首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the era of climate change, abiotic stresses (e.g., salinity, drought, extreme temperature, flooding, metal/metalloid(s), UV radiation, ozone, etc.) are considered as one of the most complex environmental constraints that restricts crop production worldwide. Introduction of stress-tolerant crop cultivars is the most auspicious way of surviving this constraint, and to produce these types of tolerant crops. Several bioengineering mechanisms involved in stress signaling are being adopted in this regard. One example of this kind of manipulation is the osmotic adjustment. The quarternary ammonium compound glycinebetaine (GB), also originally referred to as betaine is a methylated glycine derivative. Among the betaines, GB is the most abundant one in plants, which is mostly produced in response to dehydration caused by different abiotic stresses like drought, salinity, and extreme temperature. Glycinebetaine helps in decreased accumulation and detoxification of ROS, thereby restoring photosynthesis and reducing oxidative stress. It takes part in stabilizing membranes and macromolecules. It is also involved in the stabilization and protection of photosynthetic components, such as ribulose-1, 5-bisphosphate carboxylase/oxygenase, photosystem II and quarternary enzyme and protein complex structures under environmental stresses. Glycinebetaine was found to perform in chaperone-induced protein disaggregation. In addition, GB can confer stress tolerance in very low concentrations, and it acts in activating defense responsive genes with stress protection. Recently, field application of GB has also shown protective effects against environmental adversities increasing crop yield and quality. In this review, we will focus on the role of GB in conferring abiotic stress tolerance and the possible ways to engineer GB biosynthesis in plants.  相似文献   

2.
High-temperature stress affects all growth stages of crops and ultimately yields. This is further aggravated by other environmental stresses like intermittent drought and high light. Management options are few and hence developing intrinsically tolerant plants is essential to combat the situation. As thermotolerance is a multigenic trait, emphasis needs to be on relevant approaches to assess genetic variability in basal and acquired tolerance. This is in fact the major aspect in crop improvement programmes. The relevance of temperature induction (acclimation) response (TIR), a high throughput approach to identify thermotolerant individuals and its utility as potential screening method is described here. This is based on the concept that stress-responsive genes are expressed only during initial stages of stress (acclimation stress) and bring about requisite changes in cell metabolism for adaptation. The fact that acclimation response is ubiquitous has been demonstrated in different crop plants in our studies and by others. Significance of acclimation in acquired tolerance and thus in assessing genetic variability in thermotolerance is discussed. The limitations of present approaches to validate the relevance of specific stress genes either in transgenics or in mutants or knock downs have been analyzed and the need to characterize transformants under conditions that trigger acquired tolerance is also highlighted. This review also focuses on the potential of exploiting acclimation response approach to improve the thermotolerance of crop plants by suitable breeding strategies.  相似文献   

3.
为探究核黄素在水稻非生物胁迫响应中的作用,以粳稻Kitaake和籼稻T98B为试验材料,考察了核黄素对2种材料的盐、高温、渗透、碱和氧化胁迫响应的影响,重点测定了盐和高温胁迫下水稻体内核黄素合成基因的表达和相关生理指标。结果表明,(1)施加外源核黄素有效提高了2种水稻材料的盐和高温胁迫耐受性,降低了渗透胁迫耐受性,而其氧化和碱胁迫耐受性不受影响。(2)逆境胁迫均不同程度地促进了核黄素在2种水稻材料中的积累,尤其在盐和高温胁迫下促进效果最明显。(3)盐和高温胁迫均诱导了核黄素合成酶基因的表达,促进了核黄素的生物合成,改善了水稻的胁迫耐受性。研究表明,非生物逆境胁迫能促进核黄素在水稻体内的合成和积累,外源核黄素也能明显提高水稻对盐和高温胁迫的耐受性,但却降低了其对渗透胁迫的耐受性。  相似文献   

4.
Heat can be one of the major abiotic stresses that adversely affect crop production worldwide at different stages of development. As field screening for heat tolerance can be inconsistent and seasonally-limited, it is important to develop a reliable protocol under controlled conditions that allows simultaneous screening of multiple genotypes. The objective of this research was to develop a straightforward laboratory protocol using acquired thermotolerance (ATT) in peanut seedlings as a measure of one mechanism of heat stress tolerance. Sixteen genotypes, including selected accessions of the US peanut minicore collection along with standard checks, were evaluated for acquired themotolerance in two independent experiments. A change in the temperature sensitivity of chlorophyll accumulation was used as an indicator of acquired thermotolerance. Pre-incubation at 38°C for 4 h before the 30-min 50°C challenge triggered the acquired thermotolerance system of the leaf disks, resulting in chlorophyll accumulation upon exposure to light. There was considerable variation among genotypes for ATT in both experiments. Genotypic ranking for mean ATT values were highly correlated (0.949) in both experiments. The effect of seed weight on ATT was not significant. This method is relatively simple and inexpensive and can be used to screen a large number of genotypes.  相似文献   

