首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Many antitumor drugs act as topoisomerase inhibitors, and the inhibitions are usually related to DNA binding. Here we designed and synthesized DNA-intercalating Ru(II) polypyridyl complexes Δ--[Ru(bpy)2(uip)]2+ and Λ-[Ru(bpy)2(uip)]2+ (bpy is 2,2′-bipyridyl, uip is 2-(5-uracil)-1H-imidazo[4,5-f][1,10]phenanthroline). The DNA binding, photocleavage, topoisomerase inhibition, and cytotoxicity of the complexes were studied. As we expected, the synthesized Ru(II) complexes can intercalate into DNA base pairs and cleave the pBR322 DNA with high activity upon irradiation. The mechanism studies reveal that singlet oxygen (1O2) and superoxide anion radical (O2•−) may play an important role in the photocleavage. The inhibition of topoisomerases I and II by the Ru(II) complexes has been studied. The results suggest that both complexes are efficient inhibitors towards topoisomerase II by interference with the DNA religation and direct topoisomerase II binding. Both complexes show antitumor activity towards HELA, hepG2, BEL-7402, and CNE-1 tumor cells. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Five ruthenium(II) complexes, i.e., [Ru(bpy)2(TIP)]2+ (bpy=2,2′‐bipyridine; TIP=2‐thiophenimidazo[4,5‐f] [1,10]phenanthroline; 1 ), [Ru(bpy)2(5‐NTIP)]2+ (5‐NTIP=2‐(5‐nitrothiophen)imidazo[4,5‐f] [1,10]phenanthroline; 2 ), [Ru(bpy)2(5‐MOTIP)]2+ (5‐MOTIP=2‐(5‐methoxythiophen)imidazo[4,5‐f] [1,10]phenanthroline; 3 ), [Ru(bpy)2(5‐BTIP)]2+ (5‐BTIP=2‐(5‐bromothiophen)imidazo[4,5‐f] [1,10]phenanthroline; 4 ), and [Ru(bpy)2(4‐BTIP)]2+ (4‐BTIP=2‐(4‐bromothiophen)imidazo[4,5‐f] [1,10]phenanthroline; 5 ), were synthesized and characterized by elemental analysis and UV/VIS, IR, and 1H‐NMR spectroscopic methods. The photophysical and DNA‐binding properties were investigated by means of UV and fluorescence spectroscopic methods and viscosity measurements, respectively. The results suggest that all five complexes can bind to CT‐DNA with various binding strength. Complexes 2 and 3 showed the strongest and the weakest binding affinity, respectively, among these five complexes. Due to the substituent position of the Br‐atom in the ligand, complex 5 interacted stronger with CT‐DNA than complex 4 . The binding affinities of the complexes decreased in the order 2, 5, 4, 1 , and 3 .  相似文献   

3.
A novel ligand 2-(4'-phenoxy-phenyl)imidazo[4,5-f][1,10]phenanthroline (PPIP) and its complexes [Ru(bpy)(2)(PPIP)](2+) (1) (bpy = 2,2'-bipyridine) and [Ru(phen)(2)(PPIP)](2+) (2) (phen = 1,10-phenanthroline) have been synthesized and characterized by mass spectroscopy, (1)H NMR and cyclic voltammetry. The interaction of two complexes with calf thymus DNA (CT-DNA) was investigated by spectroscopic and viscosity measurements. The results suggest that both complexes bind to DNA via an intercalative mode. Both complexes have also been found to promote the photocleavage of plasmid pBR 322 DNA under irradiated.  相似文献   

