首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims: The aim of the present study was to purify and characterize a natural antimicrobial compound from Bacillus sp. strain N associated with a novel rhabditid entomopathogenic nematode. Methods and Results: The cell‐free culture filtrate of a bacterium associated with a novel entomopathogenic nematode (EPN), Rhabditis (Oscheius) sp. exhibited strong antimicrobial activity. The ethyl acetate extract of the bacterial culture filtrate was purified by column chromatography, and two bioactive compounds were isolated and their chemical structures were established based on spectral analysis. The compounds were identified as 3,4′,5‐trihydroxystilbene (1) and 3,5‐dihydroxy‐4‐isopropylstilbene (2). The presence of 3,4′,5‐trihydroxystilbene (resveratrol) is reported for the first time in bacteria. Compound 1 showed antibacterial activity against all the four test bacteria, whereas compound 2 was effective against the Gram‐positive bacteria only. Compounds 1 and 2 were active against all the five fungi tested and are more effective than bavistin, the standard fungicide. The antifungal activity of the compounds against the plant pathogenic fungi, Rhizoctonia solani is reported for the first time. Conclusions: Cell‐free extract of the bacterium and isolated stilbenes demonstrated high antibacterial activity against bacteria and fungi especially against plant pathogenic fungi. We conclude that the bacterium‐associated EPN are promising sources of natural bioactive secondary metabolites. Significance and Impact of the Study: Stilbene compounds can be used for the control of fungi and bacteria.  相似文献   

2.
Studies of the phytotoxic effects between plants can be a crucial tool in the discovery of innovative compounds with herbicide potential. In this sense, we can highlight ruzigrass (Urochloa ruziziensis), which is traditionally used in the crop rotation system in order to reduce weed emergence. The aim of this work was to characterize the secondary metabolites of ruzigrass and to evaluate its phytotoxic effects. In total, eight compounds were isolated: friedelin, oleanolic acid, α‐amyrin, 1‐dehydrodiosgenone, sitosterol and stigmasterol glycosides, tricin and p‐coumaric acid. Phytotoxic effects of the crude methanolic extract and fractions of ruzigrass were assessed using germination rate, initial seedling growth, and biomass of Bidens pilosa, Euphorbia heterophylla and Ipomoea grandifolia. Chemometric analysis discriminated the weed species into three groups, and B. pilosa was the most affected by fractions of ruzigrass. The phytotoxic activities of 1‐dehydrodiosgenone, tricin, and p‐coumaric acid are also reported, and p‐coumaric acid and 1‐dehydrodiosgenone were active against B. pilosa.  相似文献   

3.
An endophytic bacterium was isolated from Chinese medicinal plant Scutellaria baicalensis Georgi. The phylogenetic and physiological characzterization indicated that the isolate, strain ES-2, was Bacillus amyloliquefaciens, which produced two families of secondary metabolites with broad-spectrum antibacterial and antifungal activities. Culture filtrate of ES-2 displayed antagonism against some phytopathogenic, food-borne pathogenic and spoilage bacteria and fungi owing to the existence of antimicrobial compounds. A HPLC-MS analysis showed two series of ion peaks from the culture filtrate. A further electrospray ionization/collision-induced dissociation spectrum revealed that the two series ion peaks represented different fengycin homologues and surfactin homologues, respectively, which had a potential for food preservation and the control of several fungal plant diseases.  相似文献   

