首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enzyme 11β‐hydroxysteroid dehydrogenase 1 (11β‐HSD1) is known to catalyse inactive glucocorticoids into active forms, and its dysregulation in adipose and muscle tissues has been implicated in the development of metabolic syndrome. To delineate the molecular mechanism by which active cortisol has an antagonizing effect against insulin, we optimized the metabolic production of cortisol and its biological functions in myotubes (C2C12). Myotubes supplemented with cortisone actively catalysed its conversion into cortisol, which in turn abolished phosphorylation of Akt in response to insulin treatment. This led to diminished uptake of insulin‐induced glucose. This was corroborated by the application of 11β‐HSD1 inhibitor glycyrrhetinic acid and a glucocorticoid receptor antagonist RU‐486, which reversed completely the antagonizing effects of cortisol on insulin action. Therefore, development of specific inhibitors targeting 11β‐HSD1 might be a promising way to improve impaired insulin‐stimulated glucose uptake. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
3.
Glucocorticoids are important for skeletal muscle energy metabolism, regulating glucose utilization, insulin sensitivity, and muscle mass. Nicotinamide adenine dinucleotide phosphate‐dependent 11β‐hydroxysteroid dehydrogenase type 1 (11β‐HSD1)‐mediated glucocorticoid activation in the sarcoplasmic reticulum (SR) is integral to mediating the detrimental effects of glucocorticoid excess in muscle. 11β‐Hydroxysteroid dehydrogenase type 1 activity requires glucose‐6‐phosphate transporter (G6PT)‐mediated G6P transport into the SR for its metabolism by hexose‐6‐phosphate dehydrogenase (H6PDH) for NADPH generation. Here, we examine the G6PT/H6PDH/11β‐HSD1 triad in differentiating myotubes and explore the consequences of muscle‐specific knockout of 11β‐HSD1 and H6PDH. 11β‐Hydroxysteroid dehydrogenase type 1 expression and activity increase with myotube differentiation and in response to glucocorticoids. Hexose‐6‐phosphate dehydrogenase shows some elevation in expression with differentiation and in response to glucocorticoid, while G6PT appears largely unresponsive to these particular conditions. When examining 11β‐HSD1 muscle‐knockout mice, we were unable to detect significant decrements in activity, despite using a well‐validated muscle‐specific Cre transgene and confirming high‐level recombination of the floxed HSD11B1 allele. We propose that the level of recombination at the HSD11B1 locus may be insufficient to negate basal 11β‐HSD1 activity for a protein with a long half‐life. Hexose‐6‐phosphate dehydrogenase was undetectable in H6PDH muscle‐knockout mice, which display the myopathic phenotype seen in global KO mice, validating the importance of SR NADPH generation. We envisage these data and models finding utility when investigating the muscle‐specific functions of the 11β‐HSD1/G6PT/H6PDH triad.  相似文献   

4.
Adipose tissue type 1 11β‐hydroxysteroid dehydrogenase (11β‐HSD1), which generates hormonally active cortisol from inactive cortisone, has been shown to play a central role in adipocyte differentiation and abdominal obesity‐related metabolic complications. The objective was to investigate whether genetic variations in the human 11β‐HSD1 gene are associated with the metabolic syndrome among French‐Canadian men. We sequenced all exons, the exon‐intron splicing boundaries, and 5′ and 3′ regions of the human 11β‐HSD1 gene in 36 men with the metabolic syndrome, as defined by the National Cholesterol Education Program‐Adult Treatment Panel III, and two controls. Three intronic sequence variants were identified: two single‐nucleotide polymorphisms in intron 3 (g.4478T>G) and intron 4 (g.10733G>C) and one insertion in intron 3 (g.4437‐4438insA). The relative allele frequency was 19.6%, 22.1%, and 19.6% for the g.4478G, g.10733C, and g.4438insA alleles, respectively. One single‐nucleotide polymorphism was identified in exon 6 (c.744G>C or G248G). The frequency of the c.744C allele was only 0.46% in a sample of 217 men. Variants were not associated with components of the metabolic syndrome except for plasma apolipoprotein B levels. In conclusion, molecular screening of the 11β‐HSD1 gene did not reveal any sequence variations that can significantly contribute to the etiology of the metabolic syndrome among French‐Canadians.  相似文献   