4.
Two new ruthenium(II) polypyridyl complexes [Ru(dmb)2(HECIP)](ClO4)2 (1) (HECIP = N-ethyl-4-[(1,10)-phenanthroline(5,6-f)imidazol-2-yl]carbazole, dmb = 4,4’-dimethyl-2,2’-bipyridine) and [Ru(dmp)2(HECIP)](ClO4)2 (2) (dmp = 2,9-dimethyl-1,10-phenanthroline) have been synthesized and characterized. The DNA-binding behaviors of the two complexes were investigated by absorption spectra, viscosity measurements, and photoactivated cleavage. The DNA-binding constants for complexes 1 and 2 were determined to be 8.03 (± 0.12) × 104 M?1 (s = 1.62) and 2.97 (± 0.15) × 104 M?1 (s = 1.82), respectively. The results suggest that these complexes interact with DNA through intercalative mode. The photocleavage of pBR322 DNA by Ru(II) complexes was investigated. The cytotoxicity of complexes 1 and 2 has been evaluated by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide)] method. Complex 1 shows higher anticancer potency than 2 against the four tumor cell lines. Apoptosis and cellular uptake were investigated. The antioxidant activities of the ligand and these complexes were also performed.  相似文献   

5.
A new polypyridyl ligand MPPIP {MPPIP=2-(3'-phenoxyphenyl)imidazo[4,5-f]-[1,10]phenanthroline} and its ruthenium(II) complexes, [Ru(bpy)(2)MPPIP](2+) (1) (bpy=2,2'-bipyridine) and [Ru(phen)(2)MPPIP](2+) (2) (phen=1,10-phenanthroline) have been synthesized and characterized. The binding of the two complexes to calf thymus DNA (CT-DNA) has been investigated with spectrophotometric methods, viscosity measurements, as well as equilibrium dialysis and circular dichroism spectroscopy. The results suggest that both complexes bind to CT-DNA through intercalation, and enantioselectively interact with CT-DNA in a way. However, complex 2 is a much better candidate as an enantioselective binder to CT-DNA than complex 1. When irradiated at 365nm, both complexes have also been found to promote the photocleavage of plasmid pBR322 DNA.  相似文献   

6.
A novel polypyridyl ligand 2-(4'-benzyloxyphenyl)imidazo[4,5-f][1,10]phenanthroline (BPIP) and its complex [Ru(bpy)2(BPIP)]2+ (1) (bpy=2,2'-bipyridine) and (2) [Ru(phen)2(BPIP)]2+) (phen=1,10-phenanthroline) have been synthesized and characterized by elemental analysis, electrospray mass spectra and 1H NMR. The DNA-binding properties of the two complexes were investigated by spectroscopic and viscosity measurements. The results suggest that both complexes bind to DNA via an intercalative mode. Both complexes can enantioselectively interact with calf thymus DNA (CT-DNA) in a way. The Lambda enantiomer of complex 1 is slightly predominant for binding to CT-DNA to the Delta enantiomer. Under irradiation at 365 nm, both complexes have also been found to promote the photocleavage of plasmid pBR 322 DNA. Inhibitors studies suggest that singlet oxygen ((1)O2) and hydroxyl radical (*OH) play a significant role in the cleavage mechanism for both complexes. Moreover, the DNA-binding and photocleavage properties of both complexes were compared with that of [Ru(bpy)2(BPIP)]2+ and [Ru(phen)2(BPIP)]2+. The experimental results indicate that methene group existence or not have a significant effect on the DNA-binding and cleavage mechanism of these complexes.  相似文献   

7.
Ternary copper(II) complexes [CuLL'](ClO(4)), where HL is NSO-donor Schiff base (2-(methylthio)phenyl)salicylaldimine and L' is NN-donor phenanthroline bases like 1,10-phenanthroline (phen), dipyridoquinoxaline (dpq) and 2,9-dimethyl-1,10-phenanthroline (dmp), are prepared and structurally characterized by X-ray crystallography. The complexes have a distorted square-pyramidal (4+1) CuN(3)OS coordination geometry. While [CuL(phen)](ClO(4)) and [CuL(dpq)](ClO(4)) show axial sulfur ligation, [CuL(dmp)](ClO(4)) has the sulfur bonded at the equatorial site. The one-electron paramagnetic complexes exhibit axial electron paramagnetic resonance (EPR) spectra in dimethylformamide glass at 77 K. The complexes are redox active and a quasireversible electron transfer process near 0.0 V vs saturated calomel electrode (SCE) in DMF-Tris buffer (1:4 v/v at pH 7.2) involving Cu(II)/Cu(I) couple is observed for the phen and dpq complexes. The dmp complex exhibits an irreversible reduction process forming bis(dmp)copper(I) species. A profound effect of the substituents of the phenanthroline bases is observed on the binding of the complexes to the calf thymus (CT) and in the cleavage of supercoiled (SC) pUC19 DNA. The phen and dpq complexes show DNA cleavage activity in presence of mercaptopropionic acid (MPA). The dmp complex is cleavage inactive in presence of MPA. All the complexes show photocleavage activity when irradiated with a monochromatic UV light of 312 nm. The dpq complex also cleaves SC DNA on visible light irradiation at 436, 532 and 632.8 nm but with a longer exposure time and higher complex concentration. The cleavage reactions in presence of MPA are found to involve hydroxyl radical. The photocleavage reactions are found to occur under aerobic conditions showing an enhancement of cleavage in D(2)O and inhibition with azide addition suggesting formation of singlet oxygen as a reactive species. The roles of sulfur of the Schiff base as photosensitizer and the phenanthroline bases as minor groove binder, and their influence on the photocleavage activity are discussed. The quinoxaline ligand exhibits significant photosensitizing effect assisted by the copper(II) center.  相似文献   

