首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We addressed the interacting effects of a natural large–scale fire and a subsequent major hurricane on relative positions of epiphytes in a subtropical forest. In Everglades National Park, subtropical hammocks (hardwood tree “islands”; burned and unburned) during the Ingraham Fire (1989) were surveyed for trees and epiphytic bromeliads (Tillandsia spp.) one year before, as well as one and five years after, Hurricane Andrew (1992). We measured trees (species, diameter, and status [alive/dead]) and epiphytes (species, height, host tree characteristics, substrate life status, and density). The fire decreased the height of epiphytes during the hurricane because branches and bark of trees killed by the fire were unstable epiphyte substrates in the high winds. Proportions of epiphytes on Quercus virginiana were equally increased after the hurricane in both unburned and burned hammocks; the large size and bark characteristics resulted in greater proportional survival of epiphytes on this species. During the five years following the hurricane, changes in the distributions of epiphytes generally were toward pre–hurricane distributions, but recovery was faster in unburned than burned hammocks. We conclude that disturbances that kill trees are likely to amplify the vertical reduction of epiphytes during a subsequent hurricane and that effects of a single disturbance on plant populations can be influenced by the disturbance history of the system, including different types of disturbances.  相似文献   

2.
The progress of growth of a subalpine youngAbies veitchii andA. mariesii forest during 25 years was analyzed on the basis of measurements of the processes of height growth of about 230 trees in a quadrat where the old canopy had been completely destroyed by a typhoon in 1959. The original forest floor sapling population had consisted of trees shorter than 2 m. Saplings grew faster after the breakage of the canopy than before,A. veitchii growing faster thanA. mariesii. During the 25 years of growth, a few well developed trees exceeded 6 m in height, while others remained around only 1 m or less. Some small trees, mostlyA. veitchii died at sites of high density. A bimodality in the distribution of tree height had developed with a trough at about 2.5 m, differentiating the trees into canopy and suppressed populations. Canopy trees grew with wide variation of rates, while most of the suppressed trees showed little recent growth. No difference was found in recent growth rates between the two canopyAbies species. Differences in height growth rates among individual canopy trees were analyzed on the basis of their horizontal crown overlapping. Competition models evaluating the difference in height between trees with overlapping crowns were shown to be effective. The height growth rate of a canopy tree appeared to be controlled by both the closely grown taller trees and the local density of trees including those shorter than the subject tree.  相似文献   

3.
BACKGROUND AND AIMS: Fire is the dominant disturbance in central Kamchatka boreal forests, yet patterns and mechanisms of stand recovery have not been investigated. METHODS: Measurements were made of 1433 stems > or =1.3 m height and annual radial increments of 225 randomly selected trees in a 0.4-ha plot of a 53-year-old fire-origin mixed-species stand to examine the spatio-temporal variation in establishment, growth, size inequality and the mode of competition among individual trees. Growth variations were related to tree size, age and local interference with neighbours. KEY RESULTS: Betula platyphylla formed the main canopy following a fire in 1947, with Larix cajanderi and Pinus pumila progressively reinvading the lower tree and shrub stratum. Most B. platyphylla originated from sprouts in small patches (polycormons) during the first 15 post-fire years. Betula platyphylla had normal distributions of diameter and age classes, but negatively skewed height distribution, as expected from shade-intolerant, pioneer species. Larix cajanderi had fewer tall and many short individuals. The smaller and younger B. platyphylla grew disproportionately more in diameter than larger trees from 1950 to 1975, and hence stem size inequalities decreased. The reverse trend was observed from 1995 to 2000: larger trees grew more, indicating an increasing asymmetry of competition for light. Betula platyphylla had steady diameter growth in the first 25 post-fire years, after which the growth declined in smaller trees. Neighbourhood analysis showed that the decline resulted from increased competition from taller neighbours. CONCLUSIONS: The observed growth patterns suggest that mode of interactions altered during stand development from early stages of weak competition for soil resources released by fire to later stages of asymmetric competition for light. Asymmetric crown competition started later than reported in other studies, which can be attributed to the lower stem density leaving much space for individual growth, greater relative importance of below-ground competition in this site of nutrient-poor volcanic soil, and the vegetative origin of B. platyphylla. Larix cajanderi growing under B. platyphylla had steady diameter growth during the first 20 years, after which growth declined. It is suggested that early succession fits the tolerance model of succession, while inhibition dominates in later stages.  相似文献   

