首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
β‐adrenoceptors are the common pharmacological targets for the treatment of cardiovascular diseases and asthma. Genetic modifications of β‐adrenergic system in engineered mice affect their lifespan. Here, we tested whether genes encoding for key components of the β‐adrenergic signaling pathway are associated with human longevity. We performed a 10‐year follow‐up study of the Chinese longitudinal healthy longevity survey. The Han Chinese population in this study consisted of 963 long‐lived and 1028 geography‐matched young individuals. Sixteen SNPs from ADRB1, ADRB2, ADCY5, ADCY6, and MAPK1 were selected and genotyped. Two SNPs, rs1042718 (C/A) and rs1042719 (G/C), of ADRB2 in linkage disequilibrium (D' = 1.0; r2 = 0.67) were found to be associated with enhanced longevity in men in two geographically isolated populations. Bonferroni‐corrected P‐values in a combined analysis were 0.00053–0.010. Men with haplotype A‐C showed an increased probability to become centenarians (the frequency of A‐C in long‐lived and young individuals are 0.332 and 0.250, respectively, OR = 1.49, CI 95% = 1.17–1.88, = 0.0007), in contrast to those with haplotype C‐G (the frequency of C‐G in long‐lived and young individuals are 0.523 and 0.635, respectively, OR = 0.63, CI 95% = 0.51–0.78, = 0.000018). The permuted P‐values were 0.00005 and 0.0009, respectively. ADRB2 encodes the β2‐adrenergic receptor; the haplotype A‐C markedly reduced its translational efficiency compared with C‐G (= 0.002) in transfected HEK293 cells. Thus, our data indicate that enhanced production of β2‐adrenergic receptors caused by genetic variants is inversely associated with human lifespan.  相似文献   

2.
A new high‐performance liquid chromatography (HPLC) method was developed for the enantiomeric resolution of five β‐adrenergic blockers on a Chiralpak IC column (250 mm × 4.6 mm, 5.0 μm particle size) in normal phase mode. The mobile phase used was n‐hexane‐ethanol‐diethylamine in different proportions at the flow rate of 1.0 mL/min with the column temperature of 25°C using a UV detector at 230 nm. The influences of base additives and alcohol modifiers were evaluated and optimized. The maximum resolution values for bevantolol, propranolol carteolol, esmolol, and metoprolol were 4.80, 2.77, 2.09, 2.30, and 1.11, respectively. To gain a better understanding of the interaction between chiral stationary phase and analyte enantiomers, the molecular docking of chiral stationary phase with five pairs of enantiomer was carried out using AutoDock molecular docking technique. By simulation studies, the mechanism of chiral recognition was determined. According to the results, hydrogen bond interactions and π‐π interactions were the chief interactions for the chiral recognition.  相似文献   

3.
The effects of β adrenergic receptors (β‐ARs) and p38 mitogen‐activated protein kinases (MAPK) pathways on cardiosphere‐derived cells (CDCs) are largely unknown. This study aimed to investigate the roles of β‐ARs and p38MAPK pathways on the proliferation, apoptosis, and differentiation capacity of CDCs. The CDCs were treated with β1‐AR blocker (Met group), β2‐AR antagonist (ICI group), and p38MAPK inhibitor (SB group), non‐selective β‐AR blocker (PRO group), and β‐AR agonist (ISO group). The viability, apoptotic rate and differentiation status of CDCs were determined by MST‐1 assay, flow cytometery, and Western blot, respectively. The CDCs viability significantly reduced in ICI group (all P < 0.05), and SB group had a significant high viability after 48 h treatment (P < 0.05). Compared with control group, all treated groups had a low apoptotic rate. After treatment for 72 h, ISO treatment elevated the expression of Nkx2.5, and could partially or fully attenuate the inhibitory effects of β‐AR antagonists and/or p38MAPK inhibitor. A similar overall trend of protein expression levels among all groups could be observed between protein pairs of cTnT and β1‐AR as well as c‐Kit and β2‐AR, respectively. These results suggested that β‐ARs and p38MAPK signaling pathways play crucial roles in the proliferation and differentiation of CDCs. Our findings should be helpful for better understanding the molecular mechanism underlying the physiological processes of CDCs.  相似文献   

4.