5.
11β‐Hydroxysteroid dehydrogenase type 1 (11β‐HSD1) is an enzyme that affects the body's cortisol levels. The inhibition of its activity can be used in the treatment of Cushing's syndrome, metabolic syndrome and type 2 diabetes. In this study, we synthesized new derivatives of 2‐(methylamino)thiazol‐4(5H)‐one and tested their activity towards inhibition of 11β‐HSD1 and its isoform – 11β‐HSD2. The results were compared with the previously tested allyl derivatives. We found out that methyl derivatives are weaker inhibitors of 11β‐HSD1 in comparison to their allyl analogs. Due to significant differences in the activity of the compounds, molecular modeling was performed, which was aimed at comparing the interactions between 11β‐HSD1 and ligands differing by substituent at the amine group (allyl vs. methyl). Modeling showed that the absence of the allyl group can lead to the rotation of whole ligand molecule which affects its interaction with the enzyme.  相似文献   

6.
7.
11β‐Hydroxysteroid dehydrogenase type 1 (11β‐HSD1) is a key enzyme in the conversion of cortisone to the functional glucocorticoid hormone cortisol. This activation has been implicated in several human disorders, notably the metabolic syndrome where 11β‐HSD1 has been identified as a novel target for potential therapeutic drugs. Recent crystal structures have revealed the presence of a pronounced hydrophobic surface patch lying on two helices at the C‐terminus. The physiological significance of this region has been attributed to facilitating substrate access by allowing interactions with the endoplasmic reticulum membrane. Here, we report that single mutations that alter the hydrophobicity of this patch (I275E, L266E, F278E, and L279E in the human enzyme and I275E, Y266E, F278E, and L279E in the guinea pig enzyme) result in greatly increased yields of soluble protein on expression in E. coli. Kinetic analyses of both reductase and dehydrogenase reactions indicate that the F278E mutant has unaltered Km values for steroids and an unaltered or increased kcat. Analytical ultracentrifugation shows that this mutation also decreases aggregation of both the human and guinea pig enzymes, resulting in greater monodispersity. One of the mutants (guinea pig F278E) has proven easy to crystallize and has been shown to have a virtually identical structure to that previously reported for the wild‐type enzyme. The human F278E enzyme is shown to be a suitable background for analyzing the effects of naturally occurring mutations (R137C, K187N) on enzyme activity and stability. Hence, the F278E mutants should be useful for many future biochemical and biophysical studies of the enzyme.  相似文献   

8.
9.
10.
Objective: Adipose tissue secretes several molecules that may participate in metabolic cross‐talk to other insulin‐sensitive tissues. Thus, adipose tissue is a key endocrine organ that regulates insulin sensitivity in other peripheral insulin target tissues. We have studied the expression and acute insulin regulation of novel genes expressed in adipose tissue that are implicated in the control of whole body insulin sensitivity. Research Methods and Procedures: Expression of adiponectin, c‐Cbl—associated protein (CAP), 11‐β hydroxysteroid dehydrogenase type 1 (11β‐HSD‐1), and sterol regulatory element binding protein (SREBP)‐1c was determined in subcutaneous adipose tissue from type 2 diabetic and age‐ and BMI‐matched healthy men by real‐time polymerase chain reaction analysis. Results: Expression of adiponectin, CAP, 11β‐HSD‐1, and SREBP‐1c was similar between healthy and type 2 diabetic subjects. Insulin infusion for 3 hours did not affect expression of CAP, 11β‐HSD‐1, or adiponectin mRNA in either group. However, insulin infusion increased SREBP‐1c expression by 80% in healthy, but not in type 2 diabetic, subjects. Discussion: Our results provide evidence that insulin action on SREBP‐1c is dysregulated in adipose tissue from type 2 diabetic subjects. Impaired insulin regulation on gene expression of select targets in adipose tissue may contribute to the pathogenesis of type 2 diabetes.  相似文献   