4.
In extensively cleared areas of temperate Australia, large‐scale mixed‐species environmental revegetation is often recommended to address land and water degradation in rural landscapes. Although survival and growth are central to the success of revegetation, there is very limited information on this aspect of practice. We investigated how site and management practices influence early growth by surveying 29 planted or direct‐seeded sites, covering ages from 3–6 years, in north central Victoria, Australia. We measured heights and crown widths of trees and shrubs at each site and estimated average growth over time at the scale of: (i) individual trees or shrubs (mean height increment) and (ii) stand (vegetation cover increment and a ‘height integral’ increment variable, which integrates differences in both height and stand density). Relationships between growth increment variables and site factors, including climate, site preparation and land‐use history, were investigated to identify the main factors influencing early growth rates. Mean annual increment in height of individual trees was significantly higher for trees established from tubestock than those from direct seeding. Multiple linear regression models for two growth variables, cover increment and height integral increment, explained 61% and 38% of the variation, respectively, but with high uncertainty. Ploughing, pre‐establishment weed control and fertiliser addition improved growth rates. Revegetation method had a significant effect on early growth; at the scale of individuals, growth rates were higher for planted tubestock than for direct seeding, while at the stand scale, growth rates were higher for direct seeding than for planted tubestock.  相似文献   

5.
Question: Does the development of Brachystegia‐Julbernardia (miombo) woodland after felling, and under a variable fire regime, occur via a serai stage of fire‐tolerant species? Location: Four sites in central Zambia, Africa. Methods: Trees in replicate plots were clear‐cut and stumps and resprouts enumerated. Species recruited into the tree layer (> 2.0 m tall) were monitored for 11 years (1991–2001) and fire occurrence and herbaceous biomass assessed annually to determine fuel loads. Results: Fire frequency was variable at the study sites and fuel loads were generally too low to suppress woodland regeneration after felling. However, at one site a change from low to high fire frequency arrested woodland development and triggered a regression towards a ‘fire‐trap’ vegetation type in which a few fire‐tolerant species survived. There was no evidence to support the hypothesis that miombo woodland regeneration is facilitated by a sere of fire‐tolerant species. All regrowth after felling was from resprouting plants present before felling. Trees with a previous history of felling sprouted more vigorously than trees that had not been felled before. Species richness in the tree layer increased with time since felling because resprout species had different height growth rates. Conclusion: The resilience of miombo trees after clear‐felling is largely due to their capacity to regenerate vegetatively from resprouts and stumps after release from frequent fires. Coppicing is therefore recommended as a suitable management technique for miombo woodland in central southern Africa.  相似文献   

6.
The mechanisms for the maintenance of coexistence of Engelmann spruce and subalpine fir in subalpine forests of the Colorado Front Range were examined by comparing age, size, and spatial distributions of spruce and fir in two adjacent, previously logged sites of differing moisture availability. Adult tree ages were calculated from stem cores, while seedling ages were calculated from a multiple regression equation based on diameter, height, and number of branch whorls. Tree size was measured by height and diameter; spatial distributions were described by Morisita's index of dispersion. Cumulative age and size distributions were significantly different in the two species, with greater longevity and a larger overall size in spruce than fir. Both species showed a significant linear relationship between size and age, while fir showed a faster height growth rate than spruce. The linear relationship beween age and size was much closer in seedlings than in adults. Seedling spatial distribution was highly clumped in both species, but mature trees showed little or no clumping. Because both species are mainly wind dispersed, the greater clumping in spruce than in fir seedlings suggests that spruce have more specific establishment requirements than fir. Colonization patterns indicated that spruce seedlings were primarily found in forest gaps or associated with fir canopy trees, while fir seedlings were more commonly found in the forest, associated with either spruce or fir canopy trees. Tree density, growth rates, and mortality rates were higher in the wet site, with spruce showing the largest between site differences. These data suggest a new hypothesis for coexistence stating that Engelmann spruce and subalpine fir are maintained as codominants because the greater longevity and size of spruce is balanced by the faster height growth and more flexible seedling establishment requirements of fir.  相似文献   