Secretory vesicle swelling is required for vesicular discharge during cell secretion. The Gαo‐mediated water channel aquaporin‐6 (AQP‐6) involvement in synaptic vesicle (SV) swelling in neurons has previously been reported. Studies demonstrate that in the presence of guanosine triphosphate (GTP), mastoparan, an amphiphilic tetradecapeptide from wasp venom, activates Go protein GTPase, and stimulates SV swelling. Stimulation of G proteins is believed to occur via insertion of mastoparan into the phospholipid membrane to form a highly structured α‐helix that resembles the intracellular loops of G protein‐coupled adrenergic receptors. Consequently, the presence of adrenoceptors and the presence of an endogenous β‐adrenergic agonist at the SV membrane is suggested. Immunoblot analysis of SV using β‐adrenergic receptor antibody, and vesicle swelling experiments using β‐adrenergic agonists and antagonists, demonstrate the presence of functional β‐adrenergic receptors at the SV membrane. Since a recent study shows vH+‐ATPase to be upstream of AQP‐6 in the pathway leading from Gαo‐mediated swelling of SV, participation of an endogenous β‐adrenergic agonist, in the binding and stimulation of its receptor to initiate the swelling cascade is demonstrated.  相似文献   

5.
Preparative enantioseparation of four β‐substituted‐2‐phenylpropionic acids was performed by countercurrent chromatography with substituted β‐cyclodextrin as chiral selectors. The two‐phase solvent system was composed of n‐hexane‐ethyl acetate‐0.10 mol L‐1 of phosphate buffer solution at pH 2.67 containing 0.10 mol L‐1 of hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD) or sulfobutylether‐β‐cyclodextrin (SBE‐β‐CD). The influence factors, including the type of substituted β‐cyclodextrin, composition of organic phase, concentration of chiral selector, pH value of the aqueous phase, and equilibrium temperature were optimized by enantioselective liquid–liquid extraction. Under the optimum separation conditions, 100 mg of 2‐phenylbutyric acid, 100 mg of tropic acid, and 50 mg of 2,3‐diphenylpropionic acid were successfully enantioseparated by high‐speed countercurrent chromatography, and the recovery of the (±)‐enantiomers was in the range of 90–91% for (±)‐2‐phenylbutyric acid, 91–92% for (±)‐tropic acid, 85–87% for (±)‐2,3‐diphenylpropionic acid with purity of over 97%, 96%, and 98%, respectively. The formation of 1:1 stoichiometric inclusion complex of β‐substituted‐2‐phenylpropionic acids with HP‐β‐CD was determined by UV spectrophotometry and the inclusion constants were calculated by a modified Benesi‐Hildebrand equation. The results showed that different enantioselectivities among different racemates were mainly caused by different enantiorecognition between each enantiomer and HP‐β‐CD, while it might be partially caused by different inclusion capacity between racemic solutes and HP‐β‐CD. Chirality 27:795–801, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
Nine β‐aminoketones were synthesized via Mannich reaction when benzaldehyde was condensed with some primary amines and acetophenone. The purified compounds were identified by using spectroscopic methods. The enantiomeric separation of these derivatives was carried out by high‐performance liquid chromatography (HPLC) using several coated and immobilized polysaccharide stationary phases, namely, Chiralcel® OD‐H, Chiralcel® OD, Chiralcel® OJ, Chiralpak® AD, Chiralpak® IA, and Chiralpak® IB using different mobile phases composed of n‐hexane and alcohol mixed in various ratios or pure ethanol or isopropanol. The retention behavior and selectivity of these chiral stationary phases were examined in isocratic normal phase mode. The results indicate that cellulose derivatives have higher enantioselectivity than amylose derivatives for the separation of racemic β‐amino ketones. Chirality 27:332–338, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
Introduction – Bioautographic assays using TLC play an important role in the search for active compounds from plants. A TLC assay has previously been established for the detection of β‐glucosidase inhibitors but not for α‐glucosidase. Nonetheless, α‐glucosidase inhibition is an important target for therapeutic agents against of type 2 diabetes and anti‐viral infections. Objective – To develop a TLC bioautographic method to detect α‐ and β‐glucosidase inhibitors in plant extracts. Methodology – The enzymes α‐ and β‐d ‐glucosidase were dissolved in sodium acetate buffer. After migration of the samples, the TLC plate was sprayed with enzyme solution and incubated at room temperature for 60 min in the case of α‐d ‐glucosidase, and 37°C for 20 