8.
A phenylthiophenyl-bearing Ru(II) complex of [Ru(bpy)2(Hbptip)](PF6)2 {bpy?=?2,2′-bipyridine, Hbptip?=?2-(4-phenylthiophen-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline} was synthesized and characterized by elemental analysis, 1H NMR spectroscopy, and electrospray ionization mass spectrometry. The ground- and excited-state acid–base properties of the complex were studied by UV–visible absorption and photoluminescence spectrophotometric pH titrations and the negative logarithm values of the ground-state acid ionization constants were derived to be pK a1?=?1.31?±?0.09 and pK a2?=?5.71?±?0.11 with the pK a2 associated deprotonation/protonation process occurring over 3 pK a units more acidic than thiophenyl-free parent complex of [Ru(bpy)2(Hpip)]2+ {Hpip?=?2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline}. The calf thymus DNA-binding properties of [Ru(bpy)2(Hbptip)]2+ in Tris–HCl buffer (pH 7.1 and 50?mM NaCl) were investigated by DNA viscosities and density functional theoretical calculations as well as UV–visible and emission spectroscopy techniques of UV–visible and luminescence titrations, steady-state emission quenching by [Fe(CN)6]4?, DNA competitive binding with ethidium bromide, DNA melting experiments, and reverse salt effects. The complex was evidenced to bind to the DNA intercalatively with binding affinity being greater than those for previously reported analogs of [Ru(bpy)2(Hip)]2+, [Ru(bpy)2(Htip)]2+, and [Ru(bpy)2(Haptip)]2+ {Hip?=?1H-imidazo[4,5-f][1,10]phenanthroline, Htip?=?2-thiophenimidazo[4,5-f][1,10]phenanthroline, Haptip?=?2-(5-phenylthiophen-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline}.  相似文献   

9.
The ligand 2-(2-chloro-5-nitrophenyl)imidazo[4,5-f][1,10]phenanthroline(CNOIP) and its complexes [Co(bpy)(2)(CNOIP)](3+) (1) and [Co(phen)(2)(CNOIP)](3+) (2) (bpy=2,2'-bipyridine; phen=1,10-phenanthroline) have been synthesized and characterized. Binding of the two complexes with calf thymus DNA has been investigated by spectroscopic methods, cyclic voltammetry, viscosity, and electrophoresis measurements. The experimental results indicate that both complexes bind to DNA through an intercalative mode. In comparison with their parent complexes containing PIP ligand (PIP=2-phenylimidazo[4,5-f][1,10]phenanthroline), the introduction of NO(2) and Cl groups to the PIP ligand decreased the binding affinity of complexes 1 and 2 to CT DNA. Both complexes have also been found to promote the photocleavage of plasmid pBR 322 DNA, the hydroxyl radical (OH*) is suggested to be the reactive species responsible for the cleavage.  相似文献   

