首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemical composition of 50 samples of leaf oil isolated from Algerian Juniperus phoenicea var. turbinata L. harvested in eight locations (littoral zone and highlands) was investigated by GC‐FID (in combination with retention indices), GC/MS, and 13C‐NMR analyses. The composition of the J. phoenicea var. turbinata leaf oils was dominated by monoterpenes. Hierarchical cluster and principal component analyses confirmed the chemical variability of the leaf oil of this species. Indeed, three clusters were distinguished on the basis of the α‐pinene, α‐terpinyl acetate, β‐phellandrene, and germacrene D contents. In most oil samples, α‐pinene (30.2–76.7%) was the major compound, associated with β‐phellandrene (up to 22.5%) and α‐terpinyl acetate (up to 13.4%). However, five out of the 50 samples exhibited an atypical composition characterized by the predominance of germacrene D (16.7–22.7%), α‐pinene (15.8–20.4%), and α‐terpinyl acetate (6.1–22.6%).  相似文献   

2.
The chemical composition of 48 leaf oil samples isolated from individual plants of Cleistopholis patens (Benth .) Engl. et Diels harvested in four Ivoirian forests was investigated by GC‐FID (determination of retention indices), GC/MS, and 13C‐NMR analyses. The main components identified were β‐pinene (traces–59.1%), sabinene (traces–54.2%), (E)‐β‐caryophyllene (0.3–39.3%), linalool (0.1–38.5%), (E)‐β‐ocimene (0.1–33.2%), germacrene D (0.0–33.1%), α‐pinene (0.1–32.3%), and germacrene B (0–21.2%). The 48 oil compositions were submitted to hierarchical clustering and principal components analyses, which allowed the distinction of three groups within the oil samples. The oil composition of the major group (Group I, 33 samples) was dominated by (E)‐β‐caryophyllene and linalool. The oils of Group II (eight samples) contained mainly β‐pinene and α‐pinene, while those of Group III (seven samples) were dominated by sabinene, limonene, and β‐phellandrene. Moreover, the compositions of the Ivoirian C. patens leaf oils differed from those of Nigerian and Cameroonian origins.  相似文献   

3.
Eight propolis samples from Croatia were analyzed in detail, to study the headspace, volatiles, anti‐Varroa‐treatment residue, phenolics, and antioxidant properties. The samples exhibited high qualitative/quantitative variability of the chemical profiles, total phenolic content (1,589.3–14,398.3 mg GAE (gallic acid equivalent)/l EtOH extract), and antioxidant activity (11.1–133.5 mmol Fe2+/l extract and 6.2–65.3 mmol TEAC (Trolox® equivalent antioxidant capacity)/l extract). The main phenolics quantified by HPLC‐DAD at 280 and 360 nm were vanillin, p‐coumaric acid, ferulic acid, chrysin, galangin, and caffeic acid phenethyl ester. The major compounds identified by headspace solid‐phase microextraction (HS‐SPME), simultaneous distillation extraction (SDE), and subsequent GC‐FID and GC/MS analyses were α‐eudesmol (up to 19.9%), β‐eudesmol (up to 12.6%), γ‐eudesmol (up to 10.5%), benzyl benzoate (up to 28.5%), and 4‐vinyl‐2‐methoxyphenol (up to 18.1%). Vanillin was determined as minor constituent by SDE/GC‐FID/MS and HPLC‐DAD. The identified acaricide residue thymol was ca. three times more abundant by HS‐SPME/GC‐FID/MS than by SDE/GC‐FID/MS and was not detected by HPLC‐DAD.  相似文献   

4.
The present study is focused on the antioxidant capacity and chemical profiling of eight Croatian Satureja montana L. honey samples. Among the 20 compounds obtained by headspace solid‐phase microextraction (HS‐SPME) and identified by GC‐FID and GC/MS analyses, hotrienol was predominant (75.9–81.7%). The honey matrix volatile/semivolatile profile was investigated by ultrasonic solvent extraction (USE) followed by GC‐FID and GC/MS analyses. The major compounds identified by this latter method were the sinapic‐acid derivatives methyl syringate (36.2–72.8%) and syringaldehyde (2.2–43.1%). Direct, targeted HPLC‐DAD analyses of the native honey samples revealed the presence of methyl syringate (7.10–39.60 mg/kg) and syringic acid (0.10–1.70 mg/kg). In addition, the total phenolic content of the samples was determined by the Folin? Ciocalteu assay (311.0–465.9 mg GAE/kg), and the antioxidant capacity was evaluated by the DPPH radical‐scavenging activity (0.5–1.0 mmol TEAC/kg) and the ferric reducing antioxidant power (2.5–5.1 mmol Fe2+/kg).  相似文献   