7.
Woodland restoration sites planted with Quercus lobata (valley oak) often have serious invasions of nonnative annual grasses and thistles. Although prescribed fire can effectively control these exotics, restoration managers may be reluctant to use fire if it causes substantial mortality of recently planted saplings. We studied the effects of prescribed fires on the survival and subsequent growth of 5‐ and 6‐year‐old valley oak saplings at a research field near Davis, California. One set of blocks was burned in summer 2003 at a time that would control yellow star thistle, a second set of blocks was burned in spring 2004 at a time that would control annual grasses, and a third set was left unburned. Very few oaks died as a result of either fire (3–4%). Although a large proportion was top‐killed (66–72%), virtually all these were coppiced and most saplings over 300 cm tall escaped top‐kill. Tree height, fire temperature, and understory biomass were all predictive of the severity of sapling response to fire. Although the mean sapling height was initially reduced by the fires, the growth rates of burned saplings significantly exceeded the growth rates of unburned control trees for 2 years following the fires. By 2–3 years after the fires, the mean height of spring‐ and summer‐burned saplings was similar to that of the unburned control saplings. The presence of valley oak saplings does not appear to preclude the use of a single prescribed burn to control understory invasives, particularly if saplings are over 300 cm tall.  相似文献   

8.
Wet‐sclerophyll forests are unique ecosystems that can transition to dry‐sclerophyll forests or to rainforests. Understanding of the dynamics of these forests for conservation is limited. We evaluated the long‐term succession of wet‐sclerophyll forest on World Heritage listed K'gari (Fraser Island)—the world's largest sand island. We recorded the presence and growth of tree species in three 0.4 hectare plots that had been subjected to selective logging, fire, and cyclone disturbance over 65 years, from 1952 to 2017. Irrespective of disturbance regimes, which varied between plots, rainforest trees recruited at much faster rates than the dominant wet‐sclerophyll forest trees, narrowly endemic species Syncarpia hillii and more common Lophostemon confertus. Syncarpia hillii did not recruit at the plot with the least disturbance and recruited only in low numbers at plots with more prominent disturbance regimes in the ≥10 cm at breast height size. Lophostemon confertus recruited at all plots but in much lower numbers than rainforest trees. Only five L. confertus were detected in the smallest size class (<10 cm diameter) in the 2017 survey. Overall, we find evidence that more pronounced disturbance regimes than those that have occurred over the past 65 years may be required to conserve this wet‐sclerophyll forest, as without intervention, transition to rainforest is a likely trajectory. Fire and other management tools should therefore be explored, in collaboration with Indigenous landowners, to ensure conservation of this wet‐sclerophyll forest.  相似文献   

9.
Abstract. The endemic New Caledonian conifer Agathis ovata occurs as an emergent tree in fire‐prone shrublands (maquis), and fire‐sensitive rainforest. Growth, survivorship and recruitment over 5 yr were compared for populations from forest and maquis on ultramafic substrates in New Caledonia to investigate whether demographic behaviour varied in response to the strongly contrasting forest and shrubland environments. Growth of seedlings and of small (30–100 cm height) and large (100 cm height; 5 cm DBH) saplings was slow, but varied significantly among stages, site types and years. The greatest difference in growth rates was among stages, seedlings growing 0.34 cm.yr?1, small saplings 1.06 cm.yr?1 and large saplings 2.13 cm.yr?1. Tree DBH increased by only 0.05 cm.yr?1 and, based on these rates, individuals with DBH of 30 cm are estimated to be more than 700 yr old. Few trees (3.5%) produced cones in any year and seedling recruitment was low, but some recruitment was recorded each year in both maquis and forest. Rates of recruitment per parent were highest in forest (1.28.yr?1, cf 0.78.yr?1), but the higher density of trees in maquis meant that overall recruitment was greater there (92 ha?1.yr?1, cf 56 ha?1.yr?1). Seedling mortality ranged from 0.9 to 2.9% among years with no significant difference between maquis and forest. No sapling mortality was recorded, but annual tree mortality ranged from 0 to 1.4%. Evidence from a recently burned site indicated that while trees may survive fire, seedlings and saplings do not. Post‐fire seedling recruitment per ha from surviving trees was four times lower than in unburned sites, but growth rates were four times higher. Similar demographic attributes, including high survivorship, low growth rate and low rates of recruitment over a long reproductive life, characterize Agathis ovata populations in both maquis and rainforest in New Caledonia and are indicative of a broad tolerance of light environments that is unusual among tree species. These demographic attributes help to explain the long‐term persistence of the species in these strongly contrasting habitats.  相似文献   