10.
Two ruthenium (II) complexes [Ru(dmb)2(APIP)](ClO4)2 (APIP=2-(2-aminophenyl)imidazo[4,5-f?][1,10]phenanthroline, dmb=4,4'-dimethyl-2,2'-bipyridine; 1) and [Ru(dmb)2(HAPIP)](ClO4)2 (HAPIP=2-(2-hydroxyl-4-aminophenyl)imidazo[4,5-f?][1,10]phenanthroline; 2) were synthesized and characterized. DNA binding was investigated by electronic absorption titration, luminescence spectra, thermal denaturation, viscosity measurements, and photocleavage. The DNA binding constants for complexes 1 and 2 were 4.20 (±0.14)×10(4) and 5.45 (±0.15)×10(4) M(-1). The results suggest that these complexes partially intercalate between the base pairs. The cytotoxicity of complexes 1 and 2 was evaluated by MTT assay. Cellular uptake was observed under fluorescence microscopy; complexes 1 and 2 can enter into the cytoplasm and accumulate in the nuclei. Apoptosis and the antioxidant activity against hydroxyl radicals (?OH) were also explored.  相似文献   

11.
Abstract

The octahedral Ru(II) complexes containing the 2(2,6-dimethoxypyridine-3-yl)-1H-imidazo(4,5-f)[1, 10]phenanthroline ligand of type [Ru(N-N)2(L)]2+, where N-N?=?phen (1,10-phenanthroline) (1), bpy (2,2'-bipyridine) (2), and dmb (4,4'-dimethyl-2,2'-bipyridine) (3); L(dmpip) = (2(2,6-dimethoxypyridine-3-yl)1Himidazo(4,5-f)[1, 10]phenanthroline), have been synthesized and characterized by UV–visible absorption, molar conductivity, elemental analysis, mass, IR, and NMR spectroscopic techniques. The physicochemical properties of the Ru(II) complexes were determined by UV–Vis absorption spectroscopy. The DNA binding studies have been explored by UV–visible absorption, fluorescence titrations, and viscosity measurements. The supercoiled pBR322 DNA cleavage efficiency of Ru(II) complexes 1–3 was investigated. The antimicrobial activity of Ru(II) complexes was done against Gram-positive and Gram-negative microorganisms. The in vitro anticancer activities of all the complexes were investigated by cell viability assay, apoptosis, cellular uptake, mitochondrial membrane potential detection, and semi-quantitative PCR on HeLa cells. The result indicates that the synthesized Ru(II) complexes probably interact with DNA through an intercalation mode of binding with complex 1 having slightly stronger DNA binding affinity and anticancer activity than 2 and 3.  相似文献   

12.
A series of octahedral Ru(II) polypyridyl complexes, [Ru(phen)(2)L](2+) (L=R-PIP and PIP=2-phenylimidazo[4,5-f][1,10]phenanthroline) were synthesized and characterized by elementary analysis, (1)H NMR and ES-MS, as well as UV-visible spectra and emission spectra. The antitumor activities of these complexes and their corresponding ligands were investigated against mouse leukemia L1210 cells, human oral epidermoid carcinoma KB cells, human promyelocytic leukemia cells (HL-60) and Bel-7402 liver cancer cells by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. It was found that the complexes [Ru(phen)(2)L](2+) (L=R-PIP) exert rather potent activities against all of these cell lines, especially for the KB cells (IC(50)=4.7+/-1.3 microM). The binding affinities of these Ru(II) complexes to CT-DNA (calf thymus DNA), as well as the DNA-unwinding properties on supercoiled pBR322 DNA were also investigated. The results showed that these Ru(II) polypyridyl complexes not only had an excellent DNA-binding property but also possessed a highly effective DNA-photocleavage ability. The structure-activity relationships and antitumor mechanism were also carefully discussed.  相似文献   

13.
A new asymmetry ligand pibi (pibi = 2-(pyridine-2-yl)-1-H-imidazo[4,5-f]benzo[d]imidazolone) and its ruthenium complexes with [Ru(L)2(pibi)]2+ (L = bpy (2, 2′-bipyridine), phen (1, 10-phenanthroline)), have been synthesized and characterized. The binding of two complexes with calf thymus DNA has been investigated by spectroscopic and viscosity measurement. The results indicate that both complexes can bind to CT-DNA through intercalative mode. Under irradiation at 365 nm, both complexes can partly promote the photocleavage of plasmid pBR322DNA. The low singlet oxygen generation abilities of the two complexes may be the factor for the low DNA photocleavage abilities.  相似文献   