5.
Mechanisms of drought tolerance have been studied by numerous groups, and a broad range of molecules have been identified to play important roles. A noteworthy response of stressed plants is the accumulation of novel protective proteins, including heat-shock proteins (HSPs) and late embryogenesis abundant (LEA) proteins. Identification of gene regulatory networks of these protective proteins in plants will allow a wide application of biotechnology for enhancement of drought tolerance and adaptation. Similarly, aquaporins are involved in the regulation of water transport, particularly under abiotic stresses. The molecular and functional characterization of protective proteins and aquaporins has revealed the significance of their regulation in response to abiotic stresses. Herein, we highlight new findings regarding the action mechanisms of these proteins. Finally, this review also surveys the current advances in engineering drought tolerant plants, particularly the engineering of protective proteins (sHSPs and LEA) and aquaporins for imparting drought stress tolerance in plants.  相似文献   

6.
The use of transgenic mice to study cytoprotection by the stress proteins   总被引:1,自引:0,他引:1  
Heat shock or stress proteins (HSPs) have been shown to be able to confer cytoprotection in a diversity of cell types and organisms. We were interested in assessing if HSPs, in particular HSP70, were protective against pathophysiological stresses such as myocardial ischemia. Our approach was to generate a transgenic mouse line that would constitutively express high levels of an inducible rat HSP70 isoform in the heart. The hearts of the transgenic mice were then used in an isolated perfused mouse heart model to assess whether increased expression of HSP70 alone was protective against ischemia-reperfusion injury. Our study showed that there was a significant improvement in contractile recovery, less cellular damage, and a reduction in infarct size in the hearts of transgenic mice as compared to non-transgenic mice following global ischemia in our isolated perfused mouse heart model. Additional studies have since shown that increased expression of HSP70 as well as other stress proteins in transgenic mice protects against different forms of pathological stresses. We present here the methods we used to generate HSP70 transgenic mice and assess their increased tolerance to ischemia-reperfusion injury.  相似文献   

7.
Metabolomics of temperature stress   总被引:7,自引:0,他引:7  
  相似文献   

8.
植物在生长过程中会受到各种非生物胁迫的伤害,导致生长发育和产量受到严重影响,胚胎晚期丰富蛋白(late embryogenesis abundant proteins,LEA蛋白)在植物抵抗非生物胁迫过程中起着重要的保护作用。在前期的研究基础上,将受多种胁迫诱导的柠条锦鸡儿CkLEA1(GenBank登录号KC309408)基因转入野生型拟南芥,通过实时荧光定量PCR从7株T3代纯合体中筛选出3个转基因株系做进一步研究。种子萌发率实验发现,在200 mmol/L NaCl和400 mmol/L甘露醇处理下,转基因株系萌发率均高于野生型拟南芥。干旱处理2周大的幼苗后,转基因株系明显比野生型更抗旱,存活率高于野生型,并且失水率低于野生型。同时,转基因株系积累了较少的丙二醛(MDA),超氧化物歧化酶(SOD)活性和谷胱甘肽(GSH)含量也高于野生型。这些结果表明,柠条锦鸡儿CkLEA1基因在种子萌发阶段提高了拟南芥对盐和渗透胁迫的耐受性,并且提高了转基因拟南芥幼苗生长阶段对干旱胁迫的抵抗能力。  相似文献   

9.
10.
昆虫热休克蛋白的研究概况   总被引:8,自引:1,他引:7  
所有生物体相应于高温和其它胁迫环境都会产生一特定的被称为热休克蛋白的应急蛋白。该文对国内外有关昆虫热休克蛋白的研究做了简要综述。尽管热休克蛋白是在高温胁迫研究中发现的 ,但是后来发现在低温、氨基酸类似物、低氧、ABA、2 ,4-二氯苯氧乙酸等环境下 ,同样会有热休克蛋白的生成。这一发现暗示着热休克蛋白的功能可能会很多。已经报道的有分子伴侣 ,耐热性 ,耐冷性以及在昆虫发育过程和细胞代谢中生化作用的特殊功能等。  相似文献   

