首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An assay for total hormone-sensitive lipase (HSL) in rat fat cells was devised in which fat-associated HSL was solubilized with ether, and triolein or cholesteryloleate was used as substrate. Norepinephrine (NE) caused marked release of glycerol from fat cells but did not activate HSL as estimated using triolein or cholesteryloleate as substrate. Propranolol, a beta-blocker, inhibited NE-induced lipolysis in fat cells without a concomitant reduction in HSL activity. The antilipolytic action of insulin on NE-induced lipolysis could not be explained by a decrease in HSL activity. Neither ACTH-induced lipolysis in fat cells nor its inhibition by insulin was accompanied by matching fluctuations in HSL activity. These results indicate that neither NE and ACTH-induced lipolysis in fat cells, nor the antilipolytic actions of propranolol and insulin, involve fluctuations in HSL activity.  相似文献   

2.
《PLoS biology》2013,11(2)
When energy is needed, white adipose tissue (WAT) provides fatty acids (FAs) for use in peripheral tissues via stimulation of fat cell lipolysis. FAs have been postulated to play a critical role in the development of obesity-induced insulin resistance, a major risk factor for diabetes and cardiovascular disease. However, whether and how chronic inhibition of fat mobilization from WAT modulates insulin sensitivity remains elusive. Hormone-sensitive lipase (HSL) participates in the breakdown of WAT triacylglycerol into FAs. HSL haploinsufficiency and treatment with a HSL inhibitor resulted in improvement of insulin tolerance without impact on body weight, fat mass, and WAT inflammation in high-fat-diet–fed mice. In vivo palmitate turnover analysis revealed that blunted lipolytic capacity is associated with diminution in FA uptake and storage in peripheral tissues of obese HSL haploinsufficient mice. The reduction in FA turnover was accompanied by an improvement of glucose metabolism with a shift in respiratory quotient, increase of glucose uptake in WAT and skeletal muscle, and enhancement of de novo lipogenesis and insulin signalling in liver. In human adipocytes, HSL gene silencing led to improved insulin-stimulated glucose uptake, resulting in increased de novo lipogenesis and activation of cognate gene expression. In clinical studies, WAT lipolytic rate was positively and negatively correlated with indexes of insulin resistance and WAT de novo lipogenesis gene expression, respectively. In obese individuals, chronic inhibition of lipolysis resulted in induction of WAT de novo lipogenesis gene expression. Thus, reduction in WAT lipolysis reshapes FA fluxes without increase of fat mass and improves glucose metabolism through cell-autonomous induction of fat cell de novo lipogenesis, which contributes to improved insulin sensitivity.  相似文献   

3.
Objective: The common C825T polymorphism of the gene that encodes the G protein β3 subunit has been shown to influence lipolysis in human adipocytes and to be associated with hypertension, body fat distribution, and obesity. In addition, it has been shown to be associated with insulin resistance in a small group of hypertensive subjects. We investigated whether this polymorphism contributed to the variability in obesity in our population from southern Germany and whether it was associated with insulin sensitivity of lipolysis and/or glucose disposal. Research Methods and Procedures: We determined percentage body fat, body fat distribution, glucose tolerance [oral glucose‐tolerance test (OGTT)], insulin sensitivity, and serum free fatty acids using data from OGTTs (N = 774) and clamp (euglycemic hyperinsulinemic clamp, N = 216) in normal and impaired glucose tolerant subjects who were genotyped for this polymorphism. Results: Compared with noncarriers of the C825T mutation, subjects with the C825T variant (prevalence ~32%) had higher percentage body fat (p = 0.02) and higher BMI (p = 0.03). No conclusive effect was seen on serum free fatty acids measured either during fasting or at the end of a 2‐hour OGTT. Insulin sensitivity determined during the OGTT and during the clamp, both adjusted for age, gender, and percentage body fat, was not different between the genotypes (p = 0.33 and p = 0.48, respectively). Discussion: We have concluded that the C825T polymorphism in the G protein β3 subunit played an important role in the determination of obesity in this German population. However, it probably had no direct effects on insulin sensitivity of lipolysis and glucose disposal.  相似文献   