min in the case of β‐d ‐glucosidase. For detection of the active enzyme, solutions of 2‐naphthyl‐α‐D‐glucopyranoside or 2‐naphthyl‐β‐D‐glucopyranoside and Fast Blue Salt were mixed at a ratio of 1 : 1 (for α‐d ‐glucosidase) or 1 : 4 (for β‐d ‐glucosidase) and sprayed onto the plate to give a purple background colouration after 2–5 min. Results – Enzyme inhibitors were visualised as white spots on the TLC plates. Conduritol B epoxide inhibited α‐d ‐glucosidase and β‐d ‐glucosidase down to 0.1 µg. Methanol extracts of Tussilago farfara and Urtica dioica after migration on TLC gave enzymatic inhibition when applied in amounts of 100 µg for α‐glucosidase and 50 µg for β‐glucosidase. Conclusion – The screening test was able to detect inhibition of α‐ and β‐glucosidases by pure reference substances and by compounds present in complex matrices, such as plant extracts. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The conformation of oligomers of β‐amino acids of the general type Ac‐[β‐Xaa]n‐NHMe (β‐Xaa = β‐Ala, β‐Aib, and β‐Abu; n = 1–4) was systematically examined at different levels of ab initio molecular orbital theory (HF/6‐31G*, HF/3‐21G). The solvent influence was considered employing two quantum‐mechanical self‐consistent reaction field models. The results show a wide variety of possibilities for the formation of characteristic elements of secondary structure in β‐peptides. Most of them can be derived from the monomer units of blocked β‐peptides with n = 1. The stability and geometries of the β‐peptide structures are considerably influenced by the side‐chain positions, by the configurations at the Cα‐ and Cβ‐atoms of the β‐amino acid constituents, and especially by environmental effects. Structure peculiarities of β‐peptides, in particular those of various helix alternatives, are discussed in relation to typical elements of secondary structure in α‐peptides. © 1999 John Wiley & Sons, Inc. Biopoly 50: 167–184, 1999  相似文献   

9.
A biocatalytic route for the synthesis of a potential β‐blocker, (S)‐moprolol is reported here. Enantiopure synthesis of moprolol is mainly dependent on the chiral intermediate, 3‐(2‐methoxyphenoxy)‐propane‐1,2‐diol. Various commercial lipases were screened for the enantioselective resolution of (RS)‐3‐(2‐methoxyphenoxy)propane‐1,2‐diol to produce the desired enantiomer. Among them, Aspergillus niger lipase (ANL) was selected on the basis of both stereo‐ and regioselectivity. The optimized values of various reaction parameters were determined such as enzyme (15 mg/mL), substrate concentration (10 mM), organic solvent (toluene), reaction temperature (30 °C), and time (18 h).The optimized conditions led to achieving >49% yield with high enantiomeric excess of (S)‐3‐(2‐methoxyphenoxy)propane‐1,2‐diol. The lipase‐mediated catalysis showed regioselective acylation with dual stereoselectivity. Further, the enantiopure intermediate was used for the synthesis of (S)‐moprolol, which afforded the desired β‐blocker. Chirality 28:313–318, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

10.
Metallo‐β‐lactamases (MBLs) are some of the best known β‐lactamases produced by common Gram‐positive and Gram‐negative pathogens and are crucial factors in the rise of bacterial resistance against β‐lactam antibiotics. Although many types of β‐lactamase inhibitors have been successfully developed and used in clinical settings, no MBL inhibitors have been identified to date. Nitrocefin, checkerboard and time‐kill assays were used to examine the enzyme behaviour in vitro. Molecular docking calculation, molecular dynamics simulation, calculation of the binding free energy and ligand‐residue interaction decomposition were used for mechanistic research. The behaviour of the enzymes in vivo was investigated by a mouse infection experiment. We showed that theaflavin‐3,3´‐digallate (TFDG), a natural compound lacking antibacterial activities, can inhibit the hydrolysis of MBLs. In the checkerboard and time‐kill assays, we observed a synergistic effect of TFDG with β‐lactam antibiotics against methicillin‐resistant Staphylococcus aureus BAA1717. Molecular dynamics simulations were used to identify the mechanism of the inhibition of MBLs by TFDG, and we observed that the hydrolysis activity of the MBLs was restricted by the binding of TFDG to Gln242 and Ser369. Furthermore, the combination of TFDG with β‐lactam antibiotics showed effective protection in a mouse Staphylococcus aureus pneumonia model. These findings suggest that TFDG can effectively inhibit the hydrolysis activity of MBLs and enhance the antibacterial activity of β‐lactam antibiotics against pathogens in vitro and in vivo.  相似文献   

11.
