首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gudheti MV  Lee SP  Danino D  Wrenn SP 《Biochemistry》2005,44(19):7294-7304
We report the combined effects of phospholipase C (PLC), a pronucleating factor, and apolipoprotein A-I (apo A-I), an antinucleating factor, in solutions of model bile. Results indicate that apo A-I inhibits cholesterol nucleation from unilamellar lecithin vesicles by two mechanisms. Initially, inhibition is achieved by apo A-I shielding of hydrophobic diacylglycerol (DAG) moieties so as to prevent vesicle aggregation. Protection via shielding is temporary. It is lost when the DAG/apo A-I molar ratio exceeds a critical value. Subsequently, apo A-I forms small ( approximately 5-15 nm) complexes with lecithin and cholesterol that coexist with lipid-stabilized (400-800 nm) DAG oil droplets. This microstructural transition from vesicles to complexes avoids nucleation of cholesterol crystals and is a newly discovered mechanism by which apo A-I serves as an antinucleating agent in bile. The critical value at which a microstructural transition occurs depends on binding of apo A-I and so varies with the cholesterol mole fraction of vesicles. Aggregation of small, unilamellar, egg lecithin vesicles (SUVs) with varying cholesterol composition (0-60 mol %) was monitored for a range of apo A-I concentrations (2 to 89 microg/mL). Suppression of aggregation persists so long as the DAG-to-bound-apo A-I molar ratio is less than 100. A fluorescence assay involving dansylated lecithin shows that the suppression is an indirect effect of apo A-I rather than a direct inhibition of PLC enzyme activity. The DAG-to-total apo A-I molar ratio at which suppression is lost increases with cholesterol because of differences in apo A-I binding. Above this value, a microstructural transition to DAG droplets and lecithin/cholesterol A-I complexes occurs, as evidenced by sudden increases in turbidity and size and enhancement of Forster resonance energy transfer; structures are confirmed by cryo TEM.  相似文献   

2.
Fluorescence energy transfer from dehydroergosterol (DHE) to dansylated lecithin (DL) was used to characterize lecithin-cholesterol vesicles in the presence of the bile salt, sodium taurocholate. At lipid concentrations approximating physiological levels, exposure of fluorescently labeled vesicles to the bile salt led to a dose-dependent increase in the DHE-to-DL fluorescence ratio during the first 24 h after mixing. The initial changes in the fluorescence ratio correlated well with conventional turbidity measurements that quantify partial micellization of vesicles as a function of bile salt loading. In addition, fluorescence energy transfer from DHE to DL revealed cholesterol enrichment of vesicles and re-vesiculation of micelles at bile salt loadings for which vesicles and micelles coexisted. Samples containing the cholesterol-enriched vesicle fraction exhibited further increases in the DHE-to-DL fluorescence ratio during a 4-week observation period but only after a significant lag period of several days. The lag period decreased with cholesterol loading, and the increase in the fluorescence ratio always preceded the appearance of microscopic, birefringent, either needlelike or platelike, cholesterol crystals, in samples that were initially supersaturated with cholesterol. Cholesterol crystals were not observed, and the fluorescence ratio did not increase, for any sample that was undersaturated with cholesterol.Taken together, these results suggest that the latter changes in fluorescence are the result of cholesterol nucleation. Fluorescence energy transfer from DHE to DL is therefore a promising technique for the characterization of model bile and, possibly, provides a direct measurement of cholesterol nucleation.  相似文献   