10.
11.
Appropriate fire management strategies are needed to protect forests and large old ecologically and culturally significant trees in natural landscapes. The aim of this study was to determine the age of large old and relic trees of cultural significance that included Cypress Pine (Callitris columellaris F. Muell.), a species that is sensitive to crown scorching fires in a fire‐prone landscape, and to calibrate a tree‐growth‐rate method for estimating tree age. Twelve large trees were dated using radiocarbon (14C) dating. The trees are located on North Stradbroke Island (Indigenous name: Minjerribah), southeast Queensland (Australia) in a fire‐prone landscape where recent wildfires have destroyed many large trees. The median tree ages ranged from 155 to 369 years. These results suggest an important role of past Indigenous land management practices in protecting Cypress Pine from crown scorching fires. The tree‐growth‐rate‐based method for estimating tree age generally overestimated the age derived from radiocarbon dating. Bias correction factors were developed for correcting various measures of periodic growth rates. This study provides evidence that appropriate low‐intensity fire strategies have the potential to contribute to the survival of forests and conserve large old trees.  相似文献   

12.
The stand structure and disturbance history in a sub-boreal coniferous forest dominated byPicea jezoensis, Picea glehnii andAbies sachalinensis were investigated in four study plots set up in Taisetsuzan National Park, Japan. The effect of stand characteristics on the growth and mortality rates of understory trees was examined. Although all the stands showed inverse J-shape d.b.h. (diameter at breast height) distributions, the age structure and disturbance history differed amongst the stands. The stands with wide d.b.h. distribution (i.e. large CV and skewness) were more uneven-aged than those with narrow d.b.h. distribution (i.e. small CV and skewness). The disturbance-return interval based on the model of Hett and Loucks was 31 to 65 years. The gap ratio in the canopy was also different among the stands. These suggest that the variations in stand structure represent different occurrences of natural disturbances. Furthermore, the structural features such as size structure, canopy gap ratio and density of canopy trees also affected the growth dynamics of understory trees (≥2 m in height and <10 cm in diameter at breast height). The growth and mortality rates of understory trees changed with the canopy gap ratio and canopy tree density. The understory trees of stands with wide canopy d.b.h. distribution had higher growth and canopy recruitment rates than those of stands with narrow canopy d.b.h. distribution, contributing to the maintenance of continuous stand stratification. The understory trees of stands with narrow canopy d.b.h. distribution showed lower growth and higher mortality rates than those of stands with narrow canopy d.b.h. distribution, leading to the formation of a single-canopy structure. It is suggested that natural disturbance governs the regeneration process in the future by affecting the growth and mortality patterns of understory trees through the stand structure (size and age structure, canopy tree density, canopy gap ratio).  相似文献   

13.
Honey mesquite ( Prosopis glandulosa Torr.) which grows on grasslands and rangelands in southwestern USA may have potential as a bioenergy feedstock because of existing standing biomass and regrowth potential. However, regrowth mesquite physiognomy is highly different from undisturbed mesquite physiognomy and little is known regarding growth rates and structural biomass allocation in regrowth mesquite. We compared canopy architecture, aboveground biomass and relative allocation of biomass components in regrowth (RG) trees of different known ages with undisturbed (UD) trees of similar canopy height to each RG age class. RG trees in most age classes (2–12 years old) had greater canopy area, leaf area, basal stem number, twig (<0.5 cm diameter) mass and small stem (0.5–3 cm diameter) mass than UD trees of the same height. Large stem (>3 cm diameter) mass was similar between RG and UD trees in all height classes. Ages of UD trees were determined after harvest and further comparisons were made between age, canopy structure and biomass in RG and UD trees. Relationships between age and total mass, age and height, and age and canopy area indicated a faster growth rate in RG than in UD trees. Large stem mass as a percentage of total tree mass accumulated more rapidly with age in RG than UD trees. Leaf area index and leaf : twig mass ratio were maintained near 1 in all RG and UD trees. Regrowth potential may be one of the most important features of mesquite in consideration as a bioenergy feedstock.  相似文献   