5.
The composition of 109 samples of essential oil isolated from the needles of Juniperus communis ssp. alpina growing wild in Corsica was investigated by GC (in combination with retention indices), GC/MS, and 13C‐NMR. Forty‐four compounds accounting for 86.7–96.7% of the oil were identified. The oils consisted mainly of monoterpene hydrocarbons, in particular, limonene (9.2–53.9%), β‐phellandrene (3.7–25.2%), α‐pinene (1.4–33.7%), and sabinene (0.1–33.6%). The 109 oil compositions were submitted to k‐means partitioning and principal component analysis, which allowed the distinction of two groups within the oil samples. The composition of the major group (92% of the samples) was dominated by limonene and β‐phellandrene, while the second group contained mainly sabinene beside limonene and β‐phellandrene.  相似文献   

6.
The chemical composition of 44 leaf oil samples of Laggera pterodonta (DC.) Sch.Bip. ex Oliv. (Asteraceae) from Côte d'Ivoire was investigated, using combination of chromatographic (GC‐FID) and spectroscopic (GC/MS, 13C‐NMR) techniques. Two oil samples chosen according to their chromatographic profiles were submitted to column chromatography and all fractions of CC were analyzed by GC‐FID, GC/MS and 13C‐NMR. In total, 83 components accounting for 96.5 to 99.4 % of the whole chemical composition were identified. Significant variations were observed within terpene classes: monoterpene hydrocarbons (0.4–22.7 %), oxygenated monoterpenes (32.9–54.9 %), sesquiterpene hydrocarbons (18.6–38.3 %) and oxygenated sesquiterpenes (3.5–38.4 %). Thus, the 44 compositions were subjected to hierarchical cluster analysis (HCA) and principal component analysis (PCA). Two groups were differentiated according to their composition. All the samples contained 2,5‐dimethoxy‐p‐cymene, α‐humulene and (E)‐β‐caryophyllene among the main components. Other components were present at appreciable contents and allowed differentiation of two groups: sabinene and germacrene D for Group I; 10‐epiγ‐eudesmol and eudesm‐7(11)‐en‐4α‐ol for Group II. All the samples collected in Eastern Côte d'Ivoire constituted Group I, while samples collected in the Central area of the country constituted Group II.  相似文献   

7.
The essential‐oil composition of 60 individual trees of Juniperus phoenicea L. from four Tunisian populations in three different periods were investigated by GC and GC/MS analyses. 59 Compounds were identified in the oils, and a relatively high variation in their contents was found. All the oils were dominated by the terpenic hydrocarbon fraction, and the main component was α‐pinene (20.28–40.86%). The results of the oil compositions were processed by hierarchical clustering and principal component analysis (PCA) allowing establishing four groups of essential‐oils differentiated by one compound or more. Pattern of geographic variation in essential‐oil composition indicated that individuals from the continental site (Makthar) were clearly distinguished from those from littoral localities (Tabarka, Hawaria, and Rimel).  相似文献   

8.
The essential oils of Daucus carota L. (Apiaceae) seeds sampled from ten wild populations spread over northern Tunisia were characterized by GC‐FID and GC/MS analyses. In total, 36 compounds were identified in the D. carota seed essential oils, with a predominance of sesquiterpene hydrocarbons in most samples (22.63–89.93% of the total oil composition). The main volatile compounds identified were β‐bisabolene (mean content of 39.33%), sabinene (8.53%), geranyl acetate (7.12%), and elemicin (6.26%). The volatile composition varied significantly across the populations, even for oils of populations harvested in similar areas. The chemometric principal component analysis and the hierarchical clustering identified four groups, each corresponding to a composition‐specific chemotype. The in vitro antimicrobial activity of the isolated essential oils was preliminarily evaluated, using the disk‐diffusion method, against one Gram‐positive (Staphylococcus aureus) and two Gram‐negative bacteria (Escherichia coli and Salmonella typhimurium), as well as against a pathogenic yeast (Candida albicans). All tested essential oils exhibited interesting antibacterial and antifungal activities against the assayed microorganisms.  相似文献   

