首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
The distal part of the long tail fibers of the Escherichia coli phage T4 consists of a dimer of protein 37. A fragment of the corresponding gene, encoding 253 amino acids, was inserted into several different sites within the cloned gene for the 325-residue outer membrane protein OmpA. In plasmid pTU T4-5 the fragment was inserted once and in pTU T4-10 tandemly twice between the codons for residues 153 and 154 of the OmpA protein. In pTU T4-22 two fragments were present, in tandem, between the codons for residues 45 and 46 of this protein. In pIN T4-6 one fragment was inserted into the ompA gene immediately following the part encoding the signal sequence. The corresponding mature proteins consist, in this order, of 605, 860, 835, and 279 amino acid residues. All precursor proteins were processed and translocated across the plasma membrane. Hence, not only can the OmpA protein serve as a vehicle for export of a nonsecretory protein, but the signal sequence alone can also mediate export of such a protein. Export of the pro-OmpA protein depends on the SecA protein. Export of the tail fiber fragment expressed from pIN T4-6 remained SecA dependent. Thus, the secA pathway in this case is chosen by the signal peptide. It is proposed that a signal peptide can mediate translocation of nonsecretory proteins as long as they are export-compatible. The inability of a signal sequence to mediate export of some proteins appears to be due to export incompatibility of the protein rather than to the absence of information, within the mature part of the polypeptide, which would be required for translocation.  相似文献   

2.
The 325-residue OmpA protein, which is synthesized as a precursor with a 21-residue signal sequence, is a polypeptide of the outer membrane of Escherichia coli K-12. The signal peptide is able to direct translocation across the plasma membrane of virtually any fragment of this protein. It had, therefore, been concluded that information required for this translocation does not exist within the mature part of the protein. This view has been criticized and it was suggested that our data showed that both the signal sequence and residues within the first 44 amino acid residues of the mature protein contributed to an optimal translocation mechanism. It is shown that, at least as far as is detectable, this is not so. The apparent rates of processing of various pro-OmpA constructs were measured. It was found that these rates did not depend on the presence of amino acid residues 4 through 45 but on the size of the polypeptides; the processing rate decreased with decreasing size. A possible explanation for this phenomenon is offered. While the results do not exclude the possibility that a defined area of the mature protein is involved in optimizing translocation, there is so far no evidence for it.  相似文献   

3.
Summary The gene ompA encodes a major outer membrane protein of Escherichia coli. Localized mutagenesis of the part of the gene corresponding to the 21-residue signal sequence and the first 45 residues of the protein resulted in alterations which caused cell lysis when expressed. DNA sequence analyses revealed that in one mutant type the last CO2H-terminal residue of the signal sequence, alanine, was replaced by valine. The proteolytic removal of the signal peptide was much delayed and most of the unprocessed precursor protein was fractioned with the outer membrane. However, this precursor was completely soluble in sodium lauryl sarcosinate which does not solubilize the OmpA protein or fragments thereof present in the outer membrane. Synthesis of the mutant protein did not inhibit processing of the OmpA or OmpF proteins. In the other mutant type, multiple mutational alterations had occurred leading to four amino acid substitutions in the signal sequence and two affecting the first two residues of the mature protein. A reduced rate of processing could not be clearly demonstrated. Membrane fractionation suggested that small amounts of this precursor were associated with the plasma membrane but synthesis of this mutant protein also did not inhibit processing of the wild-type OmpA or OmpF proteins. Several lines of evidence left no doubt that the mature, mutant protein is stably incorporated into the outer membrane. It is suggested that the presence, in the outer membrane, of the mutant precursor protein in the former case, or of the mutant protein in the latter case perturbs the membrane architecture enough to cause cell death.  相似文献   

4.
Results of studies, mostly using the outer membrane, 325 residue protein OmpA, are reviewed which concern its translocation across the plasma membrane and incorporation into the outer membrane ofEscherichia coli. For translocation, neither a unique export signal, acting in a positive fashion within the mature part of the precursor, nor a unique conformation of the precursor is required. Rather, the mature part of a secretory protein has to be export-compatible. Export-incompatibility can be caused by a stretch of 16 (but not 8 or 12) hydrophobic residues, too low a size of the polypeptide (smaller than 75 residue precursors), net positive charge at the N-terminus, or lack of a turn potential at the same site. It is not yet clear whether binding sites for chaperonins (SecB, trigger factor, GroEL) within OmpA are importantin vivo. The mechanism of sorting of outer membrane proteins is not yet understood. The membrane part of OmpA, encompassing residues 1 to about 170, it thought to traverse the membrane eight times in antiparallel -sheet conformation. At least the structure of the last -strand (residues 160–170) is of crucial importance for membrane assembly. It must be amphiphilic or hydrophobic, these properties must extend over at least nine residues, and it must not contain a proline residue at or near its center. Membrane incorporation of OmpA involves a conformational change of the protein and it could be that the last -strand initiates folding and assembly in the outer membrane.  相似文献   