3.
Guarino AJ  Tulenko TN  Wrenn SP 《Biochemistry》2004,43(6):1685-1693
An assay detecting and quantifying cholesterol nucleation from low-density lipoproteins has been established. F?rster resonance energy transfer between dehydroergosterol and dansylated lecithin becomes significantly alleviated as a consequence of conucleation of dehydroergosterol and cholesterol. The assay, in combination with dynamic light scattering, absorbance spectroscopy, and fluorescence microscopy, can be used to study aggregation and nucleation in model blood systems. Human plasma LDL was labeled with dehydroergosterol and dansylated lecithin by incubation with donor multilamellar liposomes and isolated by centrifugation. Exposure of labeled LDL (0.5 mg/mL of total lipids) to sphingomyelinase (0.0-0.2 unit/mL) led to modest particle aggregation but produced no changes in energy transfer and no crystallization. However, addition of sphingomyelinase produced significant particle aggregation, nucleation, and crystallization, in a dose-dependent fashion, in samples that were previously treated with the enzyme, cholesterol esterase (0.2 unit/mL). The combination of cholesterol esterase and sphingomyelinase led to a significant alleviation of energy transfer, which preceded by 24 h the appearance of fluorescent, microscopic sterol crystals. These results point to a synergistic effect between cholesterol esterase and sphingomyelinase, suggesting that mere aggregation of LDL is insufficient to promote nucleation, and crystal formation likely proceeds in the intracellular space after LDL uptake by macrophages.  相似文献   

4.
Upon exposure of rabbit muscle creatine kinase (ATP: creatine N-phosphotransferase, EC 2.7.3.2) that has been dansylated at the two reactive lysines to 8 M urea, the maximum emission of the extrinsic fluorophore shifts 4 nm towards the blue, this being accompanied by a small decrease in intensity. The fluorescence emission and excitation spectra of the reassembled and native proteins are the same. Denaturation is accompanied by a rapid decrease in fluorescence which is complete in 10 s. This suggests that denaturation is accompanied by an early disorganization at the catalytic center, where the reactive lysines are located. Reassembly is associated with a rapid increase in dansyl fluorescence followed by a slower decrease that is complete in 6 min. Since reactivation is not complete until 20 min, minor additional structural changes are needed for the reacquisition of catalytic activity. The intrinsic protein fluorescence (eight tryptophans per dimer) of dansylated creatine kinase is approximately 60% less than that of the unlabelled enzyme, which may be attributed to resonance energy transfer, indicating that the reactive lysine is located near one or more of the tryptophans. A more limited quenching of intrinsic fluorescence is observed when dansylated creatine kinase is exposed to 8 M urea. Reassembly, monitored by a decrease in intrinsic fluorescence, reveals that the dansylated protein achieves its final fluorescence after 18 min of renaturation compared with 30 min for unlabelled enzyme. The powerful quenching by the dansyl group may limit the ability to monitor changes in the tryptophan environment. Kinetics of fluorescence polarization changes during denaturation are consistent with a mechanism involving rapid dissociation, followed by a subunit disorganization and possible aggregation. Reassembly would appear to involve first a refolding of the disorganized monomers and subsequent association. These results correspond to our previous observations that subunit renaturation precedes dimerization.  相似文献   

5.
Here we study the anti-nucleating mechanism of apolipoprotein A-I (apo A-I) on model biliary vesicles in the presence of phospholipase C (PLC) utilizing dynamic light scattering (DLS), steady-state fluorescence spectroscopy, cryogenic transmission electron microscopy (cryo-TEM), and UV/Vis spectroscopy. PLC induces aggregation of cholesterol-free lecithin vesicles from an initial, average size of 100 nm to a maximal size of 600 nm. The presence of apo A-I likely inhibits vesicle aggregation by shielding the PLC-generated hydrophobic moieties, which results in vesicles of an average size of 200 nm. A similar phenomenon is observed in cholesterol-enriched lecithin vesicles. Whereas PLC alone produces aggregates of 300 nm, no aggregation is observed when apo A-I is present along with PLC. However, the ability of apo A-I to inhibit aggregation is temporary, and after 8 h, a broad particle size distribution with sizes as high as 800 nm is observed. Apo A-I possibly induces the formation of small apo A-I/lecithin/cholesterol complexes of about 5-20 nm similar to the discoidal pre-HDL complexes found in blood when it can no longer effectively shield all the DAG molecules. Concomitant with formation of complexes, DAG molecules coalesce into large oil droplets, which account for the large particles observed by light scattering. Thus, apo A-I acts as an anti-nucleating agent by two mechanisms, anti-aggregation and microstructural transition. The mode of protection is dependent on the cholesterol content and the relative amounts of DAG and apo A-I present. This study supports the possibility of apo A-I solubilizing lipids in bile in a similar fashion as it does in blood and also delineates the mechanism of formation of the complexes.  相似文献   