9.
The chemical composition and seasonal variation throughout one year of the essential oils from leaves of Baccharis microdonta and B. elaeagnoides, collected in Campos do Jordão, SP, were investigated. The composition of the latter species has been described for the first time. By GC (RI) and GC/MS analysis, 43 compounds were identified, and a predominance of oxygenated sesquiterpene derivatives was found in both species. The main components of the B. microdonta oils were elemol ( 31 ; 11.7–30.6%), spathulenol ( 34 ; 4.7–9.1%), β‐caryophyllene ( 19 ; 3.7–6.2%), and germacrene D ( 24 ; 2.9–12.2%), and those of the B. elaeagnoides oils were 34 (10.1–21.5%), viridiflorol ( 35 ; 3.6–18.4%), 24 (0.9–13.8%), and 19 (3.5–9.4%). The identified compounds were grouped according to their respective C‐skeletons, and the percentages of occurrence of the C‐skeletons in the essential oils of leaves collected in the four seasons allowed identifying the preferential accumulation of different types of C‐skeletons as well as the seasonal variation of the biosynthetic routes over the studied period.  相似文献   

10.
The chemical compositions of 20 Algerian Daucus gracilis essential oils were investigated using GC‐FID, GC/MS, and NMR analyses. Altogether, 47 compounds were identified, accounting for 90 – 99% of the total oil compositions. The main components were linalool ( 18 ; 12.5 – 22.6%), 2‐methylbutyl 2‐methylbutyrate ( 20 ; 9.2 – 20.2%), 2‐methylbutyl isobutyrate ( 10 ; 4.2 – 12.2%), ammimajane ( 47 ; 2.6 – 37.1%), (E)‐β‐ocimene ( 15 ; 0.2 – 12.8%) and 3‐methylbutyl isovalerate ( 19 ; 3.3 – 9.6%). The chemical composition of the essential oils obtained from separate organs was also studied. GC and GC/MS analysis of D. gracilis leaves and flowers allowed identifying 47 compounds, amounting to 92.3% and 94.1% of total oil composition, respectively. GC and GC/MS analysis of D. gracilis leaf and flower oils allowed identifying linalool (22.7%), 2‐methylbutyl 2‐methylbutyrate (18.9%), 2‐methylbutyl isovalerate (13.6%), ammimajane (10.4%), 3‐methylbutyl isovalerate (10.3%), (E)‐β‐ocimene (8.4%) and isopentyl 2‐methylbutyrate (8.1%) as main components. The chemical variability of the Algerian oil samples was studied using statistical analysis, which allowed the discrimination of three main Groups. A direct correlation between the altitudes, nature of soils and the chemical compositions of the D. gracilis essential oils was evidenced.  相似文献   

11.
The volatile profiles of rare Malus domestica Borkh . honey were investigated for the first time. Two representative samples from Poland (sample I) and Spain (sample II) were selected by pollen analysis (44–45% of Malus spp. pollen) and investigated by GC/FID/MS after headspace solid‐phase microextraction (HS‐SPME) and ultrasonic solvent extraction (USE). The apple honey is characterized by high percentage of shikimic acid‐pathway derivatives, as well as terpenes, norisoprenoids, and some other compounds such as coumaran and methyl 1H‐indole‐3‐acetate. The main compounds of the honey headspace were (sample I; sample II): benzaldehyde (9.4%; 32.1%), benzyl alcohol (0.3%; 14.4%), hotrienol (26.0%, 6.2%), and lilac aldehyde isomers (26.3%; 1.7%), but only Spanish sample contained car‐2‐en‐4‐one (10.2%). CH2Cl2 and pentane/Et2O 1 : 2 (v/v) were used for USE. The most relevant compounds identified in the extracts were: benzaldehyde (0.9–3.9%), benzoic acid (2.0–11.2%), terpendiol I (0.3–7.4%), coumaran (0.0–2.8%), 2‐phenylacetic acid (2.0–26.4%), methyl syringate (3.9–13.1%), vomifoliol (5.0–31.8%), and methyl 1H‐indole‐3‐acetate (1.9–10.2%). Apple honey contained also benzyl alcohol, 2‐phenylethanol, (E)‐cinnamaldehyde, (E)‐cinnamyl alcohol, eugenol, vanillin, and linalool that have been found previously in apple flowers, thus disclosing similarity of both volatile profiles.  相似文献   