4.
Lipid metabolism plays an important role in glucose homeostasis under normal and pathological conditions. In adipocytes, skeletal muscle, and pancreatic beta-cells, lipids are mobilized from acylglycerides by the hormone-sensitive lipase (HSL). Here, the consequences of a targeted disruption of the HSL gene for glucose homeostasis were examined. HSL null mice were slightly hyperglycemic in the fasted, but not fed state, which was accompanied by moderate hyperinsulinemia. During glucose challenges, however, disposal of the sugar was not affected in HSL null mice, presumably because of release of increased amounts of insulin. Impaired insulin sensitivity was further indicated by retarded glucose disposal during an insulin tolerance test. A euglycemic hyperinsulinemic clamp revealed that hepatic glucose production was insufficiently blocked by insulin in HSL null mice. In vitro, insulin-stimulated glucose uptake into soleus muscle, and lipogenesis in adipocytes were moderately reduced, suggesting additional sites of insulin resistance. Morphometric analysis of pancreatic islets revealed a doubling of beta-cell mass in HSL null mice, which is consistent with an adaptation to insulin resistance. Insulin secretion in vitro, examined by perifusion of isolated islets, was not impacted by HSL deficiency. Thus, HSL deficiency results in a moderate impairment of insulin sensitivity in multiple target tissues of the hormone but is compensated by hyperinsulinemia.  相似文献   

5.
The aim of the present study was to assess whether a standard hyperinsulinemic-euglycemic clamp can provide an estimate for the antilipolytic insulin sensitivity. For this purpose, we infused 9 non-obese, healthy volunteers with [2H5]glycerol and used the glycerol rate of appearance (Ra) in plasma as an index for systemic lipolysis during a standard (1 mU/kg x min, 120 min) and a 3-step (0.1, 0.25, 1.0 mU/kg x min) hyperinsulinemic-euglycemic clamp. The insulin concentration, which half-maximally suppressed lipolysis (EC50) in the three-step clamp, was considered to be the gold standard for the antilipolytic insulin sensitivity. Glycerol Ra decreased from 1.53+/-0.11 micromol/kg x min to 0.60+/-0.09 micromol/kg x min (p <0.001) during the standard clamp. The decrease in Ra at most time points during the standard clamp significantly correlated with the EC50. The highest correlation for the % decrease of glycerol Ra from baseline was found at 60 min (r = 0.96, p < 0.001) making this parameter a useful index for the antilipoytic insulin sensitivity. Neither plasma glycerol nor plasma free fatty acid (FFA) concentrations were significantly correlated with the EC50. In conclusion, the standard hyperinsulinemic-euglycemic clamp in combination with isotopic determination of glycerol Ra provides a reasonable estimate for the antilipolytic insulin sensitivity. In healthy subjects, the parameter best suited to estimate the insulin EC50 (by linear correlation) was the percentage decrease of glycerol Ra at 60 min.  相似文献   

6.
The effects of insulin on the suppression of lipolysis are neither fully understood nor quantified. We examined a variety of mathematical models analogous to the minimal model of glucose disposal (MMG) to quantify the combined influence of insulin on lipolysis and glucose disposal during an insulin-modified frequently sampled intravenous glucose tolerance test. The tested models, which include two previously published ones, consisted of separate compartments for plasma free fatty acids (FFA), glucose, and insulin. They differed in the number of compartments and in the action of insulin to suppress lipolysis that decreased the plasma FFA level. In one category of models, a single insulin compartment acted on both glucose and FFA simultaneously. In a second category, there were two insulin compartments, each acting on FFA and glucose independently. For each of these two categories, we tested 11 variations of how insulin suppressed lipolysis. We also tested a model with an additional glucose compartment that acted on FFA. These 23 models were fit to the plasma FFA and glucose concentrations of 102 subjects individually. Using Bayesian model comparison methods, we selected the model that best balanced fit and minimized model complexity. In the best model, insulin suppressed lipolysis via a Hill function through a remote compartment that acted on both glucose and FFA simultaneously, and glucose dynamics obeyed the classic MMG.  相似文献   