6.
The phase behavior of L-alpha-dimyristoylphosphatidylcholine/cholesterol mixtures was studied in multilamellar vesicles by fluorescence polarization of the sterol molecule dehydroergosterol and of the polyene molecule alpha-parinaric acid. In the absence of cholesterol, dehydroergosterol exhibited an increase in polarization as DMPC vesicles were heated through the phase transition. This rise in polarization anisotropy was observed over a 0.6-1.0 degrees C increase in temperature with the midpoint of the phase transition occurring at 23.6 degrees C. Addition of 5 mol% cholesterol completely obliterated this change in polarization anisotropy through the phase transition of DMPC. alpha-Parinaric acid underwent a characteristic decrease in polarization anisotropy through the phase transition of DMPC. The change in anisotropy through the phase transition was over 4-fold greater than the values observed with dehydroergosterol. Vesicles containing 5 mol% cholesterol in the presence of alpha-parinaric acid underwent a decrease in polarization anisotropy that was over 75% of the original decrease in amplitude observed in the absence of any membrane cholesterol. The difference in sensitivity of the two fluorescent probes to the phase transition of DMPC as a function of membrane cholesterol content may be explained by a preferential partitioning of dehydroergosterol (and cholesterol) into a sterol-rich phase at low sterol concentrations. This partitioning allows dehydroergosterol to detect sterol-rich regions in the membrane bilayer.  相似文献   

7.
We explored the influence of several compositional factors considered capable of influencing the nucleation time of model biles supersaturated in cholesterol. In addition to the classical techniques, e.g., electron microscopy and quasielastic light scattering, employed for size measurement and structural assessment, we employed a novel technique, i.e., video-enhanced microscopy, for particle evaluation in these polydisperse systems which often may simultaneously contain isolated small vesicles, their complex aggregates, and small cholesterol monohydrate crystals. The factors we studied included dilution, degree of cholesterol supersaturation, bile salt/lecithin molar ratio, and Ca2+ concentration. Dilution markedly raised the degree of cholesterol saturation, prolonged nucleation time for cholesterol monohydrate crystals, and favored formation of metastable small unilamellar vesicles. Increasing the degree of cholesterol supersaturation as an independent variable in more concentrated systems both shortened the nucleation time and favored spontaneous formation of a relatively small number of isolated vesicles. A decrease in bile salt/lecithin molar ratio within the physiologically relevant range was accompanied by a prolonged nucleation time and favored spontaneous vesicle formation. Large numbers of small unilamellar vesicles were observed even in concentrated model bile solutions (total lipids: 20 g/dl) when the bile salt/lecithin molar ratio was 1.9 or less. At physiological concentrations, Ca2+ promoted nucleation of cholesterol monohydrate crystals only in vesicle-containing solutions. Taken together, the following conclusions can be drawn. First, spontaneous vesicle formation in dilute systems prolongs solid cholesterol crystal nucleation. It can thus provide a supplementary non-micellar mode of cholesterol transport in micellar systems of supersaturated human bile. Second, dilution, degree of cholesterol supersaturation, and a decrease in bile salt/lecithin ratio prolong cholesterol crystal nucleation time and favor spontaneous vesicle formation. With increasing calcium concentrations, opposite effects are observed. Third, the presence of vesicles may help to account for the frequently observed and otherwise unexplained remarkable degree of metastable supersaturation and prolonged metastability (delayed nucleation time) for cholesterol in human bile.  相似文献   