4.
The hydrodistilled oil of Cryptocarya massoy bark was characterized by GC‐FID and GC/MS analyses, allowing the identification of unusual C10 massoia lactone ( 3 , 56.2%), C12 massoia lactone ( 4 , 16.5%), benzyl benzoate ( 1 , 12.7%), C8 massoia lactone (3.4%), δ‐decalactone ( 5 , 1.5%), and benzyl salicylate ( 2 , 1.8%) as main constituents. The phytotoxic activities of the oil, three enriched fractions (lactone‐rich, ester‐rich, and sesquiterpene‐rich), and four constituents (compounds 1, 2, 5 , and δ‐dodecalactone ( 6 )) against Lycopersicon esculentum and Cucumis sativus seeds and seedlings were screened. At a concentration of 1000 μl/l, the essential oil and the massoia lactone‐rich fraction caused a complete inhibition of the germination of both seeds, and, when applied on tomato plantlets, they induced an 85 and 100% dieback, respectively. These performances exceeded those of the well‐known phytotoxic essential oils of Syzygium aromaticum and Cymbopogon citratus, already used in commercial products for the weed and pest management. The same substances were also evaluated against four phytopathogenic bacteria and ten phytopathogenic fungi, providing EC50 values against the most susceptible strains in the 100–500 μl/l range for the essential oil and in the 10–50 μl/l range for compound 6 and the lactone‐rich fraction. The phytotoxic behavior was related mainly to massoia lactones and benzyl esters, while a greater amount of 6 may infer a good activity against some phytopathogenic fungi. Further investigations of these secondary metabolites are warranted, to evaluate their use as natural herbicides.  相似文献   

5.
Thermomyces lanuginosus and Scytalidium thermophilum are among the most ubiquitous thermophilic fungi in compost and soil. Chemical study on these two prevalent strains collected from Yunnan led to isolation of 23 metabolites, including one new metabolite, therlanubutanolide, and 15 known compounds, isolated from the YGP culture broth of Thermomyces lanuginosus and 7 known compounds isolated from Scytalidium thermophilum, respectively. Therlanubutanolide shared the quite similar features of the same carbon skeleton and saturation as natural hexadecanoic acids. This was the first reported discovery of such a lactone as natural occurring metabolite. All the compounds were reported for the first time from thermophilic fungi. Among them, N‐[(2S,3R,4E,8E)‐1,3‐dihydroxy‐9‐methyloctadeca‐4,8‐dien‐2‐yl]acetamide was for the first time reported to be a naturally occurring metabolite and its NMR data was first provided in this study. A type of PKS‐derived metabolites, three 3,4‐dihydronaphthalen‐1(2H)‐ones, which were widely found in plant pathogenic fungi as phytotoxins and reported to have antimicrobial activity, were obtained from both dominant thermophilic fungi. The frequent occurrence of such PKS phytotoxins in these two thermophilic fungi might suggest particular ecological interest.  相似文献   

6.
A co-cultivation study of two fungal strains showed that Aspergillus ustus could inhibit Aspergillus repens growth. The bioactive compound responsible for the observed activity was purified and identified as a sesterterpene, ophiobolin K. Ophiobolin K exhibited marked inhibition against both fungi and bacteria, especially A. repens, A. glaucus and gram-positive bacteria including Bacillus subtilis, Staphylococcus aureus, and Micrococcus luteus.  相似文献   

7.
Endophytic actinobacteria from the Brazilian medicinal plant Lychnophora ericoides were isolated for the first time, and the biological potential of their secondary metabolites was evaluated. A phylogenic analysis of isolated actinobacteria was accomplished with 16S rRNA gene sequencing, and the predominance of the genus Streptomyces was observed. All strains were cultured on solid rice medium, and ethanol extracts were evaluated with antimicrobial and cytotoxic assays against cancer cell lines. As a result, 92% of the extracts showed a high or moderate activity against at least one pathogenic microbial strain or cancer cell line. Based on the biological and chemical analyses of crude extracts, three endophytic strains were selected for further investigation of their chemical profiles. Sixteen compounds were isolated, and 3‐hydroxy‐4‐methoxybenzamide ( 9 ) and 2,3‐dihydro‐2,2‐dimethyl‐4(1H)‐quinazolinone ( 15 ) are reported as natural products for the first time in this study. The biological activity of the pure compounds was also assessed. Compound 15 displayed potent cytotoxic activity against all four tested cancer cell lines. Nocardamine ( 2 ) was only moderately active against two cancer cell lines but showed strong activity against Trypanosoma cruzi. Our results show that endophytic actinobacteria from L. ericoides are a promising source of bioactive compounds.  相似文献   