14.
Metal susceptibility assays and spot plating were used to investigate the antimicrobial activity of enantiopure [Ru(phen)2dppz]2+ (phen =1,10‐phenanthroline and dppz = dipyrido[3,2‐a:2´,3´‐c]phenazine) and [μ‐bidppz(phen)4Ru2]4+ (bidppz =11,11´‐bis(dipyrido[3,2‐a:2´,3´‐c]phenazinyl)), on Gram‐negative Escherichia coli and Gram‐positive Bacillus subtilis as bacterial models. The minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) were determined for both complexes: while [μ‐bidppz(phen)4Ru2]4+ only showed a bactericidal effect at the highest concentrations tested, the antimicrobial activity of [Ru(phen)2dppz]2+ against B. subtilis was comparable to that of tetracyline. In addition, the Δ‐enantiomer of [Ru(phen)2dppz]2+ showed a 2‐fold higher bacteriostatic and bactericidal effect compared to the Λ‐enantiomer. This was in accordance with the enantiomers relative binding affinity for DNA, thus strongly indicating DNA binding as the mode of action.  相似文献   

15.
Four Ru(II) polypyridyl complexes, [Ru(bpy)2(7-NO2-dppz)]2+, [Ru(bpy)2(7-CH3-dppz)]2+, [Ru(phen)2(7-NO2-dppz)]2+, and [Ru(phen)2(7-CH3-dppz)]2+ (bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline), (7-Nitro-dppz = 7-Nitro dipyrido[3,2-a:2′-3′-c]phenazine, 7-CH3-dppz = 7-Methyl dipyrido[3,2-a:2′-3′-c]phenazine), have been synthesized and characterized by IR, UV, elemental analysis, 1H NMR, 13C-NMR, and mass spectroscopy. The DNA-binding properties of the four complexes were investigated by spectroscopic and viscosity measurements. The results suggest that all four complexes bind to DNA via an intercalative mode. Under irradiation at 365 nm, all four complexes were found to promote the photocleavage of plasmid pBR 322 DNA. Toxicological effects of the selected complexes were performed on industrially important yeasts (eukaryotic microorganisms).  相似文献   

16.
A series of mixed-ligand ruthenium(II) complexes of the type [Ru(en)(2)bpy](2+) (bpy=2,2-bipyridine; 1), [Ru(en)(2)phen](2+) (phen=1,10-phenantroline; 2), [Ru(en)(2)IP](2+) (IP=imidazo[4,5-f][1,10]phenanthroline; 3), and [Ru(en)(2)PIP](2+) (PIP=2-phenylimidazo[4,5-f][1,10]phenanthroline; 4) have been isolated and characterized by UV/VIS, IR, and (1)H-NMR spectral methods. The binding of the complexes with calf thymus DNA has been investigated by absorption, emission spectroscopy, viscosity measurements, DNA melting, and DNA photo-cleavage. The spectroscopic studies together with viscosity measurements and DNA melting studies support that complexes 1 and 2 bind to CT DNA (=calf thymus DNA) by groove mode. Complex 2 binds more avidly to CT DNA than complex 1, complexes 3 and 4 bind to CT DNA by intercalation mode, 4 binds more avidly to CT DNA than 3. Noticeably, the four complexes have been found to be efficient photosensitisers for strand scissions in plasmid DNA.  相似文献   

17.
A heterodinuclear (Ru(II), Co(III)) metal polypyridyl complex [(phen)2Ru(bpibH2)Co(phen)2]5+ {phen = 1,10-phenanthroline, bpibH2 = 1,4-bis([1,10]phebanthroline-[5,6-d]imidazol-2-yl)-benzene} has been designed and synthesized. The comparative study on the interactions of the Ru(II)-Co(III) complex with calf thymus DNA (CT-DNA) and yeast tRNA has been investigated by UV-visible spectroscopy, fluorescence spectroscopy, viscosity, as well as equilibrium dialysis and circular dichroism (CD). The antitumor activities of the complex have been evaluated by MTT {3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide} method and Giemsa staining experiment. These results indicate that the structures of nucleic acids have significant effects on the binding behaviors of metal complexes. Furthermore, the complex demonstrates different antitumor activity against selected tumor cell lines in vitro, and can make the cell apoptosis.  相似文献   