7.
We previously identified a hormone sensitive lipase (HSL) promoter variant, -60C>G, which in vitro exhibits 40% reduced promoter activity. In this study we examined the effect of the -60C>G on glycemic and lipid measures in the population based Ely study of metabolic function and insulin resistance in 218 middle-aged men and 276 middle-aged women. Adipose tissue HSL is the rate-limiting step in triglyceride lipolysis, generating free fatty acids for energy utilization. HSL is also expressed in pancreatic beta-cells where its activity therefore may affect insulin secretion. In the women, carriers of the HSL -60G allele had significantly lower fasting insulin levels (P=0.0005) and a lower total area under the curve for insulin during the oral glucose tolerance test (P=0.005). There was no demonstrable association in men with these measures of insulin sensitivity but carriers of the -60G allele had significantly lower fasting non-esterified fatty acid (NEFA) levels (P=0.025) and higher low density lipoprotein cholesterol levels (P=0.02) than men who were non-carriers. This study provides additional evidence for a role for HSL in the development of insulin resistance, from which carriers of the -60G allele, associated here with markers of insulin sensitivity in women, and with lower NEFA levels in men, might be protected.  相似文献   

8.
Hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) regulate adipocyte lipolysis in rodents. The purpose of this study was to compare the roles of these lipases for lipolysis in human adipocytes. Subcutaneous adipose tissue was investigated. HSL and ATGL protein expression were related to lipolysis in isolated mature fat cells. ATGL or HSL were knocked down by RNA interference (RNAi) or selectively inhibited, and effects on lipolysis were studied in differentiated preadipocytes or adipocytes derived from human mesenchymal stem cells (hMSC). Subjects were all women. There were 12 lean controls, 8 lean with polycystic ovary syndrome (PCOS), and 27 otherwise healthy obese subjects. We found that norepinephrine-induced lipolysis was positively correlated with HSL protein levels (P < 0.0001) but not with ATGL protein. Women with PCOS or obesity had significantly decreased norepinephrine-induced lipolysis and HSL protein expression but no change in ATGL protein expression. HSL knock down by RNAi reduced basal and catecholamine-induced lipolysis. Knock down of ATGL decreased basal lipolysis but did not change catecholamine-stimulated lipolysis. Treatment of hMSC with a selective HSL inhibitor during and/or after differentiation in adipocytes reduced basal lipolysis by 50%, but stimulated lipolysis was inhibited completely. In contrast to findings in rodents, ATGL is of less importance than HSL in regulating catecholamine-induced lipolysis and cannot replace HSL when this enzyme is continuously inhibited. However, both lipases regulate basal lipolysis in human adipocytes. ATGL expression, unlike HSL, is not influenced by obesity or PCOS.  相似文献   

9.
10.
A role for glucagon-like peptide 1 (GLP-1) has been suggested in stimulating beta-cell lipolysis via elevation of cAMP and activation of protein kinase A, which in turn may activate hormone-sensitive lipase (HSL), thereby contributing to fatty acid generation (FFA) from intracellular triglyceride stores. FFAs may then be metabolized to a lipid signal, which is required for optimal glucose-stimulated insulin secretion. Since HSL is expressed in islet beta-cells, this effect could contribute to the stimulation of insulin secretion by GLP-1, provided that a lipid signal of importance for insulin secretion is generated. To examine this hypothesis, we have studied the acute effect of GLP-1 on isolated mouse islets from normal mice and from mice with high-fat diet induced insulin resistance. We found, however, that although GLP-1 (100 nM) markedly potentiated glucose-stimulated insulin secretion from islets of both feeding groups, the peptide was not able to stimulate islet palmitate oxidation or increase lipolysis measured as glycerol release. This indicates that a lipid signal does not contribute to the acute stimulation of insulin secretion by GLP-1. To test whether lipolysis might be involved in the islet effects of long-term GLP-1 action, mice from the two feeding groups were chronically treated with exendin-4, a peptide that lowers blood glucose by interacting with GLP-1 receptors, in order to stimulate insulin secretion, for 16 days before isolation of the islets. The insulinotropic effects of GLP-1 and forskolin were exaggerated in isolated islets from exendin-4 treated mice given a high-fat diet, with a augmented palmitate oxidation as well as islet lipolysis at high glucose levels in these islets. Exendin-4 treatment had less impact on mice fed a normal diet. From these results we conclude that while GLP-1 does not seem to induce beta-cell lipolysis acutely in mouse islets, the peptide affects beta-cell fat metabolism after long-term adaptation to GLP-1 receptor stimulation.  相似文献   