14.
Elephant and fire are considered to be among the most important agents that can modify the African savanna ecosystem. Although the synergistic relationship between these two key ecological drivers is well documented, it has proved much more difficult to establish the relative effects they have on savanna vegetation structure at a fine-scale over time. In this study, we explore the comparative impacts of fire and elephant on 2,522 individually identified large trees (≥5 m in height) in the Kruger National Park, South Africa. Data were collected from 21 transects first surveyed in April 2006 and resurveyed in November 2008, to determine the relative importance of past damage by these agents on subsequent impacts and mortality. The occurrence of fire or elephant damage in 2006 affected the amount of tree volume subsequently removed by both these agents; elephant removed more tree volume from previously burned trees and the impact of subsequent fire was higher on previously burned or elephant-utilized trees than on undamaged trees. Mortality was also affected by an interaction between previous and recent damage, as the probability of mortality was highest for trees that suffered from fire or elephant utilization after being pushed over. Subsequent fire damage, but not elephant utilization, on debarked trees also increased the probability of mortality. Mortality was twice (4.6% per annum) that of trees progressing into the ≥5 m height class, suggesting an overall decline in large tree density during the 30-month study period. The responses of large trees were species and landscape-specific in terms of sensitivity to elephant and fire impacts, as well as for levels of mortality and progression into the ≥5 m height class. These results emphasize the need for fine-scale site-specific knowledge for effective landscape level understanding of savanna dynamics.  相似文献   

15.
Restoration efforts to improve vigor of large, old trees and decrease risk to high‐intensity wildland fire and drought‐mediated insect mortality often include reductions in stand density. We examined 15‐year growth response of old ponderosa pine (Pinus ponderosa) and Jeffrey pine (Pinus jeffreyi) trees in northeastern California, U.S.A. to two levels of thinning treatments compared to an untreated (control) area. Density reductions involved radial thinning (thinning 9.1 m around individual trees) and stand thinning. Annual tree growth in the stand thinning increased immediately following treatment and was sustained over the 15 years. In contrast, radial thinning did not increase growth, but slowed decline compared to control trees. Available soil moisture was higher in the stand thinning than the control for 5 years post‐treatment and likely extended seasonal tree growth. Our results show that large, old trees can respond to restoration thinning treatments, but that the level of thinning impacts this response. Stand thinning must be sufficiently intensive to improve old tree growth and health, in part due to increasing available soil moisture. Importantly, focusing stand density reductions around the immediate neighborhood of legacy trees was insufficient to elicit a growth response, calling into question treatments attempting to increase vigor of legacy trees while still maintaining closed canopies in dry, coniferous forest types. Although radial thinning did not affect tree growth rates, this treatment may still achieve other resource objectives not studied here, such as protecting wildlife habitat, reducing the risk of severe fire injury, and decreasing susceptibility to bark beetle attacks.  相似文献   

16.
Stand growth and developmental processes were investigated in Pinus densiflora Siebold et Zucc. stands of different ages in the central eastern region of Korea. Stands were inventoried and five trees per stand were sampled for stem analysis, age estimation, and growth analysis. More than 80% of sampled trees in a stand were established within 3–5 years, and most stands had a single cohort structure. The initial growth of pine seedlings was slow, but the height growth accelerated beyond 2–3 m height, 5–10 years after establishment. Linear growth was maintained until 10–12 m height, at which suppressed trees fell behind and might die out. The young stand was composed of pure pines, while few pine seedlings and saplings were found in the understory of older stands. The peak of diameter growth rate occurred around 5–15 years after tree establishment, implying that competition begins during that period. The pine stand development follows four stages: (1) the young stage when the growth rate increases and peaks; (2) the height competition stage when trees focus on height growth for light while maintaining a narrow DBH and height distribution; (3) the differentiation stage when suppressed trees die out, and the DBH distribution becomes wider; and (4) the mature stage when stands have a multi-canopy structure with a wide DBH and height distribution, while the understory is dominated by other tree species. The changes in growth rates and stand structure through forest development would be implemented to predict alterations of above-ground carbon sequestration rates.  相似文献   