Stem‐cell antigen 1–positive (Sca‐1+) cardiac stem cells (CSCs), a vital kind of CSCs in humans, promote cardiac repair in vivo and can differentiate to cardiomyocytes with 5′‐azacytizine treatment in vitro. However, the underlying molecular mechanisms are unknown. β‐arrestin2 is an important scaffold protein and highly expressed in the heart. To explore the function of β‐arrestin2 in Sca‐1+ CSC differentiation, we used β‐arrestin2–knockout mice and overexpression strategies. Real‐time PCR revealed that β‐arrestin2 promoted 5′‐azacytizine‐induced Sca‐1+ CSC differentiation in vitro. Because the microRNA 155 (miR‐155) may regulate β‐arrestin2 expression, we detected its role and relationship with β‐arrestin2 and glycogen synthase kinase 3 (GSK3β), another probable target of miR‐155. Real‐time PCR revealed that miR‐155, inhibited by β‐arrestin2, impaired 5′‐azacytizine‐induced Sca‐1+ CSC differentiation. On luciferase report assay, miR‐155 could inhibit the activity of β‐arrestin2 and GSK3β, which suggests a loop pathway between miR‐155 and β‐arrestin2. Furthermore, β‐arrestin2‐knockout inhibited the activity of GSK3β. Akt, the upstream inhibitor of GSK3β, was inhibited in β‐arrestin2‐Knockout mice, so the activity of GSK3β was regulated by β‐arrestin2 not Akt. We transplanted Sca‐1+ CSCs from β‐arrestin2‐knockout mice to mice with myocardial infarction and found similar protective functions as in wild‐type mice but impaired arterial elastance. Furthermore, low level of β‐arrestin2 agreed with decreased phosphorylation of AKT and increased phophorylation of GSK3β, similar to in vitro findings. The β‐arrestin2/miR‐155/GSK3β pathway may be a new mechanism with implications for treatment of heart disease.  相似文献   

12.
13.
The liquid chromatographic separation of permethrin enantiomers on chiral β‐cyclodextrin‐based stationary phase has been investigated. All four enantiomers are obtained by using simple methanol and water mobile phase, under gradient mode. The method was optimized and validated. The relationship between temperature and chromatographic parameters: k′ (capacity factor), α (separation factor) and Rs (resolution factor) was studied. Van't Hoff's curves for each enantiomer were plotted for temperature range 288–318 K. It was noticed that the response factor ratio of permethrin isomers differ and calculated value is found to be 1.66 (cis/trans, for n = 5). This method has been used for determining permethrin enantiomer ratio for a few samples of working standards and one formulation. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
The Wnt/β‐catenin pathway has been implicated in leukemogenesis. We found β‐catenin abnormally accumulated in both human acute T cell leukemia Jurkat cells and human erythroleukemia HEL cells. β‐Catenin can be significantly down‐regulated by the Janus kinase 2 specific inhibitor AG490 in these two cells. AG490 also reduces the luciferase activity of a reporter plasmid driven by LEF/β‐catenin promoter. Similar results were observed in HEL cells infected with lentivirus containing shRNA against JAK2 gene. After treatment with 50 µM AG490 or shRNA, the mRNA expression levels of β‐catenin, APC, Axin, β‐Trcp, GSK3α, and GSK3β were up‐regulated within 12–16 h. However, only the protein levels of GSK3β and β‐Trcp were found to have increased relative to untreated cells. Knockdown experiments revealed that the AG490‐induced inhibition of β‐catenin can be attenuated by shRNA targeting β‐TrCP. Taken together; these results suggest that β‐Trcp plays a key role in the cross‐talk between JAK/STAT and Wnt/β‐catenin signaling in leukemia cells. J. Cell. Biochem. 111: 402–411, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
