首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vascular endothelial growth factor A (VEGF-A) is well known for its key roles in blood vessel growth. Although most studies on VEGF and VEGF receptors have been focused on their functions in angiogenesis and in endothelial cells, the role of VEGF in cancer biology appears as an emerging area of importance. In this context, the presence of VEGF receptors in tumor cells strongly suggests that VEGF-A also promotes a wide range of functions, both in vitro and in vivo, all autocrine functions on tumor cells, including adhesion, survival, migration and invasion. Ultimately, refining our knowledge of VEGF signaling pathways in tumor cells should help us to understand why the current used treatments targeting the VEGF pathway in cancer are not universally effective in inhibiting metastasis tumors, and it should also provide new avenues for future therapies.  相似文献   

2.
We generated VEGF-null fibrosarcomas from VEGF-loxP mouse embryonic fibroblasts to investigate the mechanisms of tumor escape after VEGF inactivation. These cells were found to be tumorigenic and angiogenic in vivo in spite of the absence of tumor-derived VEGF. However, VEGF derived from host stroma was readily detected in the tumor mass and treatment with a newly developed anti-VEGF monoclonal antibody substantially inhibited tumor growth. The functional significance of stroma-derived VEGF indicates that the recruitment of stromal cells is critical for the angiogenic and tumorigenic properties of these cells. Here we identified PDGF AA as the major stromal fibroblast chemotactic factor produced by tumor cells, and demonstrated that disrupting the paracrine PDGFR alpha signaling between tumor cells and stromal fibroblasts by soluble PDGFR alpha-IgG significantly reduced tumor growth. Thus, PDGFR alpha signaling is required for the recruitment of VEGF-producing stromal fibroblasts for tumor angiogenesis and growth. Our findings highlight a novel aspect of PDGFR alpha signaling in tumorigenesis.  相似文献   

3.
Vascular endothelial growth factor A (VEGF-A) is well known for its key roles in blood vessel growth. Although most studies on VEGF and VEGF receptors have been focused on their functions in angiogenesis and in endothelial cells, the role of VEGF in cancer biology appears as an emerging area of importance. In this context, the presence of VEGF receptors in tumor cells strongly suggests that VEGF-A also promotes a wide range of functions, both in vitro and in vivo, all autocrine functions on tumor cells, including adhesion, survival, migration and invasion. Ultimately, refining our knowledge of VEGF signaling pathways in tumor cells should help us to understand why the current used treatments targeting the VEGF pathway in cancer are not universally effective in inhibiting metastasis tumors, and it should also provide new avenues for future therapies.  相似文献   

4.
5.
6.
Vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMP) regulate each other, contributing to tumor progression. We have previously reported that MMP9 induces the release of tumor VEGF, promoting ascites formation in human ovarian carcinoma xenografts. The aim of this study was to investigate whether tumor-derived VEGF regulated the expression of gelatinase by the stroma, influencing the invasive properties of ovarian tumors. Tumor variants derived from 1A9 human ovarian carcinoma, stably expressing VEGF(121) in the sense (1A9-VS-1) and antisense orientations (1A9-VAS-3), were used. In vivo, zymographic analysis of tumors from 1A9-VS-1 implanted in the peritoneal cavity of nude mice showed higher levels of gelatinases, particularly murine MMP9, indicating that VEGF stimulates host expression of the matrix-degrading enzyme. Murine MMP9 expression was also high in the ovaries of mice bearing 1A9-VS-1 tumors. The effect on host MMP9 activity was organ-specific. The levels of host pro-MMP9 in ovaries correlated with the plasma levels of tumor VEGF and with the selective invasion of the ovaries. Induction of host MMP9 expression in tumors and ovaries was independent of the site of tumor growth as it was seen in mice carrying both intraperitoneal and subcutaneous tumors. The anti-VEGF antibody bevacizumab (Avastin) inhibited MMP9 expression and tumor invasion in the ovaries of mice bearing 1A9-VS-1 tumors. These findings point to a complex cross-talk between VEGF and MMPs in the progression of ovarian tumor and suggest the possibility of using VEGF inhibitors to affect MMP-dependent tumor invasion.  相似文献   