17.
Questions: Did fire regimes in old‐growth Pinus ponderosa forest change with Euro‐American settlement compared to the pre‐settlement period? Do tree age structures exhibit a pattern of continuous regeneration or is regeneration episodic and related to fire disturbance or fire‐free periods? Are the forests compositionally stable? Do trees have a clumped spatial pattern and are clumps even‐ or mixed‐age? How might information from this old‐growth forest inform current restoration and management practices? Location: A 235‐ha old‐growth forest in the Ishi Wilderness, southern Cascade Mountains, California. Methods: Age, size, and spatial pattern of trees were quantified in seven stands. Fire history was reconstructed using fire scar dendrochronology. The influence of fire on stand structure was assessed by comparing fire history with age, size, and spatial structure of trees and identifying and measuring trees killed by two recent fires. Results: Species composition in plots was similar but density and basal area of tree populations varied. Age structure for P. ponderosa and Quercus kelloggii showed periods of episodic recruitment that varied among plots. Fire disturbance was frequent before 1905, with a median period between fires of 12 years. Fire frequency declined after 1905 but two recent fires (1990, 1994) killed 36% and 41% of mostly smaller diameter P. ponderosa and Q. kelloggii. Clusters of similar age trees occurred at scales of 28‐1018 m2 but patches were not even‐aged. Interactions between tree regeneration and fire promoted development of uneven age groups of trees. Conclusions: Fire disturbance strongly influenced density, basal area, and spatial structure of tree populations. Fire exclusion over the last 100 years has caused compositional and structural changes. Two recent fires, however, thinned stands and created gaps favorable for Q. kelloggii and P. ponderosa regeneration. The effects of infrequent 20th century fire indicate that a low fire frequency can restore and sustain structural characteristics resembling those of the pre‐fire suppression period forest.  相似文献   

18.
Abstract The impact of feral Asian water buffalo (Bubalus bubalis) and season of fire on growth and survival of mature trees was monitored over 8 years in the eucalypt savannas of Kakadu National Park. Permanently marked plots were paired on either side of a 25‐km‐long buffalo‐proof fence at three locations on an elevational gradient, from ridge‐top to the edge of a floodplain; buffalo were removed from one side of the fence. All 750 trees ≥ 1.4 m height were permanently marked; survival and diameter of each tree was measured annually; 26 species were grouped into four eco‐taxonomic groups. The buffalo experiment was maintained for 7 years; trees were monitored an additional year. Fires were excluded from all sites the first 3 years, allowed to occur opportunistically for 4 years and excluded for the final year. Fires were of two main types: low‐intensity early dry season and high‐intensity late dry season. Growth rates of trees were size‐specific and positively related to diameters as exponential functions; trees grew slowest on the two ends of the gradient. Eucalypt mortality rates were 1.5 and 3 times lower than those of pantropics and of arborescent monocots, respectively, but the relative advantage was lost with fires or buffalo grazing. Without buffalo grazing, ground level biomass was 5–8 t ha?1 compared with 2–3 t ha?1, within 3 years. In buffalo‐absent plots, trees grew significantly slower on the dry ridge and slope, and had higher mortality across the entire gradient, compared with trees in buffalo‐present plots. At the floodplain margin, mortality of small palms was higher in buffalo‐present sites, most likely due to associated heavy infestations of weeds. Low‐intensity fires produced tree growth and mortality values similar to no‐fire, in general, but, like buffalo, provided a ‘fertilization’ effect for Eucalyptus miniata and Eucalyptus tetrodonta, increasing growth in all size classes. High‐intensity fires reduced growth and increased mortality of all functional groups, especially the smallest and largest (>35 cm d.b.h.) trees. When buffalo and fires were excluded in the final year, there were no differences in growth or mortality between paired sites across the environmental gradient. After 8 years, the total numbers of trees in buffalo‐absent plots were only 80% of the number in buffalo‐present plots, due to relatively greater recruitment of new trees in buffalo‐present plots; fire‐sensitive pantropics were particularly disadvantaged. Since the removal of buffalo is disadvantageous, at least over the first years, to savanna tree growth and survival due to a rebound effect of the ground‐level vegetation and subsequent changes in fire‐vegetation interactions, process‐orientated management aimed at reducing fuel loads and competitive pressure may be required in order to return the system to a previous state. The ‘footprint’ of 30 years of heavy grazing by buffalo has implications for the interpretation of previous studies on fire‐vegetation dynamics and for current research on vegetation change in these savannas.  相似文献   