18.
Three binuclear Ru(II) complexes with two [Ru(bpy)2(pip)]2+-based subunits {where bpy = 2,2′-bipyridine and pip = 2-phenylimidazo[4,5-f][1,10]phenanthroline} being linked by varied lengths of flexible bridges, were synthesized and characterized by 1H NMR, elemental analysis, UV-visible (UV-vis) and photoluminescence spectroscopy. The structures of the three complexes were optimized by density functional theory calculations. The interaction of the complexes with calf thymus DNA was investigated by UV-vis and luminescence titrations, steady-state emission quenching by [Fe(CN)6]4−, DNA competitive binding with ethidium bromide, DNA melting experiments, and viscosity measurements. The experimental results indicated that the three complexes bound to the DNA most probably in a threading intercalation binding mode with high DNA binding constant values three orders of magnitude greater than the DNA binding constant value reported for proven DNA intercalator, mononuclear counterpart [Ru(bpy)2(p-mopip)]2+ {p-mopip = 2-(4-methoxylphenyl)imidazo[4,5-f][1,10]phenanthroline}.  相似文献   

19.
The binding modes of the [Ru(II)(1,10-phenanthroline)(L1L2) dipyrido[3,2-a:2′,3′-c]phenazine]2+ {[Ru(phen)(py) Cl dppz]+ (L1 = Cl, L2 = pyridine) and ([Ru(phen)(py)2dppz]2+ (L1 = L2 = pyridine)} to native DNA is compared to that of the [Ru(II)(1,10-phenanthroline)2dipyrido[3,2-a:2′,3′-c]phenazine]2+ complex ([Ru(phen)2dppz]2+) by various spectroscopic and hydrodynamic methods including electric absorption, linear dichroism (LD), fluorescence spectroscopy, and viscometric titration. All measured properties, including red-shift and hypochromism in the dppz absorption band, nearly perpendicular molecular plane of the dppz ligand with respect to the local DNA helix axis, prohibition of the ethidium binding, the light switch effect and binding stoichiometry, increase in the viscosity upon binding to DNA, increase in the melting temperature are in agreement with classical intercalation of dppz ligand of the [Ru(phen)2dppz]2+ complex, in which both phenanthroline ligand anchored to the DNA phosphate groups by electrostatic interaction. [Ru(phen)(py)2 dppz]2+ and [Ru(phen)(py) Cl dppz]+ complexes had one of the phenanthroline ligand replaced by either two pyridine ligands or one pyridine plus a chlorine ion. They exhibited similar protection from water molecules, interaction with DNA bases, and occupying site that is common with ethidium. The dppz ligand of these two Ru(II) complex were greatly tilted relative to the DNA helix axis, suggesting that the dppz ligand resides inside the DNA and is not perpendicular relative to the DNA helix axis. These observation suggest that anchoring the [Ru(phen)2dppz]2+complex by both phenanthroline is essential for the dppz ligand to be classically intercalated between DNA base-pairs.  相似文献   

20.
A novel complex, [Ru(phen)2pzip]2+1 (phen = 1,10-phenanthroline; pzip = 2-(pyrazine-2-yl)imidazo-[4,5-f][1,10]phenanthroline]), has been synthesized and characterized by elemental analysis, ES-MS, 1H NMR. The DNA-binding behaviors of this complex were studied by spectroscopic methods and viscosity measurements. The results indicate that the complex can bind to CT-DNA in an intercalative mode. When irradiated at 365 nm, complex 1 can promote the cleavage of plasmid pBR322DNA. Furthermore, Zn2+ can trigger the DNA cleavage of complex 1 without irradiation. The mechanism studies revealed that the DNA cleavage by complex 1 in the presence of Zn2+ is likely to proceed via a hydrolytic cleavage process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号