The β‐adrenergic receptors mediate several physiological processes including heart rate (β1), bronchodilation (β2), and lipolysis (β3). Therefore, selectivity is important for a possible therapeutic agent acting via these receptors. Aryloxypropanolamines are β‐receptor agonists or antagonists, depending on the aryl group and its substituents. We therefore hypothesized that fluorine substitution on the aromatic ring in this class could lead to significant biological effects because of the unique chemical characteristics of fluorine. Because the target compound has a chiral center, we set out to synthesize the two enantiomers so that effects of stereochemistry on biological activity could be evaluated. Syntheses of the enantiomers were performed starting with commercially available fluoronaphthalene and subsequent use of the chiral synthon (2R)‐ or (2S)‐glycidyl 3‐nitrobenzenesulfonate, depending on the desired enantiomer. High‐pressure liquid chromatography (HPLC) methods were used to characterize %ee. Each enantiomer was synthesized. They exhibited nanomolar binding activities on β‐adrenergic receptors. The (S)‐enantiomer was found to be up to 310 times more potent than the (R). It was also found to be about five‐fold more selective for β2‐ than for β1‐receptors. The current report demonstrates the importance of stereochemistry for the fluoroaromatic β‐receptor ligands. Chirality 11:144–148, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

16.
Canonical BMP and Wnt signaling pathways play critical roles in regulation of osteoblast function and bone formation. Recent studies demonstrate that BMP‐2 acts synergistically with β‐catenin to promote osteoblast differentiation. To determine the molecular mechanisms of the signaling cross‐talk between canonical BMP and Wnt signaling pathways, we have used primary osteoblasts and osteoblast precursor cell lines 2T3 and MC3T3‐E1 cells to investigate the effect of BMP‐2 on β‐catenin signaling. We found that BMP‐2 stimulates Lrp5 expression and inhibits the expression of β‐TrCP, the F‐box E3 ligase responsible for β‐catenin degradation and subsequently increases β‐catenin protein levels in osteoblasts. In vitro deletion of the β‐catenin gene inhibits osteoblast proliferation and alters osteoblast differentiation and reduces the responsiveness of osteoblasts to the BMP‐2 treatment. These findings suggest that BMP‐2 may regulate osteoblast function in part through modulation of the β‐catenin signaling. J. Cell. Biochem. 108: 896–905, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Zearalenone (ZEN) is a fusarotoxin converted predominantly into α‐zearalenol (α‐Zol) and β‐zearalenol (β‐Zol) by hepatic hydroxysteroid dehydrogenases. The feeding of naturally contaminated grains with ZEN was associated with hyperestrogenic and adverse effects on humans and animals. There is a lack of information on the attribution of the toxic effects of these toxins. One wonders if these effects are due to the parent molecule (ZEN) or to its major metabolites (α‐Zol and β‐Zol). Using human Caco‐2 cells, we looked for the molecular mechanisms of toxicity of ZEN, α‐Zol, and β‐Zol. Toxicity effects were studied by MTT viability assay and oxidative stress induction by measuring malondialdehyde (MDA) generation. To check whether the oxidative stress induction was associated to DNA lesions, we looked for DNA fragmentation by means of the Comet and the diphenylamine assays. To specify cell death pathway, we investigated caspase‐3 activation, confirmed by poly(ADP‐ribose) polymerase cleavage and by Bcl‐2 depletion. Our results clearly demonstrated that ZEN as well as its two metabolites presented variable toxic effects. They induced cell death and an increase in MDA generation. These effects were associated to DNA fragmentation as well as caspase‐3 activation. The observed toxic effects seem to be relieved by the metabolism of ZEN into α‐Zol and β‐Zol. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:233–243, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20284  相似文献   

18.