19.
Tropical savannas are typically highly productive yet fire‐prone ecosystems, and it has been suggested that reducing fire frequency in savannas could substantially increase the size of the global carbon sink. However, the long‐term demographic consequences of modifying fire regimes in savannas are difficult to predict, with the effects of fire on many parameters, such as tree growth rates, poorly understood. Over 10 years, we examined the effects of fire frequency on the growth rates (annual increment of diameter at breast height) of 3075 tagged trees, at 137 locations throughout the mesic savannas of Kakadu, Nitmiluk and Litchfield National Parks, in northern Australia. Frequent fires substantially reduced tree growth rates, with the magnitude of the effect markedly increasing with fire severity. The highest observed frequencies of mild, moderate and severe fires (1.0, 0.8 and 0.4 fires yr?1, respectively) reduced tree growth by 24%, 40% and 66% respectively, relative to unburnt areas. These reductions in tree growth imply reductions in the net primary productivity of trees by between 0.19 t C ha?1 yr?1, in the case of mild fires, and 0.51 t C ha?1 yr?1, in the case of severe fires. Such reductions are relatively large, given that net biome productivity (carbon sequestration potential) of these savannas is estimated to be just 1–2 t C ha?1 yr?1. Our results suggest that current models of savanna tree demography, that do not account for a relationship between severe fire frequency and tree growth rate, are likely to underestimate the long‐term negative effects of frequent severe fires on tree populations. Additionally, the negative impact of frequent severe fires on carbon sequestration rates may have been underestimated; reducing fire frequencies in savannas may increase carbon sequestration to a greater extent than previously thought.  相似文献   

20.
Dendrochronological studies of large and old Sequoia sempervirens are limited by access and complex crossdating, but core sampling at regular height intervals along the main trunks of five standing trees allowed for reconstruction of growth, height, and age while providing within-tree replication for crossdating. We developed a crossdated ring-width chronology (1453–2015) for redwoods growing in an easternmost old-growth forest in the Napa Range of California, determined aboveground tree attributes, investigated the inter-annual climate-growth relationships since the late 19th century, and documented long-term growth trends. Age, height, f-DBH (functional diameter at breast height), and aboveground biomass of these co-dominant trees ranged from 241 to 783 years, 45.7 to 61.5 m, 117.0 to 226.9 cm, and 9.34 to 33.62 Mg, respectively. Bootstrapped correlation and response function analysis showed radial growth positively related to May through August Palmer Drought Severity Index (PDSI) and negatively related to maximum June temperature (r ≥ │0.47│, P < 0.0001), explaining 33.3% of ring-width variation. Bootstrapped correlations over a moving 40-year window indicated strengthening relationships with PDSI and minimum temperature. The long-term growth trend, reflected by the size-detrended metric of residual wood volume increment (RWVI), varied over time and showed an average one-year decrease of 13.3% for 20th and 21st century droughts. A fire detected in August 1931 corresponded with a one-year decrease in RWVI of 43.1% followed by >100% increase within five years. Growth dynamics for redwoods in this interior forest provide a point of comparison for redwoods previously studied in old-growth forests along the latitudinal gradient, highlighting range-wide trends and site-specific differences in responses to climate and fire.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号