8.
The fluorescent sterol delta 5,7,9(11),22-ergostatetraen-3 beta-ol (dehydroergosterol) was incorporated into 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) small unilamellar vesicles (SUV) with and without cholesterol in order to monitor sterol-sterol interactions in model membranes. In the range 0-5 mol % fluorescent sterol, dehydroergosterol underwent a concentration-dependent relaxation characterized by red-shifted wavelengths of maximum absorption as well as altered ratios of absorbance maxima and fluorescence excitation maxima at 338 nm/324 nm. Fluorescence intensity per mole of dehydroergosterol increased up to 5 mol % in POPC vesicles. In contrast, quantum yield, steady-state anisotropy, limiting anisotropy, lifetime, and rotational rate remained relatively constant in this concentration range. Similarly, addition of increasing cholesterol in the range 0-5 mol % in the presence of 3 mol % dehydroergosterol also increased the fluorescence intensity per mole of dehydroergosterol, red-shifted wavelengths of maximum absorption, and altered ratios of absorbance maxima. In POPC vesicles containing between 5 and 33 mol % dehydroergosterol, the fluorescent dehydroergosterol interacted to self-quench, thereby decreasing the fluorescence intensity, quantum yield, steady-state anisotropy, and limiting anisotropy and increasing the rotational rate (decreased rotational relaxation time) of the fluorescent sterol. The fluorescence lifetime of dehydroergosterol remained unchanged. The results were in accord with the interpretation that below 5 mol% sterol, the sterols behaved as monomers exposed to some degree to the aqueous solvent in POPC bilayers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Acid-soluble collagens isolated from young and old rat tail tendon were fluorescent-labeled with dansyl hydrazine, which is capable of reacting with aldehyde groups in collagen. The dansyl fluorescence of aged collagen exhibited a weak peak at 525 nm, whereas that of young collagen had a stronger broad peak at 500 nm. Fibril formation in vitro was partially inhibited in these dansylated collagens. During the turbidity lag phase, the dansyl fluorescence was found to increase (30–50%), also shifting to 485 nm. These changes reveal the telopeptide conformation changes occurring during this period. A new fluorescence peak at 420 nm also increased during fibril formation. When the dansylated collagen was irradiated in air with uv light (340 nm), a rapid decrease of the dansyl fluorescence with a concurrent shift to 490 nm occurred. Also, the formation of fibrils was further inhibited. With increasing temperature, the dansyl fluorescence of young collagen decreased, whereas that of old collagen substantially increased, particularly at the denaturation temperature around 38°C. After denaturation, both fluorescences became similar in their intensity and position (490 nm). These findings are discussed in connection with both age-related structural changes of collagen and the mechanism of fibril formation.  相似文献   

10.
The fluorescent sterol delta 5,7,9(11)-dehydroergostatetraen-3 beta-ol (dehydroergosterol) was used as an analogue of cholesterol to examine the molecular interaction of purified rat liver sterol carrier protein-2 (SCP-2) with sterol. The binding of dehydroergosterol to SCP-2 was evidenced by light scatter and by fluorescence polarization, lifetime, limiting anisotropy, and rotational relaxation time of dehydroergosterol. In addition, energy transfer efficiency from SCP-2 tryptophan to dehydroergosterol was 96%, indicating that the apparent distance, R, between the SCP-2 tryptophan (energy donor) and the dehydroergosterol (energy acceptor) was 13.7 A. Scatchard binding analysis of light scatter, lifetime, and energy transfer data all indicated a 1:1 molar stoichiometry with Kd = 1.2, 1.6, and 1.3 microM, respectively. SCP-2 enhanced the activity of microsomal acyl-CoA:cholesterol acyltransferase through transfer of [3H]cholesterol from donor palmitoyloleoyl phosphatidylcholine/cholesterol small unilamellar vesicles to rat liver microsomes containing the enzyme. A recently developed fluorescence assay utilizing dehydroergosterol fluorescence polarization (Nemecz, G., Fontaine, R. N., and Schroeder, F. (1988) Biochim. Biophys. Acta 948, 511-521; Nemecz, G., and Schroeder, F. (1988) Biochemistry 27, 7740-7749) was applied to examine the effect of SCP-2 on sterol exchange. In the absence of SCP-2, two spontaneously exchangeable sterol domains were observed in palmitoyloleoyl phosphatidylcholine/sterol (65:35 molar ratio) small unilamellar vesicles. SCP-2 enhanced the rate of exchange of the faster exchanging domain 2-fold. The transfer rate of the more slowly exchangeable sterol domain and the fraction of cholesterol represented by each domain were not affected. These results demonstrate the utility of dehydroergosterol to probe SCP-2 interactions with sterols and are indicative of a physiological role for SCP-2 as a soluble sterol carrier.  相似文献   