11.
Metabolic syndrome is marked by perturbed glucocorticoid (GC) signaling, systemic inflammation, and altered immune status. Dehydroepiandrosterone (DHEA), a major circulating adrenal steroid and dietary supplement, demonstrates antiobesity, anti‐inflammatory, GC‐opposing and immune‐modulating activity when administered to rodents. However, plasma DHEA levels failed to correlate with metabolic syndrome and oral replacement therapy provided only mild benefits to patients. Androstene‐3β,7β,17β‐triol (β‐AET) an anti‐inflammatory metabolite of DHEA, also exhibits GC‐opposing and immune‐modulating activity when administered to rodents. We hypothesized a role for β‐AET in obesity. We now report that plasma levels of β‐AET positively correlate with BMI in healthy men and women. Together with previous studies, the observations reported here may suggest a compensatory role for β‐AET in preventing the development of metabolic syndrome. The β‐AET structural core may provide the basis for novel pharmaceuticals to treat this disease.  相似文献   

12.
Following menopause, body fat is redistributed from peripheral to central depots. This may be linked to the age related decrease in estrogen levels. We hypothesized that estrogen supplementation could counteract this fat redistribution through tissue‐specific modulation of glucocorticoid exposure. We measured fat depot masses and the expression and activity of the glucocorticoid‐activating enzyme 11β‐hydroxysteroid dehydrogenase type 1 (11βHSD1) in fat and liver of ovariectomized female rats treated with or without 17β‐estradiol. 11βHSD1 converts inert cortisone, or 11‐dehydrocorticosterone in rats into active cortisol and corticosterone. Estradiol‐treated rats gained less weight and had significantly lower visceral adipose tissue weight than nontreated rats (P < 0.01); subcutaneous adipose weight was unaltered. In addition, 11βHSD1 activity/expression was downregulated in liver and visceral, but not subcutaneous, fat of estradiol‐treated rats (P < 0.001 for both). This downregulation altered the balance of 11βHSD1 expression and activity between adipose tissue depots, with higher levels in subcutaneous than visceral adipose tissue of estradiol‐treated animals (P < 0.05 for both), opposite the pattern in ovariectomized rats not treated with estradiol (P < 0.001 for mRNA expression). Thus, estrogen modulates fat distribution, at least in part, through effects on tissue‐specific glucocorticoid metabolism, suggesting that estrogen replacement therapy could influence obesity related morbidity in postmenopausal women.  相似文献   

13.
Endogenous and synthetic glucocorticoids (GCs), such as cortisol and dexamethasone (Dex), modulate airway inflammation, regulate the production of surfactant by lung epithelial cells, and influence fetal lung maturation. The 11-beta hydroxysteroid dehydrogenase type 2 (HSD2) enzyme catalyzes the oxidation of bioactive cortisol and Dex to their 11-keto metabolites. Thiram (tetramethylthiuram disulfide) specifically inhibits HSD2 activity by oxidizing cysteine residues located in the cofactor binding domain of the enzyme. During studies performed to define a potential role for HSD2 in modulating GC action in human lung epithelial cells, we observed that exposure of intact human lung epithelial cells (NCI-H441) to 50 microM Thiram significantly attenuated the down-stream effects of Dex (100 nM) on the expression of two GC-sensitive genes, pulmonary surfactant proteins A and B. This observation appeared to be inconsistent with simple inhibition of HSD2 activity. Although Thiram inhibited HSD2 oxidase activity in a dose-dependent manner without affecting HSD2 protein expression, Thiram also reduced specific binding of [3H]-Dex to the glucocorticoid receptor (GR). Pre-treatment of cells with 1 mM dithiothreitol (DTT), a thiol-reducing agent, completely blocked the inhibitory effect of Thiram on ligand binding. These results are suggestive that Thiram may alter the ligand-binding domain of the GR by oxidizing critical thiol-containing amino acid residues. Taken collectively, these data demonstrate that attenuated down-stream GC signaling, via decreased binding of ligand to the GR, is a novel cellular effect of Thiram exposure in human lung epithelial cells.  相似文献   