11.
12.
TNF-α potently stimulates basal lipolysis in adipocytes, which may contribute to hyperlipidemia and peripheral insulin resistance in obesity. Recent studies show that adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) act sequentially in catalyzing the first two steps of adipose lipolysis in response to β-adrenergic stimulation. Here, we sought to determine their functional roles in TNF-α-induced lipolysis. Silencing of ATGL expression in adipocytes almost completely abolished basal and TNF-α-induced glycerol release. In comparison, the glycerol release under the same conditions was only partially decreased upon reduction in expression of either HSL or the ATGL coactivator CGI-58. Interestingly, overexpression of ATGL restored the lipolytic rates in cells with silenced HSL or CGI-58, indicating a predominant role for ATGL. While expression of ATGL, HSL and CGI-58 remains mostly unaffected, TNF-α treatment caused a rapid abrogation of the ATGL inhibitory protein G0S2. TNF-α drastically decreased the level of G0S2 mRNA, and the level of G0S2 protein could be maintained by inhibiting proteasomal protein degradation using MG-132. Furthermore, coexpression of G0S2 was able to significantly decrease TNF-α-stimulated lipolysis mediated by overexpressed ATGL or CGI-58. We propose that the early reduction in G0S2 content is permissive for TNF-α-induced lipolysis.  相似文献   

13.
We have separated the effect of insulin on glucose distribution/transport, glucose disposal, and endogenous production (EGP) during an intravenous glucose tolerance test (IVGTT) by use of a dual-tracer dilution methodology. Six healthy lean male subjects (age 33 +/- 3 yr, body mass index 22.7 +/- 0.6 kg/m(2)) underwent a 4-h IVGTT (0.3 g/kg glucose enriched with 3-6% D-[U-(13)C]glucose and 5-10% 3-O-methyl-D-glucose) preceded by a 2-h investigation under basal conditions (5 mg/kg of D-[U-(13)C]glucose and 8 mg/kg of 3-O-methyl-D-glucose). A new model described the kinetics of the two glucose tracers and native glucose with the use of a two-compartment structure for glucose and a one-compartment structure for insulin effects. Insulin sensitivities of distribution/transport, disposal, and EGP were similar (11.5 +/- 3.8 vs. 10.4 +/- 3.9 vs. 11.1 +/- 2.7 x 10(-2) ml small middle dot kg(-1) small middle dot min(-1) per mU/l; P = nonsignificant, ANOVA). When expressed in terms of ability to lower glucose concentration, stimulation of disposal and stimulation of distribution/transport accounted each independently for 25 and 30%, respectively, of the overall effect. Suppression of EGP was more effective (P < 0.01, ANOVA) and accounted for 50% of the overall effect. EGP was suppressed by 70% (52-82%) (95% confidence interval relative to basal) within 60 min of the IVGTT; glucose distribution/transport was least responsive to insulin and was maximally activated by 62% (34-96%) above basal at 80 min compared with maximum 279% (116-565%) activation of glucose disposal at 20 min. The deactivation of glucose distribution/transport was slower than that of glucose disposal and EGP (P < 0.02) with half-times of 207 (84-510), 12 (7-22), and 29 (16-54) min, respectively. The minimal-model insulin sensitivity was tightly correlated with and linearly related to sensitivity of EGP (r = 0.96, P < 0.005) and correlated positively but nonsignificantly with distribution/transport sensitivity (r = 0.73, P = 0.10) and disposal sensitivity (r = 0.55, P = 0.26). We conclude that, in healthy subjects during an IVGTT, the two peripheral insulin effects account jointly for approximately one-half of the overall insulin-stimulated glucose lowering, each effect contributing equally. Suppression of EGP matches the effect in the periphery.  相似文献   

14.
The effect of non-selective (theophylline) inhibition of cyclic AMP breakdown on norepinephrine stimulated lipolysis rate was investigated in subcutaneous adipose tissue of obese subjects. In addition, changes in interstitial glucose and lactate concentration were assessed by means of the microdialysis technique. The interaction of endogenous released insulin and theophylline on adipocyte metabolism was determined. Theophylline and norepinephrine alone increased glycerol outflow significantly. When both agents were perfused in combination, interstitial glycerol concentration increased further. The enhanced glycerol level due to theophylline application was slightly decreased by insulin. In the presence of theophylline, extracellular glucose concentration increased, in contrast to the catecholamine. Norepinephrine decreased interstitial glucose level. When both drugs were added in combination, the level of interstitial glucose increased to about 1 mM, greater than with theophylline alone. With each intervention, lactate was synthesized. Local adipose tissue blood flow was increased by theophylline and theophylline plus norepinephrine. In conclusion, post-receptor mechanisms increased norepinephrine maximal stimulated lipolysis rate in subcutaneous adipose tissue. Glucose uptake was inhibited by the non-specific inhibitor of phosphodiesterase. The effect of insulin on inhibition of lipolysis was modest but sustained in the presence of high theophylline (10(-4) M) concentration. Phosphodiesterase activity may be relatively low in obese subjects in comparison with lean subjects. In lean subjects theophylline caused a transient reversal of the antilipolytic effect of insulin.  相似文献   