7.
We have previously reported that breast cancer cells which overexpress HER2 produce higher levels of VEGF than cells with low levels of HER2. This study tested the hypothesis that dual targeting of the VEGF (with VEGF-Trap) and HER2 (with trastuzumab) pathways would result in greater growth inhibition of HER2-overexpressing breast cancer xenografts than either agent alone. In this study we found that human and murine endothelial cells expressed high levels of VEGF receptors (VEGFR1, VEGFR2, & VEGFR3). VEGF-Trap decreased levels of secreted VEGF derived from both human and murine cells and effectively blocked VEGF-induced tyrosine phosphorylation of VEGFR2. VEGF-Trap as a single treatment inhibited tumor microvessel density (MVD), tumor vasculature, cell proliferation, and tumor growth of BT474 xenografts in a dose-dependent manner from 2.5 mg/kg to 25 mg/kg. VEGF-Trap decreased levels of both human VEGF and PlGF protein in vivo. Trastuzumab as a single agent effectively inhibited BT474 tumor growth in a dose-dependent manner, associated with a decrease in human VEGF, tumor MVD and tumor cell proliferation. Treatment with a combination of VEGF-Trap (2.5-10 mg/kg) and trastuzumab (1 mg/kg) produced significantly greater inhibition of BT474tumor growth than either individual agent, associated with greater inhibition of tumor MVD and tumor cell proliferation. Thus, VEGF-Trap in combination with trastuzumab produces superior growth inhibition of tumor xenografts which overexpress HER2, which may result from inhibition of both tumor angiogenesis and proliferation. Similar mechanisms may contribute to the clinical anti-tumor activity of trastuzumab in combination with inhibitors of VEGF signaling pathway in women with breast cancers which overexpress HER2.  相似文献   

8.
Previous gene targeting studies have implicated an indispensable role of vascular endothelial growth factor (VEGF) in tumor angiogenesis, particularly in tumors of embryonal or endocrine origin. In contrast, we report here that transformation of VEGF-deficient adult fibroblasts (MDF528) with ras or neu oncogenes gives rise to highly tumorigenic and angiogenic fibrosarcomas. These aggressive VEGF-null tumors (528ras, 528neu) originated from VEGF(-/-) embryonic stem cells, which themselves were tumorigenically deficient. We also report that VEGF production by tumor stroma has a modest role in oncogene-driven tumor angiogenesis. Both ras and neu oncogenes down-regulated at least two endogenous inhibitors of angiogenesis [pigment epithelium derived factor (PEDF) and thrombospondin 1 (TSP-1)]. This is functionally important as administration of an antiangiogenic TSP-1 peptide (ABT-526) markedly inhibited growth of VEGF(-/-) tumors, with some ingress of pericytes. These results provide the first definitive genetic demonstration of the dispensability of tumor cell-derived VEGF in certain cases of 'adult' tumor angiogenesis, and thus highlight the importance of considering VEGF-independent as well as VEGF-dependent pathways when attempting to block this process pharmacologically.  相似文献   

9.
The role of bone marrow (BM)-derived precursor cells in tumor angiogenesis is not known. We demonstrate here that tumor angiogenesis is associated with recruitment of hematopoietic and circulating endothelial precursor cells (CEPs). We used the angiogenic defective, tumor resistant Id-mutant mice to show that transplantation of wild-type BM or vascular endothelial growth factor (VEGF)-mobilized stem cells restore tumor angiogenesis and growth. We detected donor-derived CEPs throughout the neovessels of tumors and Matrigel-plugs in an Id1+/-Id3-/- host, which were associated with VEGF-receptor-1-positive (VEGFR1+) myeloid cells. The angiogenic defect in Id-mutant mice was due to impaired VEGF-driven mobilization of VEGFR2+ CEPs and impaired proliferation and incorporation of VEGFR1+ cells. Although targeting of either VEGFR1 or VEGFR2 alone partially blocks the growth of tumors, inhibition of both VEGFR1 and VEGFR2 was necessary to completely ablate tumor growth. These data demonstrate that recruitment of VEGF-responsive BM-derived precursors is necessary and sufficient for tumor angiogenesis and suggest new clinical strategies to block tumor growth.  相似文献   