11.
A fluorescence and radiolabel study of sterol exchange between membranes   总被引:2,自引:0,他引:2  
The fluorescent sterols delta 5,7,9(11),22-ergostatetraen-3 beta-ol (dehydroergosterol) and delta 5,7,9,(11)-cholestatrien-3 beta-ol (cholestatrienol) as well as [1,2-3H]cholesterol were utilized as cholesterol analogues to examine spontaneous exchange of sterol between 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) small unilamellar vesicles (SUV). Exchange of fluorescent sterols was monitored at 24 degrees C by release from self-quenching of polarization from the time of mixing without separation of donor and acceptor vesicles. The polarization curve for 35 mol% sterol in POPC best fitted a two-exponential function, with a fast-exchange rate constant k1 = 0.0217 min-1, 1t1/2 = 32 min, size pool 1 = 12%, and a slow rate constant k2 = 2.91.10(-3) min-1, 2t1/2 = 238 min, size pool 2 = 88%. In addition to the above two exchangeable pools of sterol, the data were consistent with the presence of a slowly or nonexchangeable pool, 42% of total sterol, that was highly dependent on sterol content. These results were confirmed by simultaneous monitoring of [1,2-3H]cholesterol radioactivity and dehydroergosterol fluorescence intensity after separation of donor and acceptor vesicles by ion-exchange column chromatography. Thus, dehydroergosterol or cholestatrienol exchange as measured by fluorescence parameters (polarization and/or intensity) provides two new methods to follow cholesterol spontaneous exchange. These methods allow resolution and quantitation of a shorter exchange t1/2 near 30 min previously not reported. Thus, the cholesterol desorption rate from membranes may be faster than previously believed. In addition, the presence of a slowly non-exchangeable pool was confirmed.  相似文献   

12.
We have synthesized a neurohypophyseal hormone analogue containing an extrinsic fluorescence probe by linking a dansyl (DNS) group to the epsilon-amino group of the lysine at residue 8 of vasotocin. The fluorescence properties of this analogue have been characterized by steady-state and time-resolved spectroscopic methods and compared with those of epsilon-DNS-lysine and the dansylated carboxyl terminal tripeptide Pro-Lys(DNS)-GlyNH2. The binding of this hormone analogue to purified isoforms of bovine neurophysins, the natural carrier proteins of the neurohypophyseal hormones, results in changes in several fluorescence parameters of the dansyl probe. These changes include an increase in intensity and average lifetime, a shift of the emission band to higher energies, and an increase in the emission anisotropy. Anisotropy changes have been used to determine dissociation constants for binding to these neurophysin isoforms. Based on the changes in the fluorescence properties of the dansyl probe, the dansyl group itself interacts with the protein. The degree of the dansyl-neurophysin interaction, however, appears to be different for the full sequence isoform of neurophysin I and the Val89 isoform of neurophysin II.  相似文献   

