proliferation (increased cell‐cycle progression), viability (decreased apoptosis), robustness (decreased sensitivity to sub‐optimal growth factor and oxygen supplies) and specific productivity of secreted human glycoproteins. Cultivation of mTOR‐transgenic CHO‐derived cell lines engineered for secretion of a therapeutic IgG resulted in antibody titers of up to 50 pg/cell/day, which represents a four‐fold increase compared to the parental production cell line. mTOR‐based engineering of mammalian production cell lines may therefore have a promising future in biopharmaceutical manufacturing of human therapeutic proteins. Biotechnol. Bioeng. 2011; 108:853–866. © 2010 Wiley Periodicals, Inc.  相似文献   

16.
17.
Rapamycin, a specific mTOR inhibitor, has been used as a chemical activator in autophagy research both in vitro and in vivo. Recently, autophagy has received attention as an anti‐cell death engineering target in addition to apoptosis in the Chinese hamster ovary (CHO) cell engineering field. Here, the effect of rapamycin and the subsequent autophagy induction is investigated on two CHO cell lines, DG44 host and an antibody‐producing recombinant CHO (rCHO), in a serum‐free suspension culture. In both cell lines, the rapamycin treatment delayed the viability drop and apoptosis induction. In particular, the improved cell viability of the antibody‐producing rCHO cell line resulting from the rapamycin treatment led to a 21% increase in the maximum antibody concentration. From observations that a rapamycin derivative, everolimus, demonstrated similar positive effects in both cell lines, but not FK‐506, which forms the same complex as rapamycin, but does not inhibit mTOR, it was demonstrated that the positive effects of rapamycin appear to be mTOR‐dependent. In addition, the cultivation with rapamycin and/or an autophagy inhibitor, bafilomycin A1, indicated that the autophagy induction is related to the positive effects of rapamycin. The genetic perturbation of the autophagy pathway through the regulation of the expression level of Beclin‐1, an important autophagy regulator, resulted in a delayed autophagy induction and apoptosis inhibition in response to the rapamycin treatment in the DG44 host cell line. Taken together, the results obtained in this study imply a positive role for autophagy and predict the usefulness of pro‐autophagy engineering in CHO cell cultures. Biotechnol. Bioeng. 2012; 109: 3093–3102. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
The gradual loss of recombinant protein expression in CHO cell lines during prolonged subculture is a common issue, referred to as instability, which seriously affects the industrial production processes of therapeutic proteins. Loss of recombinant gene copies, due to the genetic instability of CHO cells, and epigenetic silencing of transgene sequences, are the main reported causes of production instability. To increase our understanding on the molecular mechanisms inherent to CHO cells involved in production instability, we explored the molecular features of stable and unstable antibody producing cell lines obtained without gene amplification, to exclude the genetic instability induced by the gene amplification process. The instability of recombinant antibody production during long-term culture was caused by a 48–53 % decrease in recombinant mRNA levels without significant loss of recombinant gene copies, but accompanied by a ~45 % decrease in histone H3 acetylation (H3ac). Thus, our results suggest a critical role of H3ac in the stability of recombinant protein production.  相似文献   

19.
In this study, the light chain (κ) and heavy chain (γ) sequences of the monoclonal antibody against vascular endothelial growth factor (VEGF) were sub-cloned into the eukaryotic pcDNA3.1 (+) (Hygro) and the pcDNA3.1 (+) (Neo) expression vectors using the traditional and homologous recombination methods. To express the antibody, the recombinant plasmids were transfected into the Chinese hamster ovary (CHO) and the K562 cell lines. The recombinant antibody was then purified using the protein A affinity chromatography. Furthermore, in order to demonstrate the inhibition of VEGF-induced mitogenesis of the recombinant antibody, the bovine aorta endothelial like cells were employed. The results showed specialization and conjunction of the recombinant antibody to the VEGF. It was also indicated that the antibody expression in the K562 cell lines was higher than the CHO cell lines. Furthermore, the in vitro VEGF inhabitation of the recombinant antibodies which were produced from the K562 cell line, and the CHO cell line, were similar. This proved that the K562 cell line is a good substitute for the CHO cell line in the production of the recombinant antibodies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号