10.
Ocular infection with HSV causes corneal neovascularization (CV), an essential step in the pathogenesis of the blinding immunoinflammatory lesion stromal keratitis. The infection results in IL-17A production, which contributes to CV in ways that together serve to shift the balance between corneal concentrations of vascular endothelial growth factor A (VEGF-A) and the soluble vascular endothelial growth factor receptor 1 molecule, which binds to VEGF-A and blocks its function (a so-called VEGF trap). Accordingly, animals lacking responses to IL-17A signaling, either because of IL-17 receptor A knockout or wild-type animals that received neutralizing mAb to IL-17A, had diminished CV, compared with controls. The procedures reduced VEGF-A protein levels but had no effect on the levels of soluble vascular endothelial growth factor receptor 1. Hence the VEGF trap was strengthened. IL-17A also caused increased CXCL1/KC synthesis, which attracts neutrophils to the inflammatory site. Neutrophils further influenced the extent of CV by acting as an additional source of VEGF-A, as did metalloproteinase enzymes that degrade the soluble receptor, inhibiting its VEGF-blocking activity. Our results indicate that suppressing the expression of IL-17A, or increasing the activity of the VEGF trap, represents a useful approach to inhibiting CV and the control of an ocular lesion that is an important cause of human blindness.  相似文献   

11.
Characterization of the mechanism(s) of androgen-driven human angiogenesis could have significant implications for modeling new forms of anti-angiogenic therapies for CaP and for developing targeted adjuvant therapies to improve efficacy of androgen-deprivation therapy. However, models of angiogenesis by human endothelial cells localized within an intact human prostate tissue architecture are until now extremely limited. This report characterizes the burst of angiogenesis by endogenous human blood vessels in primary xenografts of fresh surgical specimens of benign prostate or prostate cancer (CaP) tissue that occurs between Days 6-14 after transplantation into SCID mice pre-implanted with testosterone pellets. The wave of human angiogenesis was preceded by androgen-mediated up-regulation of VEGF-A expression in the stromal compartment. The neo-vessel network anastomosed to the host mouse vascular system between Days 6-10 post-transplantation, the angiogenic response ceased by Day 15, and by Day 30 the vasculature had matured and stabilized, as indicated by a lack of leakage of serum components into the interstitial tissue space and by association of nascent endothelial cells with mural cells/pericytes. The angiogenic wave was concurrent with the appearance of a reactive stroma phenotype, as determined by staining for α-SMA, Vimentin, Tenascin, Calponin, Desmin and Masson's trichrome, but the reactive stroma phenotype appeared to be largely independent of androgen availability. Transplantation-induced angiogenesis by endogenous human endothelial cells present in primary xenografts of benign and malignant human prostate tissue was preceded by induction of androgen-driven expression of VEGF by the prostate stroma, and was concurrent with and the appearance of a reactive stroma phenotype. Androgen-modulated expression of VEGF-A appeared to be a causal regulator of angiogenesis, and possibly of stromal activation, in human prostate xenografts.  相似文献   

12.
Neuropilin-1 (NRP-1), a non-tyrosine kinase receptor of vascular endothelial growth factor-165 (VEGF165), was found expressed on endothelial and some tumor cells. Since its overexpression is correlated with tumor angiogenesis and progression, the targeting of NRP-1 could be a potential anti-cancer strategy. To explore this hypothesis, we identified a peptide inhibiting the VEGF165 binding to NRP-1 and we tested whether it was able to inhibit tumor growth and angiogenesis. To prove the target of peptide action, we assessed its effects on binding of radiolabeled VEGF165 to recombinant receptors and to cultured cells expressing only VEGFR-2 (KDR) or NRP-1. Antiangiogenic activity of the peptide was tested in vitro in tubulogenesis assays and in vivo in nude mice xenotransplanted in fat-pad with breast cancer MDA-MB-231 cells. Tumor volumes, vascularity and proliferation indices were determined. The selected peptide, ATWLPPR, inhibited the VEGF165 binding to NRP-1 but not to tyrosine kinase receptors, VEGFR-1 (flt-1) and KDR; nor did it bind to heparin. It diminished the VEGF-induced human umbilical vein endothelial cell proliferation and tubular formation on Matrigel and in co-culture with fibroblasts. Administration of ATWLPPR to nude mice inhibited the growth of MDA-MB-231 xenografts, and reduced blood vessel density and endothelial cell area but did not alter the proliferation indices of the tumor. In conclusion, ATWLPPR, a previously identified KDR-interacting peptide, was shown to inhibit the VEGF165 interactions with NRP-1 but not with KDR and to decrease the tumor angiogenesis and growth, thus validating, in vivo, NRP-1 as a possible target for antiangiogenic and antitumor agents.  相似文献   