The increasing interest in click chemistry and its use to stabilize turn structures led us to compare the propensity for β‐turn stabilization of different analogs designed as mimics of the β‐turn structure found in tendamistat. The β‐turn conformation of linear β‐amino acid‐containing peptides and triazole‐cyclized analogs were compared to ‘conventional’ lactam‐ and disulfide‐bridged hexapeptide analogs. Their 3D structures and their propensity to fold in β‐turns in solution, and for those not structured in solution in the presence of α‐amylase, were analyzed by NMR spectroscopy and by restrained molecular dynamics with energy minimization. The linear tetrapeptide Ac‐Ser‐Trp‐Arg‐Tyr‐NH2 and both the amide bond‐cyclized, c[Pro‐Ser‐Trp‐Arg‐Tyr‐D ‐Ala] and the disulfide‐bridged, Ac‐c[Cys‐Ser‐Trp‐Arg‐Tyr‐Cys]‐NH2 hexapeptides adopt dominantly in solution a β‐turn conformation closely related to the one observed in tendamistat. On the contrary, the β‐amino acid‐containing peptides such as Ac‐(R)‐β3‐hSer‐(S)‐Trp‐(S)‐β3‐hArg‐(S)‐β3‐hTyr‐NH2, and the triazole cyclic peptide, c[Lys‐Ser‐Trp‐Arg‐Tyr‐βtA]‐NH2, both specifically designed to mimic this β‐turn, do not adopt stable structures in solution and do not show any characteristics of β‐turn conformation. However, these unstructured peptides specifically interact in the active site of α‐amylase, as shown by TrNOESY and saturation transfer difference NMR experiments performed in the presence of the enzyme, and are displaced by acarbose, a specific α‐amylase inhibitor. Thus, in contrast to amide‐cyclized or disulfide‐bridged hexapeptides, β‐amino acid‐containing peptides and click‐cyclized peptides may not be regarded as β‐turn stabilizers, but can be considered as potential β‐turn inducers. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
Selective agonist of nonopioid β‐endorphin receptor decapeptide immunorphin (SLTCLVKGFY) was labeled with tritium (the specific activity of 24 Ci/mmol). [3H]Immunorphin was found to bind to nonopioid β‐endorphin receptor of mouse peritoneal macrophages (Kd = 2.0 ± 0.1 nM ). The [3H]immunorphin specific binding with macrophages was inhibited by unlabeled β‐endorphin (Ki = 2.9 ± 0.2 nM ) and was not inhibited by unlabeled naloxone, α‐endorphin, γ‐endorphin and [Met5]enkephalin (Ki > 10 µM ). Thirty fragments of β‐endorphin have been synthesized and their ability to inhibit the [3H]immunorphin specific binding to macrophages was studied. Unlabeled fragment 12–19 (TPLVTLFK, the author's name of the peptide octarphin) was found to be the shortest peptide possessing practically the same inhibitory activity as β‐endorphin (Ki = 3.1 ± 0.3 nM ). The peptide octarphin was labeled with tritium (the specific activity of 28 Ci/mmol). [3H]Octarphin was found to bind to macrophages with high affinity (Kd = 2.3 ± 0.2 nM ). The specific binding of [3H]octarphin was inhibited by unlabeled immunorphin and β‐endorphin (Ki = 2.4 ± 0.2 and 2.7 ± 0.2 nM , respectively). Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
β‐dystroglycan (β‐DG) is a widely expressed transmembrane protein that plays important roles in connecting the extracellular matrix to the cytoskeleton, and thereby contributing to plasma membrane integrity and signal transduction. We previously observed nuclear localization of β‐DG in cultured cell lines, implying the existence of a nuclear targeting mechanism that directs it to the nucleus instead of the plasma membrane. In this study, we delineate the nuclear import pathway of β‐DG, characterizing a functional nuclear localization signal (NLS) in the β‐DG cytoplasmic domain, within amino acids 776–782. The NLS either alone or in the context of the whole β‐DG protein was able to target the heterologous GFP protein to the nucleus, with site‐directed mutagenesis indicating that amino acids R779 and K780 are critical for NLS functionality. The nuclear transport molecules Importin (Imp)α and Impβ bound with high affinity to the NLS of β‐DG and were found to be essential for NLS‐dependent nuclear import in an in vitro reconstituted nuclear transport assay; cotransfection experiments confirmed the dependence on Ran for nuclear accumulation. Intriguingly, experiments suggested that tyrosine phosphorylation of β‐DG may result in cytoplasmic retention, with Y892 playing a key role. β‐DG thus follows a conventional Impα/β‐dependent nuclear import pathway, with important implications for its potential function in the nucleus. J. Cell. Biochem. 110: 706–717, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号