5.
On the basis of the biophysical studies on the synthetic mutant (Ile-8----Asn) OmpA signal peptide in the preceding paper (Hoyt, D. C., and Gierasch, L.M. (1991) J. Biol. Chem. 266, 14406-14412), the in vivo effects of the same mutation were examined by fusing the mutant OmpA signal sequence to Staphylococcus aureus nuclease or TEM beta-lactamase. The mutation in which the isoleucine residue at position 8 of the OmpA signal sequence of Escherichia coli was replaced with a neutral polar residue, asparagine, resulted in a defective signal peptide. The mutant signal sequence was unable to be processed, and the precursor molecule accumulated in the cytoplasmic as well as in the membrane fractions, indicating that the Ile-8----Asn OmpA signal sequence is not competent for translocating nuclease A or beta-lactamase across the membrane. This result is consistent with the in vitro studies on the Ile-8----Asn OmpA signal peptide, which indicated that the mutant signal peptide was unable to penetrate into the hydrophobic core of the lipid bilayer. Other asparagine or glutamine substitution mutations in the hydrophobic region of the OmpA signal sequence were also examined. Interestingly, the OmpA signal sequence with either Ile-8----Gln, Val-10----Asn, or Leu-12----Asn mutation was completely defective as the Ile-8----Asn OmpA signal sequence, while the Ile-6----Asn and Ala-9----Asn OmpA nucleases were able to be processed to secrete nuclease, although the processing occurred at a much slower rate than the wild-type OmpA nuclease. These results indicate that the defects depend on the position of the lesion in the hydrophobic core of the OmpA signal sequence.  相似文献   

6.
The 325-residue outer membrane protein, OmpA, of Escherichia coli, like most other outer membrane proteins with known sequence, contains no long stretch of hydrophobic amino acids. A synthetic oligonucleotide, encoding the sequence Leu-Ala-Leu-Val, was inserted four times between the codons for amino acid residues 153 and 154 and two, three, or four times between the codons for residues 228 and 229, resulting in the OmpA153-4, OmpA-228-2, -3, and -4 proteins, respectively. In the first case, the lipophilic sequence anchored the protein in the plasma membrane. In the OmpA228 proteins, 16 but not 12 or 8 lipophilic residues most likely also acted as an anchor. By removal of the NH2-terminal signal peptide, the function of the insert in OmpA153-4 was converted to that of a signal-anchor sequence. Possibly due to differences in amino acid sequences surrounding the insert, no signal function was observed with the insert in OmpA228-4. Production of the OmpA153-4 protein, with or without the NH2-terminal signal sequence, resulted in a block of export of chromosomally encoded OmpA. Clearly, long hydrophobic regions are not permitted within proteins destined for the bacterial outer membrane, and these proteins, therefore, have had to evolve another mechanism of membrane assembly.  相似文献   

7.
Signal peptide mutants ofEscherichia coli   总被引:10,自引:0,他引:10  
Numerous secretory proteins of the Gram-negative bacteriaE. coli are synthesized as precursor proteins which require an amino terminal extension known as the signal peptide for translocation across the cytoplasmic membrane. Following translocation, the signal peptide is proteolytically cleaved from the precursor to produce the mature exported protein. Signal peptides do not exhibit sequence homology, but invariably share common structural features: (1) The basic amino acid residues positioned at the amino terminus of the signal peptide are probably involved in precursor protein binding to the cytoplasmic membrane surface. (2) A stretch of 10 to 15 nonpolar amino acid residues form a hydrophobic core in the signal peptide which can insert into the lipid bilayer. (3) Small residues capable of -turn formation are located at the cleavage site in the carboxyl terminus of the signal peptide. (4) Charge characteristics of the amino terminal region of the mature protein can also influence precursor protein export. A variety of mutations in each of the structurally distinct regions of the signal peptide have been constructedvia site-directed mutagenesis or isolated through genetic selection. These mutants have shed considerable light on the structure and function of the signal peptide and are reviewed here.  相似文献   

