首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the sequence of DNA synthesis of the human active, inactive and reactivated X chromosomes in mouse-human hybrid cells. The two independent reactivants, induced by 5-azacytidine (5-azaC), expressed human hypoxanthinephosphoribosyl transferase (HPRT), and one also expressed human glucose-6-phosphate dehydrogenase (G6PD) and phosphoglycerate kinase (PGK). Restriction enzyme analysis of DNA methylation at the re-expressed loci revealed hypomethylation of CpG clusters, that characterizes the relevant genes on the active X. The transfer of active and inactive X chromosomes from the native environment of the human fibroblast to the foreign environment of the hybrid cell did not affect the specific replication sequence of either human X chromosome. The silent X chromosome when reactivated, remained allocyclic, and the first bands to replicate were the same as prior to reactivation. In one reactivant, however, further progression of replication was significantly altered with respect to the order in which bands were synthesized. This alteration in the replication of the silent X following 5-azaC-induced reactivation suggests that DNA methylation may modulate the replication kinetics of chromosomal DNA.  相似文献   

2.
D J Driscoll  B R Migeon 《Genomics》1988,3(4):308-314
We have mapped HPRT and G6PD loci on the X chromosome in the American opossum, Didelphis virginiana, by in situ hybridization to cells derived from two females by using genomic opossum DNA as probes. The localizations (G6PD to Xp13 and HPRT to Xq21), indicating that the two genes are separated by the centromere, were confirmed by results of hybridization to X chromosomes with deletions that include the HPRT locus and opossum-mouse cell hybrids containing the relevant fragment of the opossum X chromosome.  相似文献   

3.
We have previously reported that expression of the G6PD locus is correlated with the methylation status of two islands of CpG dinucleotides which are 3' to the locus and in the 5' region of two adjacent genes of unknown function, P3 and GdX. We have now examined the methylation of a third CpG island in the promoter region of the G6PD gene itself in DNA from males, females and reactivants that express G6PD on the inactive X chromosome. Our results show that expression of the G6PD gene is associated with concordant demethylation of all three CpG islands in this 100-kb region of DNA.  相似文献   

4.
5.
We have mapped HPRT and G6PD loci on the X chromosome in the American opossum, Didelphis virginiana, by in situ hybridization to cells derived from two females by using genomic opossum DNA as probes. The localizations (G6PD to Xp13 and HPRT to Xq21), indicating that the two genes are separated by the centromere, were confirmed by results of hybridization to X chromosomes with deletions that include the HPRT locus and opossum-mouse cell hybrids containing the relevant fragment of the opossum X chromosome.  相似文献   

6.
7.
8.
9.
10.
11.
12.
The process of X-inactivation in mammals requires at least two events, the initiation of inactivation and the maintenance of the inactive state. One possible mechanism of control is by methylation of DNA at CpG dinucleotides to maintain the inactive state. Furthermore, the paternal X-chromosome is frequently inactivated in the extraembryonic membranes. The relationship between the parental origin of the chromosome, nonrandom inactivation and DNA methylation is not clear. In this paper, we report on the CpG methylation of an X-linked transgene, CAT-32. The levels of methylation in embryonic, extraembryonic and germline cells indicates that the modifications of the transgene are broadly similar to those reported for endogenous X-linked genes. Interestingly, the methylation of CAT-32 transgene in extraembryonic tissues displays patterns that could be linked to the germline origin of each allele. Hence, the maternally derived copy of CAT-32 was relatively undermethylated when compared to the paternal one. The changes in DNA methylation were attributed to de novo methylation occurring after fertilization, most probably during differentiation of extraembryonic tissues. In order to determine whether or not the patterns of DNA methylation reflected the germline origin of the X-chromosome, we constructed triploid embryos specifically to introduce two maternal X-chromosomes in the same embryo. In some of these triploid conceptuses, methylation patterns characteristic of the paternally derived transgene were observed. This observation indicates that the methylation patterns are not necessarily dependent on the parental origin of the X-chromosome, but could be changed by somatic events after fertilization. One of the more likely mechanisms is methylation of the transgene following inactivation of the X-chromosome in extraembryonic tissues.  相似文献   

13.
14.
Studies of five heterozygous females from three kindreds segregating incontinentia pigmenti indicate that cells expressing the mutation have been eliminated from skin fibroblast cultures and in varying degrees from hematopoietic tissues. Clonal analysis was carried out using G6PD variants and methylation patterns at the HPRT locus. Our results confirm X linkage in these families and suggest that selection against cells expressing mutations that are lethal to males in utero may help ameliorate the deleterious phenotype in carrier females.  相似文献   