15.
We have shown that insulin controls endogenous glucose production (EGP) indirectly, via suppression of adipocyte lipolysis. Free fatty acids (FFA) and EGP are suppressed proportionately, and when the decline in FFA is prevented during insulin infusion, suppression of EGP is also prevented. The present study tested the hypothesis that suppression of lipolysis under conditions of constant insulin would yield a suppression of EGP. N(6)-cyclohexyladenosine (CHA) was used to selectively suppress adipocyte lipolysis during euglycemic clamps in conscious male dogs. FFA suppression by CHA caused suppression of EGP. Liposyn control experiments, which maintained FFA levels above basal during CHA infusion, completely prevented the decline in EGP, whereas glycerol control experiments, which maintained glycerol levels close to basal, did not prevent a decline in EGP. These controls suggest that the EGP suppression was secondary to the suppression of FFA levels specifically. A difference in the sensitivity of FFA and EGP suppression (FFA were suppressed approximately 85% whereas EGP only declined approximately 40%) was possibly caused by confounding effects of CHA, including an increase in catecholamine and glucagons levels during CHA infusion. Thus suppression of lipolysis under constant insulin causes suppression of EGP, despite a significant rise in catecholamines.  相似文献   

16.
Long-term cytokine-mediated inflammation is a risk factor for obesity and type 2 diabetes mellitus (T2DM). Our previous studies reveal significant associations between promoter single nucleotide polymorphisms (SNPs) of interleukin (IL)-4 and T2DM, as well as between SNPs in genes encoding IL-4/IL-4 receptor and high density lipoproteins. Our animal study reveals that IL-4 regulates glucose/lipid metabolism by promoting glucose tolerance and inhibiting lipid deposits. The above results strongly suggest the involvement of IL-4 in energy homeostasis. In the present study, we focus on examining the regulatory mechanism of IL-4 to lipid metabolism. Our results show that IL-4 inhibits adipogenesis by downregulating the expression of peroxisome proliferator-activated receptor-γ and CCAAT/enhancer-binding protein-α. Additionally, IL-4 promotes lipolysis by enhancing the activity and translocation of hormone sensitive lipase (HSL) in mature adipocytes, which suggests that IL-4 plays a pro-lipolytic role in lipid metabolism by boosting HSL activity. Our results demonstrate that IL-4 harbors pro-lipolysis capacity by inhibiting adipocyte differentiation and lipid accumulation as well as by promoting lipolysis in mature adipocytes to decrease lipid deposits. The above findings uncover the novel roles of IL-4 in lipid metabolism and provide new insights into the interactions among cytokine/immune responses, insulin sensitivity, and metabolism.  相似文献   

17.
During the fasting state, insulin reduces nonesterified fatty acid (NEFA) appearance in the systemic circulation mostly by suppressing intracellular lipolysis in the adipose tissue. In the postprandial state, insulin may also control NEFA appearance through enhanced trapping into the adipose tissue of NEFA derived from intravascular triglyceride lipolysis. To determine the contribution of suppression of intracellular lipolysis in the modulation of plasma NEFA metabolism by insulin during enhanced intravascular triglyceride lipolysis, 10 healthy nonobese subjects underwent pancreatic clamps at fasting vs. high physiological insulin level with intravenous infusion of heparin plus Intralipid. Nicotinic acid was administered orally during the last 2 h of each 4-h clamp to inhibit intracellular lipolysis and assess insulin's effect on plasma NEFA metabolism independently of its effect on intracellular lipolysis. Stable isotope tracers of palmitate, acetate, and glycerol were used to assess plasma NEFA metabolism and total triglyceride lipolysis in each participant. The glycerol appearance rate was similar during fasting vs. high insulin level, but plasma NEFA levels were significantly lowered by insulin. Nicotinic acid significantly blunted the insulin-mediated suppression of plasma palmitate appearance and oxidation rates by approximately 60 and approximately 70%, respectively. In contrast, nicotinic acid did not affect the marked stimulation of palmitate clearance by insulin. Thus most of the insulin-mediated reduction of plasma NEFA appearance and oxidation can be explained by suppression of intracellular lipolysis during enhanced intravascular triglyceride lipolysis in healthy humans. Our results also suggest that insulin may affect plasma NEFA clearance independently of the suppression of intracellular lipolysis.  相似文献   