13.
The regulation of lecithin:cholesterol acyltransferase by changes in phospholipid bilayer fluidity was investigated using pyrene excimer fluorescence to measure fluidity. Fluidity of dimyristoylphosphatidylcholine (DMPC) unilamellar vesicles was decreased by the addition of up to 20% (mol/mol) cholesterol and increased by the addition of up to 10% (mol/mol) lysoDMPC. When both cholesterol and lysoDMPC are present in the bilayer, their individual effects on fluidity are altered. These changes can be explained by complex formation between cholesterol and phospholipid as in the model of Presti et al. (Presti, F.C., Pace, R.J. and Chan, S.I. (1982) Biochemistry 21, 3831-3335). Lecithin:cholesterol acyltransferase activity with these vesicles as substrates was measured to determine whether activity can be modulated by the fluidity changes of the bilayer on which the enzyme acts. When 10% lysoDMPC, a known lecithin:cholesterol acyltransferase inhibitor, is added to the vesicles, inhibition of activity is observed. When 7.5% lysoDMPC is added to vesicles which contain either 5 or 10% cholesterol, lecithin:cholesterol acyltransferase activity increases. This increase in lecithin:cholesterol acyltransferase activity due to vesicle-fluidity increase is sufficient to overcome the decrease in activity due to lecithin:cholesterol acyltransferase inhibition. This is the first report of the ability of lysoDMPC to increase lecithin:cholesterol acyltransferase activity.  相似文献   

14.
The behavior of dehydroergosterol in -α-dimyristoylphosphatidylcholine (DMPC) unsonicated multilamellar liposomes was characterized by absorption spectroscopy and fluorescence measurements. Dehydroergosterol exhibited a lowered absorption coefficient in multilamellar liposomes whiel the steady-state fluorescence anisotropy of dehydroergosterol in these membranes decreased significantly with increasing dehydroergosterol concentration, suggesting membrane sterol-sterol interactions. The comparative steady-state anisotropy of 0.9 mole percent dehydroergosterol in multilamellar liposomes was lower than in small unilamellar vesicles suggesting different sterol environments for dehydroergosterol. Dehydroergosterol fluorescence lifetime was relatively independent of membrane sterol content and yielded similar values in sonicated and unsonicated model membranes. In multilamellar liposomes containing 5 mole percent cholesterol, the gel-to-liqui crystalline phase transition of DMPC detected by 0.9 mole percent dehydroergosterol was significantly broadened when compared to the phase transition detected by dehydroergosterol in the absence of membrane cholesterol (Smutzer, G. et al. (1986) Biochim. Biophys. Acta 862, 361–371). In multilamellar liposomes containing 10 mole percent cholesterol, the major fluorescence lifetime of dehydroergosterol did not detect the gel-to-liquid crystalline phase transition of DMPC. Time-correlated fluorescence anisotropy decays of dehydroergosterol in DMPC multilamellar liposomes in the absence and presence of 5 mole percent cholesterol exhibited a single rotational correlation time near one nanosecond that was relatively independent of temperature and low concentrations of membrane cholesterol. The limiting anisotropy of 0.9 mole percent dehydroergosterol decreased above the gel-to-liquid crystalline phase transition in membranes without cholesterol and was not significantly affected by the phase transition in membranes containing 5 mole percent cholesterol. These results suggested hindered rotational diffusion of dehydroergosterol in multilamellar liposomes. Lifetime and time-correlated fluorescence measurements of 0.9 mole percent dehydroergosterol in multilamellar liposomes further suggested this fluorophore was detecting physical properties of the bulk membrane phospholipids in membranes devoid of cholesterol and was detecting sterol-rich regions in membranes of low sterol concentration.  相似文献   