13.
Vascular endothelial growth factor (VEGF-A) stimulating angiogenesis is required for tumor growth and progression. The conventional VEGF-A isoforms have been considered as pro-angiogenic factors. Another family of VEGF-A isoforms generated by alternative splicing, termed VEGFxxxb isoforms, has anti-angiogenic property, exemplified by VEGF165b. Here, we identify a new number of VEGFxxx family-VEGF111b induced by mitomycin C, although not detected in mitomycin C-unexposed ovarian cancer cells. SKOV3 cells were transfected with pcDNA3.1 empty vector, pcDNA3.1-VEGF111b or pcDNA3.1-VEGF165b to collect conditioned mediums respectively. VEGF111b overexpression inhibits proliferation, migration and tube formation of endothelial cell by inhibiting VEGF-R2 phosphorylation and its downstream signaling, similar to VEGF165b but slightly lower than VEGF165b. The anti-angiogenic property depends on the six amino acids of exon 8b of the VEGFxxxb isoforms. Our results show that VEGF111b is a novel potent anti-angiogenic agent that can target the VEGF-R2 and its signaling pathway to inhibit ovarian tumor growth.  相似文献   

14.
The VEGF/VPF (vascular endothelial growth factor/vascular permeability factor) ligands and receptors are crucial regulators of vasculogenesis, angiogenesis, lymphangiogenesis and vascular permeability in vertebrates. VEGF-A, the prototype VEGF ligand, binds and activates two tyrosine kinase receptors: VEGFR1 (Flt-1) and VEGFR2 (KDR/Flk-1). VEGFR1, which occurs in transmembrane and soluble forms, negatively regulates vasculogenesis and angiogenesis during early embryogenesis, but it also acts as a positive regulator of angiogenesis and inflammatory responses, playing a role in several human diseases such as rheumatoid arthritis and cancer. The soluble VEGFR1 is overexpressed in placenta in preeclampsia patients. VEGFR2 has critical functions in physiological and pathological angiogenesis through distinct signal transduction pathways regulating proliferation and migration of endothelial cells. VEGFR3, a receptor for the lymphatic growth factors VEGF-C and VEGF-D, but not for VEGF-A, regulates vascular and lymphatic endothelial cell function during embryogenesis. Loss-of-function variants of VEGFR3 have been identified in lymphedema. Formation of tumor lymphatics may be stimulated by tumor-produced VEGF-C, allowing increased spread of tumor metastases through the lymphatics. Mapping the signaling system of these important receptors may provide the knowledge necessary to suppress specific signaling pathways in major human diseases.  相似文献   

15.
Vascular endothelial growth factor A (VEGF-A) is a very important growth factor in angiogenesis and holds potential as both a predictive marker for anti-angiogenic cancer treatment and a prognostic variable. Consequently, reliable estimation of VEGF expression is crucial. Investigators immunostained whole tumor sections for VEGF-A, VEGF-B, and VEGFR-1 of invasive ductal carcinomas of the breast and scored the tumors manually with staining intensity as the only parameter and by a combination of qualitative and quantitative information. The investigators also introduce an automated method for analyzing VEGF expression (so-called AI score) using the same tumor sections. Analysis of 100% of the tumor area was performed and the results were compared with the reduced analysis of 25% of the tumor area. These analyses were performed at ×5 and ×10 magnification, and each analysis was repeated in a second run with a new delineation of the tumor area. The AI scores were correlated to the manual scoring of VEGF intensity, but reproducibility of manual IHC scores was rather poor. The AI scores were reproducible, and the restricted analysis of 25% of the tumor area at ×5 magnifications was the most efficient considering time consumption and data load.  相似文献   