18.
Sulforaphane, an aliphatic isothiocyanate derived from cruciferous vegetables, is known for its antidiabetic properties. The effects of sulforaphane on lipid metabolism in adipocytes are not clearly understood. Here, we investigated whether sulforaphane stimulates lipolysis. Mature adipocytes were incubated with sulforaphane for 24 h and analyzed using a lipolysis assay which quantified glycerol released into the medium. We investigated gene expression of hormone-sensitive lipase (HSL), and levels of HSL phosphorylation and AMP-activated protein kinase on sulforaphane-mediated lipolysis in adipocytes. Sulforaphane promoted lipolysis and increased both HSL gene expression and HSL activation. Sulforaphane suppressed AMPK phosphorylation at Thr-172 in a dose-dependent manner, which was associated with a decrease in HSL phosphorylation at Ser-565, enhancing the phosphorylation of HSL Ser-563. Taken together, these results suggest that sulforaphane promotes lipolysis via hormone sensitive lipase activation mediated by decreasing AMPK signal activation in adipocytes.  相似文献   

19.
We have studied the in vivo and in vitro effects of Topiramate (TPM) in female Zucker diabetic fatty (ZDF) rats. After weight matching, drug treatment had a marked effect to lower fasting glucose levels of relatively normoglycemic animals as well as during an oral glucose tolerance test. The glucose clamp studies revealed a approximately 30% increased glucose disposal, increased hepatic glucose output (HGO) suppression from approximately 30 to 60%, and an increased free fatty acid suppression from 40 to 75%. Therefore, TPM treatment led to enhanced insulin sensitivity at the level of tissue glucose disposal (increased ISGDR), liver (increased inhibition of HGO), and adipose tissue (enhanced suppression of lipolysis). When soleus muscle strips of control or TPM-treated ZDF rats were studied ex vivo, insulin-stimulated glucose transport was not enhanced in the drug-treated animals. In contrast, when isolated adipocytes were studied ex vivo, a marked increase (+55%) in insulin-stimulated glucose transport was observed. In vitro treatment of muscle strips and rat adipocytes showed no effect on glucose transport in muscle with a 40% increase in insulin-stimulated adipocyte glucose transport. In conclusion, 1) TPM treatment leads to a decrease in plasma glucose and increased in vivo insulin sensitivity; 2) insulin sensitization was observed in adipocytes, but not muscle, when tissues were studied ex vivo or in vitro; and 3) TPM directly enhances insulin action in insulin-resistant adipose cells in vitro. Thus the in vivo effects of TPM treatment appear to be exerted through adipose tissue.  相似文献   

20.
Glycerol release from the human forearm which is generally used as a semiquantitative index of intramuscular lipolysis was studied under different hormonal influence and substrate supply in healthy volunteers and juvenile diabetics using the forearm technique. Acute insulin deficiency in juvenile diabetics failed stimulating the rate of muscular lipolysis since the rates of glycerol release in normals and diabetics were the same. In addition, in normal volunteers high physiological levels of insulin caused by an intraarterial infusion of the hormone exhibited no effect on the glycerol release from deep forearm tissue. Similarly, an intraarterial infusion of metaproterenol did not accelerate muscular glycerol release in normal man. However, in juvenile diabetics in acute insulin deficiency the same dose of the catecholamine increased the rate of muscular glycerol production. Elevated substrate supply during intravenous infusion of glucose or fructose yielded increased uptake of glucose and fructose into the deep forearm tissue and thereby promptly blocked muscular glycerol release in normal volunteers and in juvenile diabetics. These findings suggest that the rate of lipolysis in muscle tissue is not primarily under the control of hormones but rather by substrate supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号