15.
The cholesterol solubilizing capacity of lecithin vesicles was studied and some physiocochemical properties of the resulting mixed vesicles were investigated. The maximum association of ultrasonicated cholesterol and lecithin was found to be a cholesterol/lecithin molar ratio of 2 : 1, with a limiting concentration of colloidal lipid of approximately 34 mg/ml. The 2 : 1 dispersions were found to be rather stable with no change in cholesterol/lecithin ratios for long periods.The mixed 2 : 1 cholesterol/lecithin vesicles were separated by Sepharose 4 B chromatography to obtain homogeneous preparations. The homogeneity was further tested by analytical ultracentrifugation and electron microscopy.Light-scattering measurements showed an increase in particle weight with increasing cholesterol proportion. 1H- and 13C-NMR studies demonstrated an additional broadening, especially of chain resonances, when going from a cholesterol/lecithin molar ratio of 1 : 1 to 2 : 1.  相似文献   

16.
The fluorescence method has been used to investigate ricin and its isolated subunits interaction with some model membranes. Three liposome types were used as a model of biological membrane: 1) liposomes constructed from lecithin and cholesterol (9:1, M:M) 2) from ganglioside receptors GM1 and 3) from the mixture of GM1, lecithin and cholesterol (1:9:1). Interaction of the protein with liposome evokes changes in the parameters of both intrinsic protein fluorescence and fluorescence of the covalently bound dansyl. Binding constants were calculated from a decrease of the intrinsic fluorescence intensity as well as from the changes in the dansyl rotation anisotropy. Measurements were carried out at neutral and acidic pH. There was good correlation of the results obtained by different methods. It was shown that association constants were different for intact ricin and its subunits. The constants also depend on liposome composition and pH of the solution. The present study has demonstrated that interaction of ricin with liposome is accounted for not only by receptor centers but also by other hydrophobic regions of ricin that are inaccessible in the native toxin and may represent the region of the subunits interaction.  相似文献   

17.
Depolarization of dehydroergosterol in phospholipid bilayers   总被引:2,自引:0,他引:2  
The behavior in phospholipid bilayers of low concentrations of dehydroergosterol, a fluorescent cholesterol mimic, has been examined by fluorometry and calorimetry. In contrast to many fluorescent membrane probes, dehydroergosterol shows a decrease in fluorescence anisotropy when the matrix phospholipid goes from the liquid-crystalline to the gel state. This was observed in three systems in which the matrix lipid was either dipalmitoyl- or dimyristoylphosphatidylcholine or dilauroylphosphatidylethanolamine. The decrease in anisotropy is the result of a large increase in the fluorescence life time of dehydroergosterol in these bilayer systems which is probably the result of thermal quenching of dehydroergosterol by neighboring molecules. The rotation of dehydroergosterol in these bilayers can be described in terms of the thermal coefficient of frictional resistance offered by the environment (Weber et al. (1984) Biochemistry 23, 6785-6788). The thermal coefficients are observed to change abruptly at the onset and completion temperatures of the gel to liquid-crystalline phase transition temperatures of the three matrix phospholipids. These changes are, however, much smaller than are the corresponding changes in the thermal coefficient observed for the fluorescent probe diphenylhexatriene in dilauroylphosphatidylethanolamine bilayers. The difference in behavior of the two fluorescent probes may be the result of lateral phase separation of dehydroergosterol similar to that reported for cholesterol in similar systems.  相似文献   

18.
A 28-mer gammaM4 peptide, obtained by solid-state synthesis and corresponding to the fourth transmembrane segment of the nicotinic acetylcholine receptor gamma-subunit, possesses a single tryptophan residue (Trp453), making it an excellent model for studying peptide-lipid interactions in membranes by fluorescence spectroscopy. The gammaM4 peptide was reconstituted with synthetic lipids (vesicles of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, i.e., POPC) rich and poor in cholesterol and analyzed using steady-state and time-resolved fluorescence techniques. The decrease in gammaM4 intrinsic fluorescence lifetime observed upon incorporation into a cholesterol-rich lo phase could be rationalized on the basis of a dynamic self-quenching owing to the formation of peptide-rich patches in the membrane. This agrees with the low F?rster type resonance energy transfer efficiency from the Trp453 residue to the fluorescent cholesterol analog, dehydroergosterol, in the lo phase. In the absence of cholesterol the gammaM4 nicotinic acetylcholine receptor peptide is randomly distributed in the POPC bilayer with its hydrophobic moiety matching the membrane thickness, whereas in the presence of cholesterol the increase in the membrane thickness and variation of the material properties favor the formation of peptide-enriched patches, i.e., interhelix interaction energy is essential for obtaining a stabilized structure. Thus, the presence of a cholesterol-rich, ordered POPC phase drives the organization of peptide-enriched patches, in which the gammaM4 peptide occupies approximately 30% of the patch area.  相似文献   