12.
The chemical composition of the essential oil (LEO) and its volatile fractions (V1–V10) collected during the hydrodistillation process every 15 min from the fresh leaves of I. viscosa (L.), growing in Tunisia, were analyzed by GC‐FID and GC/MS. Eighty‐two compounds, representing 90.9–99.4 % of the total samples, were identified. The crude essential oil (LEO) and its fractions (V1–V10) were characterized by the presence of a high amount of oxygenated sesquiterpenes (82.7–95.8 %). Isocostic acid ( 1 ) was found to be the most abundant component (37.4–83.9 %) and was isolated from the same essential oil over silica gel column chromatography and identified by spectroscopic methods (1H, 13C, DEPT 135 NMR and EI‐MS) and by comparison with literature data. Furthermore, the fresh leaves essential oil (LEO), its volatile fractions (V1–V10) as well as compound 1 were screened for their antibacterial, antityrosinase, anticholinesterase and anti‐5‐lipoxygenase activities. It was found that the isolated compound 1 exhibited an interesting antibacterial activity against Staphylococcus aureus ATCC 25923 (MIC=32 μg/mL) and Enterococcus faecalis ATCC 29212 (MIC=32 μg/mL) and the highest antityrosinase activity (IC50=13.82±0.87 μg/mL). Compound 1 was also found to be able to strongly inhibit 5‐lipoxygenase with an IC50 value of 59.21±0.85 μg/mL. The bioactivity and drug likeness scores of compound 1 were calculated using Molinspiration software and interpreted, and the structure‐activity relationship (SAR) was discussed with the help of molecular docking analysis.  相似文献   

13.
The chemical diversity of Zanthoxylum zanthoxyloides growing wild in Senegal was studied according to volatile compound classes, plant organs and sample locations. The composition of fruit essential oil was investigated using an original targeted approach based on the combination of gas chromatography (GC) and liquid chromatography (LC) both coupled with mass spectrometry (MS). The volatile composition of Zzanthoxyloides fruits exhibited relative high amounts of hydrocarbon monoterpenes (24.3 – 55.8%) and non‐terpenic oxygenated compounds (34.5 – 63.1%). The main components were (E)‐β‐ocimene (12.1 – 39%), octyl acetate (11.6 – 21.8%) and decanol (9.7 – 15.4%). The GC and GC/MS profiling of fruit essential oils showed a chemical variability according to geographical locations of plant material. The LC/MS/MS analysis of fruit oils allowed the detection of seven coumarins in trace content. The chemical composition of fruit essential oils was compared with volatile fractions of leaves and barks (root and trunk) from the same plant station. Hexadecanoic acid, germacrene D and decanal were identified as the major constituents of leaves whereas the barks (root and trunk) were dominated by pellitorine (85.8% and 57%, respectively), an atypic linear compound with amide group. The fruit essential oil exhibited interesting antimicrobial activities against Staphylococcus aureus and Candida albicans, particularly the alcohol fraction of the oil.  相似文献   

14.
The essential‐oil composition of six native populations of Sideritis scardica from Bulgaria was studied by GC‐FID and GC/MS analyses. Altogether, 37 components, representing 73.1 to 79.2% of the total oil content were identified. Among them, α‐pinene (4.4–25.1%), β‐pinene (2.8–18.0%), oct‐1‐en‐3‐ol (2.3–8.0%), phenylacetaldehyde (0.5–9.5%), β‐bisabolene (1.3–11.0%), benzyl benzoate (1.1–14.3%), and m‐camphorene ( 1 ; 0.3–12.4%) were the main compounds. All samples were characterized by low contents of oxygenated mono‐ and sesquiterpenes (≤1.6 and 2.3%, resp.). Principal component analysis (PCA) and cluster analysis (CA) showed a significant variability in the chemical composition of the studied samples as well as a correlation between the oil profiles and the ecological conditions of the natural habitats of S. scardica.  相似文献   