11.
与种子耐脱水性有关的基础物质研究进展   总被引:11,自引:1,他引:10  
耐脱水的获得和维持与种子的类型有关,正常型种子耐脱水,而顽拗形种子对脱水高度敏感,正常型种子的脱水耐性随发良[过程而变化,种子成熟时胚的脱水耐性增强,其萌发时胚变为不耐脱水,当种子获得脱水耐性时,糖,LEA蛋白质和抗氧化防御系统等保护性物质积累,但脱水耐性是一种复杂的数量的特性,任何一种单一的机制都不能 充分地解释脱水耐性,各种保护性物质协同调节脱水耐性,本文综述了近几年来关于种子耐脱水性与保护性物质相关性的研究进展。  相似文献   

12.
耐脱水的获得和维持与种子的类型有关,正常型种子耐脱水,而顽拗形种子对脱水高度敏感。正常型种子的脱水耐性随发育过程而变化,种子成熟时胚的脱水耐性增强,而萌发时胚变为不耐脱水。当种子获得脱水耐性时,糖、LEA蛋白质和抗氧化防御系统等保护性物质积累。但脱水耐性是一种复杂的数量的特性,任何一种单一的机制都不能充分地解释脱水耐性,各种保护性物质协同调节脱水耐性。本文综述了近几年来关于种子耐脱水性与保护性物质相关性的研究进展。  相似文献   

13.
14.
Microorganisms used in food technology and probiotics are exposed to technological and digestive stresses, respectively. Traditionally used as Swiss-type cheese starters, propionibacteria also constitute promising human probiotics. Stress tolerance and cross-protection in Propionibacterium freudenreichii were thus examined after exposure to heat, acid, or bile salts stresses. Adapted cells demonstrated acquired homologous tolerance. Cross-protection between bile salts and heat adaptation was demonstrated. By contrast, bile salts pretreatment sensitized cells to acid challenge and vice versa. Surprisingly, heat and acid responses did not present significant cross-protection in P. freudenreichii. During adaptations, important changes in cellular protein synthesis were observed using two-dimensional electrophoresis. While global protein synthesis decreased, several proteins were overexpressed during stress adaptations. Thirty-four proteins were induced by acid pretreatment, 34 by bile salts pretreatment, and 26 by heat pretreatment. Six proteins are common to all stresses and represent general stress-response components. Among these polypeptides, general stress chaperones, and proteins involved in energetic metabolism, oxidative stress response, or SOS response were identified. These results bring new insight into the tolerance of P. freudenreichii to heat, acid, and bile salts, and should be taken into consideration in the development of probiotic preparations.  相似文献   

15.
The study of abiotic stress response of plants is important because they have to cope with environmental changes to survive. The plant genomes have evolved to meet environmental challenges. Salt, temperature, and drought are the main abiotic stresses. The tolerance and response to stress vary differently in plants. The idea was to analyze the genes showing differential expression under abiotic stresses. There are many pathways connecting the perception of external stimuli to cellular responses. In plants, these pathways play an important role in the transduction of abiotic stresses. In the present study, the gene expression data have been analyzed for their involvement in different steps of signaling pathways. The conserved genes were analyzed for their role in each pathway. The functional annotations of these genes and their response under abiotic stresses in other plant species were also studied. The enzymes of signal pathways, showing similarity with conserved genes, were analyzed for their role in different abiotic stresses. Our findings will help to understand the expression of genes in response to various abiotic stresses. These genes may be used to study the response of different abiotic stresses in other plant species and the molecular basis of stress tolerance.  相似文献   

16.
Ischemia and seizures are common diseases that result in neuronal death. To-date, there are no available treatments to block or reverse neuronal death pathways in patients who suffer from these diseases. All drugs that have been shown to be neuroprotective in animal models have failed in human trials. Therefore, the potential of preventative strategies for therapy is increasingly explored. Experimental studies have demonstrated that a brief cerebral ischemic insult, that is not harmful by itself, results in a temporary protective adaptation in the brain against a subsequent ischemic episode that would otherwise be lethal. This process, termed ischemic preconditioning, has been confirmed in different models of cerebral ischemia. A similar phenomenon observed after a mild epileptic insult conferred a transitory tolerance to a subsequent epileptic episode. This process is termed epileptic tolerance. Other stresses, like hyperthermia or spreading depression, also enhanced brain resistance to detrimental effects of ischemic or epileptic injury. Recently, a cross tolerance between ischemia and epilepsy has been reported. Also, some retrospective studies in humans suggest that endogenous ischemic preconditioning exists in the brain. Altogether these insights of brain tolerance point to the future discovery of potentially useful targets for acute neuroprotection as well as preventive therapy.  相似文献   