19.
Unconjugated bilirubin (bilirubin-IX alpha), the hydrophobic end product of heme degradation, is esterified in the hepatocyte endoplasmic reticulum to water-soluble conjugates prior to excretion in bile. To characterize the process of intracellular bilirubin transport, the kinetic and thermodynamic activation parameters for the spontaneous transfer of bilirubin between small unilamellar egg lecithin vesicles were determined. Bilirubin-IX alpha was added to donor vesicles labeled with the fluorescent phospholipid probe, (5-(dimethylamino)naphthalene-1-sulfonyl) dipalmitoyl-L-alpha-phosphatidylethanolamine (dansyl-PE). When bound to the donor vesicles, bilirubin quenches the dansyl probe fluorescence through resonance energy transfer. The movement of bilirubin from dansyl-labeled donor vesicles to unlabeled acceptor vesicles was monitored directly by the reemergence of dansyl fluorescence over time. Vesicle fusion and intervesicle transfer of the dansyl-PE probe were excluded by quasielastic light scattering and fluorescence resonance energy transfer studies. Stopped-flow analysis demonstrated that the transfer of bilirubin was described by a single-exponential function with a mean half-time of 2.0 +/- 0.1 ms (+/- SD) at 37 degrees C. The rate of bilirubin transfer was independent of acceptor vesicle concentration and decreased with increasing buffer ionic strength, indicating that intermembrane transfer occurred via aqueous diffusion, rather than vesicle collisions. The free energy of activation (delta G++) for the dissociation of bilirubin from donor vesicles was 14.2 kcal.mol-1. These studies suggest that bilirubin is associated with phospholipid bilayers at the membrane-water interface. We postulate that the movement of unconjugated bilirubin between intracellular membranes occurs via spontaneous transfer through the aqueous phase.  相似文献   

20.
We have monitored the organization and dynamics of the hemolytic peptide melittin in membranes containing cholesterol by utilizing the intrinsic fluorescence properties of its functionally important sole tryptophan residue and circular dichroism spectroscopy. The significance of this study is based on the fact that the natural target for melittin is the erythrocyte membrane, which contains high amounts of cholesterol. Our results show that the presence of cholesterol inhibits melittin-induced leakage of lipid vesicles and the extent of inhibition appears to be dependent on the concentration of membrane cholesterol. The presence of cholesterol is also shown to reduce binding of melittin to membranes. Our results show that fluorescence parameters such as intensity, emission maximum, and lifetime of membrane-bound melittin indicate a change in polarity in the immediate vicinity of the tryptophan residue probably due to increased water penetration in presence of cholesterol. This is supported by results from fluorescence quenching experiments using acrylamide as the quencher. Membrane penetration depth analysis by the parallax method shows that the melittin tryptophan is localized at a relatively shallow depth in membranes containing cholesterol. Analysis of energy transfer results using melittin tryptophan (donor) and dehydroergosterol (acceptor) indicates that dehydroergosterol is not randomly distributed and is preferentially localized around the tryptophan residue of membrane-bound melittin, even at the low concentrations used. Taken together, our results are relevant in understanding the interaction of melittin with membranes in general, and with cholesterol-containing membranes in particular, with possible relevance to its interaction with the erythrocyte membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号