8.
This review deals with the sources and chemical and biological characterization of phytotoxic polyphenols produced essentially by pathogenic fungi of forest and crop plants and of weeds. Their potential use as natural herbicides and fungicides is discussed. The use of some polyphenols which could be applied as an alternative method to control parasitic weeds, the so called “suicidal germination”, will be covered. The sources and the isolation and identification of polyphenols produced by some crop plants in consequence of the attack of pathogenic fungi as plant defence compounds (phytoalexins), are also described.  相似文献   

9.
A strain of Lasiodiplodia mediterranea, a fungus associated with grapevine decline in Sicily, produced several metabolites in liquid medium. Two new dimeric γ‐lactols, lasiolactols A and B ( 1 and 2 ), were characterized as (2S*,3S*,4R*,5R*,2′S*,3′S*,4′R*,5′R*)‐ and (2R*,3S*,4R*,5R*,2′R*,3′S*,4′R*,5′R*)‐(5‐(4‐hydroxymethyl‐3,5‐dimethyl‐tetrahydro‐furan‐2‐yloxy)‐2,4‐dimethyl‐tetrahydro‐furan‐3‐yl]‐methanols by IR, 1D‐ and 2D‐NMR, and HR‐ESI‐MS. Other four metabolites were identified as botryosphaeriodiplodin, (5R)‐5‐hydroxylasiodiplodin, (–)‐(1R,2R)‐jasmonic acid, and (–)‐(3S,4R,5R)‐4‐hydroxymethyl‐3,5‐dimethyldihydro‐2‐furanone ( 3  –  6 , resp.). The absolute configuration (R) at hydroxylated secondary C‐atom C(7) was also established for compound 3 . The compounds 1  –  3 , 5, and 6 , tested for their phytotoxic activities to grapevine cv. Inzolia leaves at different concentrations (0.125, 0.25, 0.5, and 1 mg/ml) were phytotoxic and compound 5 showed the highest toxicity. All metabolites did not show in vitro antifungal activity against four plant pathogens.  相似文献   

10.
Plants of the Amaryllidaceae family have been under intense scrutiny for the presence of the specific metabolites responsible for the medicinal properties associated with them. The study began in 1877 with the isolation of alkaloid lycorine from Narcissus pseudonarcissus and since then more than 100 alkaloids, exhibiting diverse biological activities, have been isolated from the Amaryllidaceae plants. Based on the present scientific evidence, it is likely that isocarbostyril constituents of the Amaryllidaceae, such as narciclasine, pancratistatin and their congeners, are the most important metabolites responsible for the therapeutic benefits of these plant species in the folk medical treatment of cancer. Notably, Narcissus poeticus L., used by the ancient Greek physicians, is now known to contain about 0.12 g of narciclasine per kg of fresh bulbs. The focus of the present research work is the chemistry and biology of these compounds as specifically relevant to their potential use in medicine. In particular, the anticancer evaluation of lycorine, narciclasine as well as of other Amaryllidaceae alkaloids and their synthetic derivatives are presented in this paper. The structure–activity relationships among some groups of Amaryllidaceae alkaloids will be discussed.  相似文献   