8.
A Seidler  H Michel 《The EMBO journal》1990,9(6):1743-1748
The cDNA for the 33 kd protein from the oxygen-evolving complex of spinach together with the coding region for the hydrophobic C-terminal part of the transit sequence was cloned into the expression plasmid pDS12/33Ex. The 33 kd protein precursor was expressed in Escherichia coli, secreted into the periplasm and correctly processed to the mature 33 kd protein. Thus the hydrophobic domain of the transit sequence, preceded by a methionine and two lysine residues, can function as a bacterial signal peptide. The periplasmic proteins were released from the cells by osmotic shock and the expressed protein was purified by anion exchange chromatography. The protein was identified by SDS-PAGE and Western blotting. N-terminal sequence analysis showed that the cleavage of the signal peptide occurred at the correct position. The expressed protein could be rebound to CaCl2-washed PSII particles and oxygen evolution was restored in equal amounts by the 33 kd protein from both E. coli and spinach.  相似文献   

9.
Summary Export of the outer membrane protein, OmpA, across the cytoplasmic membrane of Escherichia coli was severely inhibited by the presence of two, three, four or six additional basic residues at the N-terminus of the mature polypeptide, but not by three similarily positioned acidic residues. Because a few bacterial proteins do possess basic residues close to the leader peptidase cleavage site and because the type of inhibition described here could pose problems in the construction of hybrid secretory proteins, we also studied means of alleviating this form of export incompatibility. Inhibition was abolished when basic residues were preceded by acidic ones. Also, the processing rates of the mutants with two or six basic residues could be partially restored by increasing the length of the hydrophobic core of the signal peptide. Taking this as a precedent, it is suggested that the structure of the signal peptide is an important feature for maintenance of a reasonable rate of translocation of those exported proteins which possess basic residue(s) at the N-terminus of the mature polypeptide.  相似文献   

10.
Bacterial signal peptides display little amino acid sequence homology despite their shared role in mediating protein transport. This heterogeneity may exist to permit the establishment of signal peptide conformations that are appropriate for transport of particular proteins. In this paper we explore how signal peptides are composed of structural units that may interact with each other and with the mature protein to effect transport. Using a new application of cassette mutagenesis, we have replaced the hydrophobic core of the Escherichia coli alkaline phosphatase signal peptide with cores from the signals of maltose-binding protein, OmpA, and M13 major coat protein. The core regions from maltose-binding protein and OmpA effectively replaced the alkaline phosphatase core; the resultant hybrid signals performed as well as wild type in periplasmic transport and processing of alkaline phosphatase. However, the core region from M13 major coat protein generated a transport-incompetent hybrid signal peptide. Elimination of a proline-containing portion of the M13 major coat protein core did not improve transport effectiveness. However, restoration of the procoat cleavage region and the negatively charged amino terminus of the mature protein did ameliorate the transport defect. These results suggest that at least in the case of these procoat-derived signal peptide mutants, there is a requirement for complementarity among the hydrophobic core, cleavage region, and part of the mature protein in order for efficient protein transport to occur.  相似文献   

11.
In Escherichia coli, the SecB/SecA branch of the Sec pathway and the twin-arginine translocation (Tat) pathway represent two alternative possibilities for posttranslational translocation of proteins across the cytoplasmic membrane. Maintenance of pathway specificity was analyzed using a model precursor consisting of the mature part of the SecB-dependent maltose-binding protein (MalE) fused to the signal peptide of the Tat-dependent TorA protein. The TorA signal peptide selectively and specifically directed MalE into the Tat pathway. The characterization of a spontaneous TorA signal peptide mutant (TorA*), in which the two arginine residues in the c-region had been replaced by one leucine residue, showed that the TorA*-MalE mutant precursor had acquired the ability for efficiently using the SecB/SecA pathway. Despite the lack of the "Sec avoidance signal," the mutant precursor was still capable of using the Tat pathway, provided that the kinetically favored Sec pathway was blocked. These results show that the h-region of the TorA signal peptide is, in principle, sufficiently hydrophobic for Sec-dependent protein translocation, and therefore, the positively charged amino acid residues in the c-region represent a major determinant for Tat pathway specificity. Tat-dependent export of TorA-MalE was significantly slower in the presence of SecB than in its absence, showing that SecB can bind to this precursor despite the presence of the Sec avoidance signal in the c-region of the TorA signal peptide, strongly suggesting that the function of the Sec avoidance signal is not the prevention of SecB binding; rather, it must be exerted at a later step in the Sec pathway.  相似文献   