16.
Induction of SPARC by VEGF in human vascular endothelial cells   总被引:7,自引:0,他引:7  
SPARC/osteonectin/BM-40 is a matricellular protein that is thought to be involved in angiogenesis and endothelial barrier function. Previously, we have detected high levels of SPARC expression in endothelial cells (ECs) adjacent to carcinomas of kidney and tongue. Although SPARC-derived peptide showed an angiogenic effect, intact SPARC itself inhibited the mitogenic activity of vascular endothelial growth factor (VEGF) for ECs by the inhibiting phosphorylation of flt-1 (VEGF receptor 1) and subsequent ERK activation. Thus, the role of SPARC in tumor angiogenesis, stimulation or inhibition, is still unclear. To clarify the role of SPARC in tumor growth and progression, we determined the effect of VEGF on the expression of SPARC in human microvascular EC line, HMEC-1, and human umbilical vein ECs. VEGF increased the levels of SPARC protein and steady-state levels of SPARC mRNA in serum-starved HMEC-1 cells. Inhibitors (SB202190 and SB203580) of p38, a mitogen-activated protein (MAP) kinase, attenuated VEGF-stimulated SPARC production in ECs. Since intact SPARC inhibits phosphorylation ERK MAP kinase in VEGF signaling, it was suggested that SPARC plays a dual role in the VEGF functions, tumor angiogenesis, and extravasation of tumors mediated by the increased permeability of endothelial barrier function.  相似文献   

17.
Vascular endothelial growth factor (VEGF)-A blockade has been validated clinically as a treatment for human cancers. Angiopoietin-2 (Ang-2) is a key regulator of blood vessel remodeling and maturation. In tumors, Ang-2 is up-regulated and an unfavorable prognostic factor. Recent data demonstrated that Ang-2 inhibition mediates anti-tumoral effects. We generated a tetravalent bispecific antibody (Ang-2-VEGF-TAvi6) targeting VEGF-A with 2 arms based on bevacizumab (Avastin®), and targeting Ang-2 with 2 arms based on a novel anti-Ang-2 antibody (LC06). The two Ang-2-targeting single-chain variable fragments are disulfide-stabilized and fused to the C-terminus of the heavy chain of bevacizumab. Treatment with Ang-2-VEGF-A-TAvi6 led to a complete abrogation of angiogenesis in the cornea micropocket assay. Metastatic spread and tumor growth of subcutaneous, orthotopic and anti-VEGF-A resistant tumors were also efficiently inhibited. These data further establish Ang-2-VEGF bispecific antibodies as a promising anti-angiogenic, anti-metastatic and anti-tumor agent for the treatment of cancer.  相似文献   

18.
19.
Tumor angiogenesis is a critical step for the growth and metastasis of solid tumors. Vascular endothelial growth factor (VEGF) is a specific and potent angiogenic factor and contributes to the development of solid tumors by promoting tumor angiogenesis. Therefore, it is a prime therapeutic target for the development of antagonists for treatment of cancer. We identified from peptide libraries arginine-rich hexapeptides that inhibit the interaction of VEGF(165) with VEGF receptor (IC(50) = 2-4 micrometer). They have no effect on binding of basic fibroblast growth factor to cellular receptor. The hexapeptides inhibit the proliferation of human umbilical vein endothelial cells induced by VEGF(165) without toxicity. The peptides bind to VEGF and inhibit binding of both VEGF(165) and VEGF(121), suggesting that the peptides interact with the main body of VEGF but not the heparin-binding domain that is absent in VEGF(121). The identified peptides block the angiogenesis induced by VEGF(165) in vivo in the chick chorioallantoic membrane and the rabbit cornea. Furthermore, one of the hexapeptides, RRKRRR, blocks the growth and metastasis of VEGF-secreting HM7 human colon carcinoma cells in nude mice. Based on our results, the arginine-rich hexapeptides may be effective for the treatment of various human tumors and other angiogenesis-dependent diseases that are related to the action of VEGF and could also serve as leads for development of more effective drugs.  相似文献   

20.
VEGF 家族及其在肿瘤生长中作用的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
血管内皮生长因子(Vascular Endothelial Growth Factor,VEGF)家族是一类多功能的细胞因子,在血管生成和淋巴管生成中具有直接和间接的调控作用,可促进内皮细胞增殖、促进血管生成以及增加血管的通透性。VEGF/VEGFR轴由多重配基和受体质量叠加交错组成,并且受体与配基结合具有专一性,在不同的细胞中具有不同的细胞类型表达和功能.启动VEGF信号通路,触发了一个网状的信号过程,从而促进血管内皮细胞生长、转移和存活。进来研究发现,VEGF的一个重要作用表现为可动员内皮祖细胞从骨髓向远处转移从而形成新生血管,因而有必要设计和发展针对这一途径的抑制因子。随着研究的深入,VEGF促进肿瘤血管生成的作用和与人类癌症的发病机制的关系是确定的,因此,抑制VEGF途径被确认为是一种重要的有效的抗癌模式  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号