11.
赵能  原晓龙  华梅  李苏雨  王娟  王毅 《广西植物》2017,37(2):242-247
地衣是一种传统的民族药物,能产生多种具有活性的物质。该研究对地衣型真菌(Xanthoria elegans,Myelochroa indica,Ramalina peruviana,Cladonia macilenta,Nephromopsis pallescens,Cladonia coccifera)进行液体培养,2个月后,培养液用乙酸乙酯萃取后获得初提物。该研究采用抑菌圈法评价地衣型真菌初提物对7种致病细菌(Bacillus subtilis,Bacillus cereus,Vibrio parahaemolyticus,Straphylococcus haemolyticus,Pseudomonas aeruginosa,Staphylococcus aureus,Micrococcus luteus)的抗菌活性,并测定最低抑菌浓度(MIC)。结果表明:6种地衣型真菌的初提物均具有一定的抗菌活性,且不同培养基对地衣型真菌产生抗菌物质有显著影响。其中,R.peruviana在MY液体培养基中所产生的次级代谢产物对金黄色葡萄球菌、藤黄微球菌、溶血性葡萄球菌、铜尿假单胞菌具有抑制效果,但在YMG培养基中所得初提物对供试7种致病细菌不具有抑菌效果。X.elegans在YMG培养基中所得初提物对枯草芽孢杆菌具有明显抗菌活性,其抑菌圈直径可达17.77 mm。该研究证实不同地衣型真菌液体培养初提物具有抗菌活性,不同的培养基也直接影响地衣型真菌抗菌效果。该研究结果为地衣型真菌的进一步研究及民族药的开发利用奠定了基础。  相似文献   

12.
Aims: Developing new bio‐agents to control plant disease is desirable. Entomopathogenic bacteria Xenorhabdus spp. have potential antimicrobial activity in agriculture. This work was conducted to evaluate the antimicrobial activity of Xenorhabdus bovienii YL002 on plant pathogenic fungi and oomycete in vitro and the efficiency of this strain to reduce the in vivo incidence of grey mould rot on tomato plants caused by Botrytis cinerea and leaf scorch on pepper plants caused by Phytophthora capsici. Methods and Results: The antimicrobial activity of X. bovienii YL002 was firstly determined on in vitro plant pathogenic fungi and oomycete and then on tomato fruits and plants infected with B. cinerea and pepper plants infected with P. capsici. The cell‐free filtrate of X. bovienii YL002 exhibited highest inhibition effects (>98%) on mycelia growth of P. capsici and B. cinerea. The 50% inhibition concentration (EC50) of the methanol‐extracted bioactive compounds (methanol extract) of the cell‐free filtrate against P. capsici and B. cinerea were 164·83 and 42·16 μg ml?1. The methanol extract also had a strong effect on the spore germination of P. capsici and B. cinerea, with a EC50 of 70·38 and 69·33 μg ml?1, respectively. At 1000 μg ml?1, the methanol extract showed a therapeutic effect of 70·82% and a protective effect of 77·4% against B. cinerea on tomato plants compared with the control. The methanol extract also showed potent effect against P. capsici, with a therapeutic effect of 68·14% and a protective effect of 65·46% on pepper plants compared with the control. Conclusions: Xenorhabdus bovienii YL002 produces antimicrobial compounds with strong activity on plant pathogenic fungi and oomycete and has the potential for controlling grey mould rot of tomato plants and leaf scorch of pepper and could be useful in integrated control against diverse plant pathogenic fungi and oomycete. Significance and Impact of the Study: This study showed the potential that X. bovienii YL002 can be used to control the grey mould rot caused by B. cinerea on tomato plants and leaf scorch caused by P. capsici on pepper plants with the objective to reduce treatments with chemical fungicides.  相似文献   

13.
Volatiles produced by mycelia of mushrooms with aromatic odour were investigated for their antifungal activity against plant‐pathogenic fungi. The results of the screening of 23 species of basidiomycetes revealed that volatile substances from mycelia of Mycoleptodonoides aitchisonii (TUFC10099), an edible mushroom, strongly inhibited the mycelial growth, spore germination and lesion formation on host leaves of some plant‐pathogenic fungi including Alternaria alternata, A. brassicicola, A. brassicae, Colletotrichum orbiculare and Corynespora cassiicola. The volatile compounds were isolated from the culture filtrate of M. aitchisonii, and 1‐phenyl‐3‐pentanone was identified as a major antifungal volatile. The compound had significantly inhibitory activity against plant‐pathogenic fungi at 35 ppm. This is the first report that the volatile compound produced by mycelia of M. aitchisonii has antifungal activity against plant‐pathogenic fungi.  相似文献   