12.
The Escherichia coli maltose-binding protein (MBP) R2 signal peptide is a truncated version of the wild-type structure that still facilitates very efficient export of MBP to the periplasm. Among single amino acid substitutions in the R2 signal peptide resulting in an export-defective precursor MBP (pMBP) were two that replaced residues in the consensus Ala-X-Ala sequence (residues -3 to -1) that immediately precedes the cleavage site. It was suggested that the functional hydrophobic core and signal peptidase recognition sequence of this signal peptide substantially overlap and that these two alterations affect both pMBP translocation and processing. In this study, the export of pMBP by the mutants, designated CC15 and CC17, with these two alterations was investigated further. The pMBP of mutant CC17 has an Arg substituted for Leu at the -2 position. It was found that CC17 cells exported only a very small amount of MBP, but that which was exported appeared to be correctly processed. This result was consistent with other studies that have concluded that virtually any amino acid can occupy the -2 position. For mutant CC15, which exhibits a fully Mal+ phenotype, an Asp is substituted for the Ala at the -3 position. CC15 cells were found to export large quantities of unprocessed, soluble pMBP to the periplasm, although such export was achieved in a relatively slow, posttranslational manner. This result was also consistent with other studies that suggested that charged residues are normally excluded from the -3 position of the cleavage site. Using in vitro oligonucleotide-directed mutagenesis, we constructed a new signal sequence mutant in which Asp was substituted for Arg at the -3 position of an otherwise wild-type MBP signal peptide. This alteration had no apparent effect on pMBP translocation across the cytoplasmic membrane, but processing by signal peptidase was inhibited. This pMBP species with its full-length hydrophobic core remained anchored to the membrane, where it could still participate in maltose uptake. The implications of these results for models of protein export are discussed.  相似文献   

13.
Subtilisin E, an alkaline serine protease of Bacillus subtilis 168, is first produced as a precursor, pre-pro-subtilisin, which consists of a signal peptide for protein secretion (pre-sequence) and a peptide extension of 77 amino acid residues (pro-sequence) between the signal peptide and mature subtilisin. When the entire coding region for pre-pro-subtilisin E was cloned into an Escherichia coli expression vector, active mature subtilisin E was secreted into the periplasmic space. When the pre-sequence was replaced with the E. coli OmpA signal peptide, active subtilisin E was also produced. When the OmpA signal peptide was directly fused to the mature subtilisin sequence, no protease activity was detected, although this product had the identical primary structure as subtilisin E as a result of cleavage of the OmpA signal peptide and was produced at a level of approximately 10% of total cellular protein. When the OmpA signal peptide was fused to the 15th or 44th amino acid residue from the amino terminus of the pro-sequence, active subtilisin was also not produced. These results indicate that the pro-sequence of pre-pro-subtilisin plays an important role in the formation of enzymatically active subtilisin. It is proposed that the pro-sequence is essential for guiding appropriate folding of the enzymatically active conformation of subtilisin E.  相似文献   

14.
Recently it has been recognized that the signal recognition particle (SRP) of Escherichia coli represents a specific targeting device for hydrophobic inner membrane proteins. It has remained unclear, however, whether the bacterial SRP functions in concert with SecA, which is required for the translocation of secretory proteins across the inner membrane. Here, we have analyzed a hybrid protein constructed by fusing the signal anchor sequence of an SRP-dependent inner membrane protein (MtlA) to the mature part of an exclusively SecA-requiring secretory protein (OmpA). We show that the signal anchor sequence of MtlA confers the novel properties onto nascent chains of OmpA of being co-translationally recognized and targeted to SecY by SRP. Once targeted to SecY, ribosome-associated nascent chains of the hybrid protein, however, remain untranslocated unless SecA is present. These results indicate that SRP and SecA cooperate in a sequential, non-overlapping manner in the topogenesis of those membrane proteins which, in addition to a signal anchor sequence, harbor a substantial hydrophilic domain to be translocated into the periplasm.  相似文献   

15.
16.
Mitochondrial NADH-cytochrome b5 reductase (Mcr1p) is encoded by a single nuclear gene and imported into two different submitochondrial compartments: the outer membrane and the intermembrane space. We now show that the amino-terminal 47 amino acids suffice to target the Mcr1 protein to both destinations. The first 12 residues of this sequence function as a weak matrix-targeting signal; the remaining residues are mostly hydrophobic and serve as an intramitochondrial sorting signal for the outer membrane and the intermembrane space. A double point mutation within the hydrophobic region of the targeting sequence virtually abolishes the ability of the precursor to be inserted into the outer membrane but increases the efficiency of transport into the intermembrane space. Import of Mcr1p into the intermembrane space requires an electrochemical potential across the inner membrane, as well as ATP in the matrix, and is strongly impaired in mitochondria lacking Tom7p or Tim11p, two components of the translocation machineries in the outer and inner mitochondrial membranes, respectively. These results indicate that intramitochondrial sorting of the Mcr1 protein is mediated by specific interactions between the bipartite targeting sequence and components of both mitochondrial translocation systems.  相似文献   