15.
The variation of the essential‐oil composition among ten wild populations of Stachys lavandulifolia Vahl (Lamiaceae), collected from different geographical regions of Iran, was assessed by GC‐FID and GC/MS analyses, and their intraspecific chemical variability was determined. Altogether, 49 compounds were identified in the oils, and a relatively high variation in their contents was found. The major compounds of the essential oils were myrcene (0.0–26.2%), limonene (0.0–24.5%), germacrene D (4.2–19.3%), bicyclogermacrene (1.6–18.0%), δ‐cadinene (6.5–16.0%), pulegone (0.0–15.1%), (Z)‐hex‐3‐enyl tiglate (0.0–15.1%), (E)‐caryophyllene (0.0–12.9), α‐zingiberene (0.2–12.2%), and spathulenol (1.6–11.1%). For the determination of the chemotypes and the chemical variability, the essential‐oil components were subjected to cluster analysis (CA). The five different chemotypes characterized were Chemotype I (germacrene D/bicyclogermacrene), Chemotype II (germacrene D/spathulenol), Chemotype III (limonene/δ‐cadinene), Chemotype IV (pulegone), and Chemotype V (α‐zingiberene). The high chemical variation among the populations according to their geographical and bioclimatic distribution imposes that conservation strategies of populations should be made appropriately, taking into account these factors. The in situ and ex situ conservation strategies should concern all populations representing the different chemotypes.  相似文献   

16.
The chemical compositions of 25 Corsican Limbarda crithmoides ssp. longifolia essential oils were investigated for the first time using GC‐FID, GC/MS, and NMR analyses. Altogether, 65 compounds were identified, accounting for 90.0–99.3% of the total oil compositions. The main components were p‐cymene ( 1 ; 15.1–34.6%), 3‐methoxy‐p‐cymenene ( 4 ; 11.8–28.5%), 2,5‐dimethoxy‐p‐cymenene ( 5 ; 5.9–16.4%), thymol methyl ether ( 6 ; 1.3–14.9%), α‐phellandrene ( 2 ; 0.9–11.9%), and α‐pinene ( 3 ; 0.2–13.4%). The chemical variability of the Corsican oil samples was studied using multivariate statistical analysis, which allowed the discrimination of two main clusters. A direct correlation between the water salinities of the plant locations and the chemical compositions of the L. crithmoides essential oils was evidenced. Indeed, essential oils rich in 1 (30.4–34.6%) were found in samples growing in the wetlands of the southern oriental coast, which exhibit high salinity levels (24.4±0.2–33.9±0.2 ppt), and essential oils with lower contents of 1 (15.1–27.3%) were isolated form samples growing in the wetlands of northern Corsica, which exhibit lower salinity levels (10.90±0.20–15.47±0.15 ppt). The antioxidant potential of L. crithmoides essential oil was also investigated, by assessing the DPPH.‐ and ABTS.+‐scavenging activities and the reducing power of ferric ions, and was found to be interesting. Moreover, using bioassay‐guided fractionation of the essential oil, a higher antioxidant activity was obtained for the oxygenated fraction and both ester and alcohol subfractions.  相似文献   

17.
Hydrodistillation of the dried leaves of five species of the genus Eucalyptus L' Hér ., viz., E. dundasii Maiden , E. globulus Labill ., E. kitsoniana Maiden , E. leucoxylon F. Muell ., and E. populifolia Hook ., harvested from Jbel Abderrahman arboreta (region of Nabeul, northeast of Tunisia) in April 2006, afforded essential oils in yields varying from 0.9±0.3 to 3.8±0.6%, dependent on the species. E. globulus and E. Kitsoniana provided the highest and the lowest percentage of essential oil amongst the species examined, respectively. Analysis by GC (RI) and GC/MS allowed the identification of 127 compounds, representing 93.8 to 98.7% of the total oil composition. The contents of the different samples varied according to the species. The main components were 1,8‐cineole ( 2 ; 4.7–59.2%), followed by α‐pinene ( 1 ; 1.9–23.6%), trans‐pinocarveol ( 6 ; 3.5–21.6%), globulol ( 8 ; 4.3–12.8%), p‐cymene ( 3 ; 0.5–6.7%), α‐terpineol (1.5–4.5%), borneol (0.2–4.4%), pinocarvone (1.1–3.8%), aromadendrene (1.4–3.4%), isospathulenol (0.0–1.9%), fenchol ( 4 ; 0.1–2.5%), limonene (1.0–2.4%), epiglobulol (0.6–2.1%), viridiflorol ( 9 ; 0.8–1.8%), and spathulenol (0.1–1.6%). E. leucoxylon was the richest species in 2 . Principal component analysis (PCA) and hierarchical cluster analysis (HCA) separated the five Eucalyptus leaf essential oils into four groups, each constituting a chemotype.  相似文献   