14.
Zwittermicin A is a novel antibiotic produced by Bacillus cereus UW85, which suppresses certain plant diseases in the laboratory and in the field. We developed a rapid method for large-scale purification of zwittermicin A and then studied the in vitro activity of zwittermicin A against bacteria, fungi, and protists. Zwittermicin A was highly active against the Oomycetes and their relatives, the algal protists, and had moderate activity against diverse Gram-negative bacteria and certain Gram-positive bacteria as well as against a wide range of plant pathogenic fungi. Zwittermicin A was more active against bacteria and fungi at pH 7–8 than at pH 5–6. When zwittermicin A was combined with kanosamine, another antibiotic produced by B. cereus, the two acted synergistically against Escherichia coli and additively against Phytophthora medicaginis, an Oomycete. The results indicate that there are diverse potential applications of this new class of antibiotic. Received: 1 December 1997 / Accepted: 9 January 1998  相似文献   

15.
The distribution and ultrastructure of capitate glandular trichomes (GTs) in Flourensia species (Asteraceae) have been recently elucidated, but their metabolic activity and potential biological function remain unexplored. Selective nonvolatile metabolites from isolated GTs were strikingly similar to those found on leaf surfaces. The phytotoxic allelochemical sesquiterpene (–)‐hamanasic acid A ((–)‐HAA) was the major constituent (ca. 40%) in GTs. Although GTs are quaternary ammonium compounds (QACs)‐accumulating species, glycine betaine was not found in GTs; it was only present in the leaf mesophyll. Two (–)‐HAA accompanying surface secreted products: compounds 4‐hydroxyacetophenone (piceol; 1 ) and 2‐hydroxy‐5‐methoxyacetophenone ( 2 ), which were isolated and fully characterized (GC/MS, NMR), were present in the volatiles found in GTs. The essential oils of fresh leaves revealed ca. 33% monoterpenes, 26% hydrocarbon‐ and 30% oxygenated sesquiterpenes, most of them related to cadinene and bisabolene derivatives. Present results suggest a main role of GTs in determining the volatile and nonvolatile composition of F. campestris leaves. Based on the known activities of the compounds identified, it can be suggested that GTs in F. campestris would play key ecological functions in plant‐pathogen and plant‐plant interactions. In addition, the strikingly high contribution of compounds derived from cadinene and bisabolene pathways, highlights the potential of this species as a source of high‐valued bioproducts.  相似文献   

16.
The endophytic fungal community associated with the ethnomedicinal plant Echinacea purpurea was investigated as well as its potential for providing antifungal compounds against plant pathogenic fungi. A total of 233 endophytic fungal isolates were obtained and classified into 42 different taxa of 16 genera, of which Alternaria alternata, Colletotrichum dematium, and Stagonosporopsis sp. 2 are the most frequent colonizers. The extracts of 29 endophytic fungi displayed activities against important phytopathogenic fungi. Eight antifungal extracts were selected for chemical analysis. Forty fatty acids were identified by gas chromatography‐flame‐ionization detection (GC‐FID) analysis. The compounds (–)‐5‐methylmellein and (–)‐(3R)‐8‐hydroxy‐6‐methoxy‐3,5‐dimethyl‐3,4‐dihydroisocoumarin were isolated from Biscogniauxia mediterraneaEPU38CA crude extract. (–)‐5‐Methylmellein showed weak activity against Phomopsis obscurans, Pviticola, and Fusarium oxysporum, and caused growth stimulation of C. fragariae, C. acutatum, C. gloeosporioides, and Botrytis cinerea. (–)‐(3R)‐8‐Hydroxy‐6‐methoxy‐3,5‐dimethyl‐3,4‐dihydroisocoumarin appeared slightly more active in the microtiter environment than 5‐methylmellein. Our results indicate that E. purpurea lives symbiotically with different endophytic fungi, which are able to produce bioactive fatty acids and aromatic compounds active against important phytopathogenic fungi. The detection of the different fatty acids and aromatic compounds produced by the endophytic community associated with wild E. purpurea suggests that it may have intrinsic mutualistic resistance against phytopathogen attacks in its natural environment.  相似文献   