14.
ß‐Amyloid (Aß) immunotherapy has become a promising strategy for reducing the level of Aß in brain. New immunological approaches have been recently proposed for rapid, early diagnosis, and molecular treatment of neurodegenerative diseases related to Alzheimer's Disease (AD). The combination of proteolytic epitope excision and extraction and mass spectrometry using digestion with various proteases has been shown to be an efficient tool for the identification and molecular characterization of antigenic determinants. Here, we report the identification of the Aβ epitope recognized by the variable domain of single chain llama anti‐Aβ‐antibodies, termed Aβ‐nanobodies, that have been discovered in the blood of camelids and found to be promising candidates for immunotherapy of AD. The epitope recognized by two Aβ‐specific nanobodies was identified by proteolytic epitope extraction‐ and excision‐mass spectrometry using a series of proteases (trypsin, chymotrypsin, GluC‐protease, and LysC‐protease). Matrix‐assisted laser desorption ionization – mass spectrometric analysis of the affinity – elution fraction provided the epitope, Aβ(17–28), in the mid‐ to carboxy‐terminal domain of Aβ, which has been shown to exert an Aß‐fibril inhibiting effect. Affinity studies of the synthetic epitope confirmed that the Aβ(17–28) peptide is the minimal fragment that binds to the nanobodies. The interactions between the nanobodies and full length Aβ(1–40) or Aβ‐peptides containing or lacking the epitope sequence were further characterized by enzyme linked immunosorbent assay and bioaffinity analysis. Determinations of binding affinities between the Aβ‐nanobodies and Aβ(1–40) and the Aβ(17–28) epitope provided KD values of approximately 150 and 700 nmol, respectively. Thus, the knowledge of the epitope may be highly useful for future studies of Aβ‐aggregation (oligomerization and fibril formation) and for designing new aggregation inhibitors. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
16.
The lysosomal integral membrane protein type 2 (LIMP‐2/SCARB2) has been described as a mannose 6‐phosphate (M6P)‐independent trafficking receptor for β‐glucocerebrosidase (GC). Recently, a putative M6P residue in a crystal structure of a recombinantly expressed LIMP‐2 ectodomain has been reported. Based on surface plasmon resonance and fluorescence lifetime imaging analyses, it was suggested that the interaction of soluble LIMP‐2 with the cation‐independent M6P receptor (MPR) results in M6P‐dependent targeting of LIMP‐2 to lysosomes. As the physiological relevance of this observation was not addressed, we investigated M6P‐dependent delivery of LIMP‐2 to lysosomes in murine liver and mouse embryonic fibroblasts. We demonstrate that LIMP‐2 and GC reach lysosomes independent of the M6P pathway. In fibroblasts lacking either MPRs or the M6P‐forming N‐acetylglucosamine (GlcNAc)‐1‐phosphotransferase, LIMP‐2 still localizes to lysosomes. Immunoblot analyses also revealed comparable LIMP‐2 levels within lysosomes purified from liver of wild‐type (wt) and GlcNAc‐1‐phosphotransferase‐defective mice. Heterologous expression of the luminal domain of LIMP‐2 in wild‐type, LIMP‐2‐deficient and GlcNAc‐1‐phosphotransferase‐defective cells further established that the M6P modification is dispensable for lysosomal sorting of LIMP‐2. Finally, cathepsin Z, a known GlcNAc‐1‐phosphotransferase substrate, but not LIMP‐2, could be precipitated with M6P‐specific antibodies. These data prove M6P‐independent lysosomal sorting of LIMP‐2 and subsequently GC in vivo.   相似文献   