17.
The recently described Tat protein translocation system in Escherichia coli recognizes its protein substrates by the consensus twin arginine (SRRXFLK) motif in the signal peptide. The signal sequence of E. coli pre-pro-penicillin amidase bears two arginine residues separated by one aspargine and does not resemble the Tat-targeting motif but can nevertheless target the precursor to the Tat pathway. Mutational studies have shown that the hydrophobic core region acts in synergism with the positive charged N-terminal part of the signal peptide as a Tat recognition signal and contributes to the efficient Tat targeting of the pre-pro-penicillin amidase.  相似文献   

18.
The thylakoid twin arginine protein translocation (Tat) system operates by a cyclical mechanism in which precursors bind to a cpTatC-Hcf106 receptor complex, which then recruits Tha4 to form the translocase. After translocation, the translocase disassembles. Here, we fine-mapped initial interactions between precursors and the components of the receptor complex. Precursors with (Tmd)Phe substitutions in the signal peptide and early mature domain were bound to thylakoids and photo-cross-linked to components. cpTatC and Hcf106 were found to interact with different regions of the signal peptide. cpTatC cross-linked strongly to residues in the immediate vicinity of the twin arginine motif. Hcf106 cross-linked less strongly to residues in the hydrophobic core and the early mature domain. To determine whether precursors must leave their initial sites of interaction during translocation, cross-linked precursors were subjected to protein transport conditions. tOE17 cross-linked to cpTatC was efficiently translocated, indicating that the mature domain of the precursor can be translocated while the signal peptide remains anchored to the receptor complex.  相似文献   

19.
Oligonucleotide-directed site-specific mutagenesis was used to systematically shorten the hydrophobic region within the signal peptide of the Escherichia coli outer membrane protein OmpA. DNA encoding the wild type and mutant OmpA signal peptides were then fused in frame to DNA encoding the mature regions of Staphylococcus aureus nuclease A and TEM beta-lactamase. The ability of these signal peptides to direct processing of the resulting hybrid proteins was dependent on both their length and the protein to which they were fused. Deletion of two or more residues progressively slowed processing of pro-OmpA-nuclease. By contrast, pro-OmpA-beta-lactamase was less sensitive to the length of the hydrophobic region than to the nature of the deleted residue(s). Deletion of an Ala residue tended to reduce processing efficiency of pro-OmpA-beta-lactamase, while deletion of an Ile residue, together with the Ala residue, resulted in improvement. The loss of either 3 or 4 residues abolished processing of both hybrids. These data indicate that both the length as well as the identity of residues in the hydrophobic region are important. The relative importance of these two factors depends on the mature region of the protein being secreted.  相似文献   

20.
E Schwarz  T Seytter  B Guiard    W Neupert 《The EMBO journal》1993,12(6):2295-2302
Cytochrome b2 contains 2-fold targeting information: an amino-terminal signal for targeting to the mitochondrial matrix, followed by a second cleavable sorting signal that functions in directing the precursor into the mitochondrial intermembrane space. The role of the second sorting sequence was analyzed by replacing one, two or all of the three positively charged amino acid residues which are present at the amino-terminal side of the hydrophobic core by uncharged residues or an acidic residue. With a number of these mutant precursor proteins, processing to the mature form was reduced or completely abolished and at the same time targeting to the matrix space occurred. The accumulation in the matrix depended on a high level of intramitochondrial ATP. At low levels of matrix ATP, the mutant proteins were sorted into the intermembrane space like the wild-type precursors. The results: (i) suggest the existence of one or more matrix components that specifically recognize the second sorting signal and thereby trigger the translocation into the intermembrane space; (ii) indicate that the mutant signals have reduced ability to interact with the recognition component(s) and then embark on the default pathway into the matrix by interacting with mitochondrial hsp70 in conjunction with matrix ATP; (iii) strongly argue against a mechanism by which the hydrophobic segment of the sorting sequence stops translocation in the hydrophobic phase of the inner membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号