17.
Phytotoxins are secondary microbial metabolites that play an essential role in the development of disease symptoms induced by fungi on host plants. Although phytotoxins can cause extensive—and in some cases devastating—damage to agricultural crops, they can also represent an important tool to develop natural herbicides when produced by fungi and plants to inhibit the growth and spread of weeds. An alternative strategy to biologically control parasitic plants is based on the use of plant and fungal metabolites, which stimulate seed germination in the absence of the host plant. Nontoxigenic fungi also produce bioactive metabolites with potential fungicide and insecticide activity, and could be applied for crop protection. All these metabolites represent important tools to develop eco‐friendly pesticides. This review deals with the relationships between the biological activity of some phytotoxins, seed germination stimulants, fungicides and insecticides, and their stereochemistry. Chirality 25:59–78, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
The aim of the present study was to examine the efficacy of various seed extracts of Terminalia chebula as an antifungal potential against certain important plant pathogenic fungi. The organic extracts of methanol, ethyl acetate and chloroform at the used concentration of 1500 ppm/disc revealed remarkable antifungal effect as a fungal mycelial growth inhibitor against Fusarium oxysporum, Fusarium solani, Phytophthora capsici and Botrytis cinerea, in the range of 41.6–61.3%, along with MIC values ranging from 62.5 to 500 μg/ml. Also, the extracts had a strong detrimental effect on spore germination of all the tested plant pathogens along with concentration as well as time-dependent kinetic inhibition of B. cinerea. The results obtained from this study suggest that the natural products derived from Terminalia chebula could become an alternative to synthetic fungicides for controlling such important plant pathogenic fungi.  相似文献   

19.
Terpene derivatives converted by microbial biotransformation constitute an important resource for natural pharmaceutical, fragrance, and aroma substances. In the present study, the monoterpene α‐phellandrene was biotransformed by 16 different strains of microorganisms (bacteria, fungi, and yeasts). The transformation metabolites were initially screened by TLC and GC/MS, and then further characterized by NMR spectroscopic techniques. Among the six metabolites characterized, 6‐hydroxypiperitone, α‐phellandrene epoxide, cis‐p‐menth‐2‐en‐1‐ol, and carvotanacetone, which originated from (?)‐(R)‐α‐phellandrene, are reported for the first time in this study. Additionally, the substrate and the metabolite 5‐p‐menthene‐1,2‐diol were subjected to in vitro antibacterial and anticandidal tests. The metabolite showed moderate‐to‐good inhibitory activities (MICs=0.125 to >4 mg/ml) against various bacteria and especially against Candida species in comparison with its substrate (?)‐(R)‐α‐phellandrene and standard antimicrobial agents.  相似文献   

20.
Two new steroids, (14β,22E)‐9,14‐dihydroxyergosta‐4,7,22‐triene‐3,6‐dione ( 1 ) and (5α,6β,15β,22E)‐6‐ethoxy‐5,15‐dihydroxyergosta‐7,22‐dien‐3‐one ( 2 ), together with three known steroids, calvasterols A and B ( 3 and 4 , resp.), and ganodermaside D ( 5 ), were isolated from the culture broth of an endophytic fungus Phomopsis sp. isolated from Aconitum carmichaeli. The structures of these compounds were elucidated on the basis of spectroscopic analysis, and their inhibitory activities against six pathogenic fungi were evaluated. Most of the compounds showed moderate or weak antifungal activities in a broth‐microdilution assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号