17.
生物膜是将细胞与环境分开的第一道屏障,是环境胁迫造成损伤的主要位点.脂肪酸是生物膜的主要组成成分,不饱和脂肪酸在决定生物膜的生理特性中具有重要作用,增加脂肪酸的不饱和程度能增加膜脂的流动性.近年来,很多研究发现,生物通过脂肪酸脱饱和维持膜的流动性来适应外界环境变化.本文主要从不饱和脂肪酸在环境温度胁迫、盐胁迫、氧化胁迫、酸碱胁迫、干旱胁迫、乙醇胁迫及铝胁迫中的作用研究进展进行了综述.  相似文献   

18.
Superoxide dismutase (SOD, EC 1.15.1.1) was concentrated from mature-green tomato fruits by gel chromatography. The enzyme was inhibited by cyanide but not by chloroform-ethanol, and appears to contain zinc and lesser amounts of copper. SOD-activity levels were high in immature green fruits, declined to a minimum in the mature-green and breaker stages known to be most susceptible to sunscald damage, increased again until the fruits were pink, and finally decreased through the red-ripe and overripe stages to the level of the mature-green fruit. When tolerance to sunscald damage was induced in mature-green fruits by controlled temperature treatment and samples of the fruits were challenged at various times during this process with a combined heat-and-light treatment known to cause sunscald, SOD activity was found to be inversely related to the susceptibility of the fruit to sunscald damage. It is suggested that superoxide is involved in sunscald injury to tomatoes and that tolerance is acquired through increases in SOD activity. Possibly SOD acts as a general protective agent against photodynamic damage to green tissues in plants that have become conditioned as the result of normal diurnal temperature fluctuations.  相似文献   

19.
During fermentation, yeast cells are exposed to a number of stresses — such as high alcohol concentration, high osmotic pressure, and temperature fluctuation — so some overlap of mechanisms involved in the response to these stresses has been suggested. To identify the genes required for tolerance to alcohol (ethanol, methanol, and 1-propanol), heat, osmotic stress, and oxidative stress, we performed genome-wide screening by using 4828 yeast deletion mutants. Our screens identified 95, 54, 125, 178, 42, and 30 deletion mutants sensitive to ethanol, methanol, 1-propanol, heat, NaCl, and H2O2, respectively. These deleted genes were then classified based on their cellular functions, and cross-sensitivities between stresses were determined. A large number of genes involved in vacuolar H+-ATPase (V-ATPase) function, cytoskeleton biogenesis, and cell wall integrity, were required for tolerance to alcohol, suggesting their protective role against alcohol stress. Our results revealed a partial overlap between genes required for alcohol tolerance and those required for thermotolerance. Genes involved in cell wall integrity and the actin cytoskeleton are required for both alcohol tolerance and thermotolerance, whereas the RNA polymerase II mediator complex seems to be specific to heat tolerance. However, no significant overlap of genes required for osmotic stress and oxidative stress with those required for other stresses was observed. Interestingly, although mitochondrial function is likely involved in tolerance to several stresses, it was found to be less important for thermotolerance. The genes identified in this study should be helpful for future research into the molecular mechanisms of stress response.  相似文献   

20.
Late embryogenesis abundant (LEA) proteins are closely associated with the tolerance of diverse stresses in organisms. To elucidate the function of group 3 LEA proteins, the soybean PM2 protein (LEA3) was expressed in E. coli and the protective function of the PM2 protein was assayed both in vivo and in vitro. The results of a spot assay and survival ratio demonstrated that the expression of the PM2 protein conferred the tolerance to the E. coli recombinant for different temperature conditions (4, −20 or 50°C) or high-salinity stresses (120 mmol/l MgCl2 or 120 mmol/l CaCl2). In addition, it was demonstrated that the in vitro addition of the PM2 protein could prevent the lactate dehydrogenase (LDH) inactivation normally induced by freeze–thaw. In the 62°C condition, the PM2 protein (1:5 mass ratio to LDH) effectively prevented the LDH thermo-denaturation by acting synergistically with trehalose (62.5 μg/ml), although the PM2 protein alone at this concentration showed little protective effect on LDH activity. Furthermore, the results showed that the PM2 protein could partially prevent the thermo-denaturation of the bacterial proteome after boiling for 2 min. Based on these results, we propose that the PM2 protein itself, or together with trehalose, conferred the tolerance to the E. coli recombinant against diverse stresses by protecting proteins and enzyme activity under low- or high- temperature conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号