17.
18.
Breast cancer is one of the most threatening diseases for women. Long noncoding RNAs were reported to be involved in breast cancer development. In this study, we analyzed The Cancer Genome Atlas breast cancer tissue high‐throughput sequencing data and screened and validated the low‐expressing long noncoding RNA named MAGI2‐AS3. Through gene coexpression analysis, we found that MAGI2‐AS3 has a good expression correlation with MAGI2. Overexpression of MAGI2‐AS3 or MAGI2 in breast cancer cells MCF‐7 would inhibit the Wnt/β‐catenin pathway and inhibit cell proliferation and migration. Gene structure and DNA methylation analysis results indicated that MAGI2‐AS3 may act as a cis‐acting regulatory element downregulating the DNA methylation level of the MAGI2 promoter region, and the DNA demethylase TET1 inhibitor can reverse MAGI2‐AS3 overexpression caused upregulation of MAGI2 and cellular effects. Our findings reveal the role of MAGI2‐AS3 in breast cancer and provide potential novel therapeutic targets for metastatic breast cancer intervention.  相似文献   

19.
The present study aims to investigate the in vivo and in vitro anti‐tumour properties of phenethyl isothiocyanate (PEITC) alone and in combination with doxorubicin (Dox). The anti‐tumour activity was evaluated in vitro by MTT assay using cultured human breast cancer cell line (MCF‐7) and human hepatoma cell line (HepG‐2) cell lines. In vivo, Ehrlich solid tumour model was used. Tumour volume, weight and antioxidant parameters were determined. Immunohistochemistry analysis for active (cleaved) caspase‐3 was also performed. We tested the effect of PEITC treatment on pAkt/Akt ratio, NF‐κB p65 DNA binding activity and caspase‐9 enzyme activity in both MCF‐7 and HepG‐2 cell lines. Effect of PEITC treatment on cell migration was assessed by wound healing assay. PEITC and/or Dox treatment significantly inhibited solid tumour volume and tumour weight when compared with control mice. PEITC treatment significantly reduced oxidative stress caused by Dox treatment as indicated by significant increase in total antioxidant capacity and decrease in malondialdehyde level. Microscopic examination of tumour tissues showed a significant increase in active (cleaved) caspase‐3 expression in PEITC and/or Dox treated groups. PEITC showed a dose‐dependent inhibition of MCF‐7 and HepG‐2 cellular viability. PEITC inhibited Akt and NF‐κB activation and increased caspase‐9 activity in a dose‐dependent manner. PEITC treatment effectively inhibited both MCF‐7 and HepG‐2 cell migration. We can conclude that PEITC acts via multiple molecular targets to elicit anti‐carcinogenic activity. PEITC/Dox combination therapy might be a potential novel strategy, which may benefit patients with breast and liver cancers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
15‐Deoxy‐delta12, 14‐prostaglandin J2 (15d‐PGJ2) is an endogenous anti‐inflammatory lipid derived from PGD2. One potential mechanism for its activity is the covalent modification of cellular proteins, via a reactive α,β‐unsaturated carbonyl group in its cyclopentenone ring, which in turn alters protein function. In order to identify the candidate target proteins covalently modified by 15d‐PGJ2 in human aortic endothelial cell (EC), EC was treated with biotinylated‐15d‐PGJ2, the modified proteins extracted by Neutravidin affinity‐purification and the proteins identified by LTQ Orbitrap mass spectrometer. Classification of the 358 identified proteins was performed using PANTHER classification system ( www.pantherdb.org ), showing that the proteins mapped to metabolic process, cellular process, and transport activity. This protein data set highlights the potential for 15d‐PGJ2 to covalently modify cellular proteins and provides a source of data that will aid further studies on the mechanism of action of this endogenous regulator of inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号