18.
The chemical composition of the essential oils obtained by hydrodistillation from the aerial parts of Globularia cordifolia L., G. meridionalis (Podp.) O.Schwarz , and G. punctata Lapeyr . was characterized by GC‐FID and GC/MS analyses. Among the 33 identified compounds, the most abundant present in all investigated samples were oct‐1‐en‐3‐ol (2.9–47.0%), 6‐(1,5‐dimethylhex‐4‐enyl)‐3‐methylcyclohex‐2‐enone (8.2–40.9%), and fukinanolid (7.4–31.6%). Multivariate statistical analyses (PCA and HCA) of the hitherto studied Globularia volatile compounds confirmed to some extent the assumed phylogenetic relationships of the Globularia species studied, including the close relationship between the morphologically similar species G. cordifolia and G. meridionalis, but also evidenced several discrepancies in the current classification of Globularia species.  相似文献   

19.
Analysis by GC and GC/MS of the essential‐oil samples obtained from dry above‐ground parts of Hypericum rumeliacum Boiss . (collected in the flowering and fruit‐forming vegetative stages) allowed the identification of 212 components in total, comprising ≥97.8% of the total oil composition. In the flowering phase, the major identified volatile compounds were undecane (6.6%), dodecanal (10.8%), and germacrene D (14.1%), whereas α‐pinene (7.3%), β‐pinene (26.1%), (Z)‐β‐ocimene (8.5%), (E)‐β‐ocimene (10.2%), bicyclogermacrene (7.7%), and germacrene D (15.1%) were dominant in the fruit‐forming phase. Some of the minor constituents found in the studied oil samples (e.g., a homologous series of four 6‐alkyl‐5,6‐dihydro‐2H‐pyran‐2‐ones, i.e., massoia dodeca‐, trideca‐, tetradeca‐, and hexadecalactones) have a restricted occurrence in the Plant Kingdom, and their presence in Hypericum L. spp. has not been previously reported. The chemical compositions of the herein studied additional 34 oils obtained from selected Hypericum taxa were compared using multivariate statistical analysis (agglomerative hierarchical cluster analysis and principal component analysis). The results of these statistical analyses could not be used to either confirm or discard the existence of different H. rumeliacum chemotypes. However, they have implied that the volatile profile of this plant species is determined by the stage of its phenological development.  相似文献   

20.
This study was performed to determine the chemical composition, antioxidant and cytotoxic effects of essential oils extracted from the aerial parts of fresh (F‐PSEO) and air‐dried (D‐PSEO) Pallenis spinosa. The composition of the oils was analyzed by gas chromatography (GC) and GC/mass spectrometry, the antioxidant activity by free radical scavenging and metal chelating assays, and their cytotoxicity by a flow cytometry analysis. The primary components in both oils were sesquiterpene hydrocarbons and oxygentated sesquiterpenes. F‐PSEO contained 36 different compounds; α‐cadinol (16.48%), germacra‐1(10),5‐diene‐3,4‐diol (14.45%), γ‐cadinene (12.03%), and α‐muurolol (9.89%) were the principal components. D‐PSEO contained 53 molecules; α‐cadinol (19.26%), δ‐cadinene (13.93%), α‐muurolol (12.88%), and germacra‐1(10),5‐diene‐3,4‐diol (8.41%) constituted the highest percentages. Although both oils exhibited a weak radical scavenging and chelating activity, compared to α‐tocopherol and ascorbic acid, D‐PSEO showed a 2‐fold greater antioxidant activity than F‐PSEO. Furthermore, low doses of F‐PSEO were able to inhibit the growth of leukemic (HL‐60, K562, and Jurkat) and solid tumor cells (MCF‐7, HepG2, HT‐1080, and Caco‐2) with an IC50 range of 0.25 – 0.66 μg/ml and 0.50 – 2.35 μg/ml, respectively. F‐PSEO showed a ca. 2 – 3‐fold stronger cytotoxicity against the tested cells than D‐PSEO. The potent growth inhibitory effect of the plant essential oil encourages further studies to characterize the molecular mechanisms of its cytotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号