15.
HeLA H23 cells are a mutant female human tumor cell line harboring defective hypoxanthine phosphoribosyltransferase (HPRT; IMP-pyrophosphate phosphoribosyltransferase, EC 2.4.2.8) as a result of a mutation that alters the isoelectric point of the enzyme (G. Milman, E. Lee, G. S. Changas, J. R. McLaughlin, and J. George, Jr., Proc. Natl. Acad. Sci. USA 73:4589-4592, 1976). As shown by Milman et al. and confirmed by us here, rare HAT+ revertants arise spontaneously at 1.9 X 10(-8) frequency and express both mutant and wild-type polypeptides. Thus, the H23 mutant also carries a silent wild-type HPRT allele that is activated in revertants. To test whether the silent allele was activated via hypomethylation of genomic DNA, H23 cells were treated with inhibitors of DNA methylation, and revertants were scored by HAT or azaserine selection. At an optimal dose of 5 microM 5-azacytidine, the reversion frequency was increased about 50-fold when assayed by HAT selection and over 1,000-fold when assayed by azaserine selection. HAT+ and azaserine revertants were heterozygous for HPRT, expressing both wild-type and mutant HPRT polypeptides. Like spontaneous revertants, they contained active HPRT enzyme and were genetically unstable, reverting at about 10(-4) frequency. Similar results were found after treatment with N-methyl-N'-nitro-N-nitrosoguanidine, a DNA-alkylating agent and potent inhibitor of mammalian DNA methylation. By contrast, the DNA-ethylating agent, ethyl methanesulfonate (EMS), did not increase the HAT+ reversion frequency; it did, however, increase the frequency by which H23 revertants heterozygous for HPRT reverted to 6-thioguanine resistance. Of nine EMS revertants, seven lacked HPRT activity and had a substantially reduced expression of the wild-type polypeptide. These observations support the hypothesis that DNA methylation plays an important role in human X-chromosome inactivation and that EMS can inactivate gene expression by promoting enzymatic methylation of genomic DNA as found previously for the prolactin gene in GH3 rat pituitary tumor cells (R. D. Ivarie and J. A. Morris, Proc. Natl. Acad. Sci. USA 79:2967-2970, 1982; R. D. Ivarie, J. A. Morris, and J. A. Martial, Mol. Cell. Biol. 2:179-189, 1982).  相似文献   

16.
17.
Imprinted genes are expressed from only one of the parental alleles and are marked epigenetically by DNA methylation and histone modifications. Disruption of normal imprinting leads to abnormal embryogenesis, certain inherited diseases, and is associated with various cancers. In the context of screening for the gene(s) responsible for the alteration of phenotype in cyclophilin A knockdown (CypA-KD) P19 cells, we observed a silent paternally expressed gene, Peg3. Treatment of CypA-KD P19 cells with the DNA demethylating agent 5-aza-dC reversed the silencing of Peg3 biallelically. Genomic bisulfite sequencing and methylation-specific PCR revealed DNA hypermethylation in CypA-KD P19 cells, as the normally unmethylated paternal allele acquired methylation that resulted in biallelic methylation of Peg3. Chromatin immunoprecipitation assays indicated a loss of acetylation and a gain of lysine 9 trimethylation in histone 3, as well as enhanced DNA methyltransferase 1 and MBD2 binding on the cytosine-guanine dinucleotide (CpG) islands of Peg3. Our results indicate that DNA hypermethylation on the paternal allele and allele-specific acquisition of histone methylation leads to silencing of Peg3 in CypA-KD P19 cells. This study is the first demonstration of the epigenetic function of CypA in protecting the paternal allele of Peg3 from DNA methylation and inactive histone modifications.  相似文献   

18.
Cytogenetic studies have shown that bandicoots (family Peramelidae) eliminate one X chromosome in females and the Y chromosome in males from some somatic tissues at different stages during development. The discovery of a polymorphism for X-linked phosphoglycerate kinase (PGK-1) in a population of Isoodon obesulus from Mount Gambier, South Australia, has allowed us to answer a number of long standing questions relating to the parental source of the eliminated X chromosome, X chromosome inactivation and reactivation in somatic and germ cells of female bandicoots. We have found no evidence of paternal PGK-1 allele expression in a wide range of somatic tissues and cell types from known female heterozygotes. We conclude that paternal X chromosome inactivation occurs in bandicoots as in other marsupial groups and that it is the paternally derived X chromosome that is eliminated from some cell types of females. The absence of PGK-1 paternal activity in somatic cells allowed us to examine the state of X chromosome activity in germ cells. Electrophoresis of germ cells from different aged pouch young heterozygotes showed only maternal allele expression in oogonia whereas an additional paternally derived band was observed in pre-dictyate oocytes. We conclude that reactivation of the inactive X chromosome occurs around the onset of meiosis in female bandicoots. As in other mammals, late replication is a common feature of the Y chromosome in male and the inactive X chromosome in female bandicoots. The basis of sex chromosome loss is still not known; however later timing of DNA synthesis is involved. Our finding that the paternally derived X chromosome is eliminated in females suggests that late DNA replication may provide the imprint for paternal X inactivation and the elimination of sex chromosomes in bandicoots.  相似文献   

19.
Transient neonatal diabetes mellitus (TNDM) is associated with overexpression of an imprinted locus on chromosome 6q24; this locus contains a differentially methylated region (DMR) consisting of an imprinted CpG island that normally allows expression only from the paternal allele of genes under its control. Three types of abnormality involving 6q24 are known to cause TNDM: paternal uniparental disomy of chromosome 6 (pUPD6), an isolated methylation defect of the imprinted CpG island at chromosome 6q24 and a duplication of 6q24 of paternal origin. A fourth group of patients has no identifiable anomaly of 6q24. Bisulphite sequencing of the DMR has facilitated the development of a diagnostic test for TNDM based on ratiometric methylation-specific polymerase chain reaction. We have applied this method to 45 cases of TNDM, including 12 with pUPD6, 11 with an isolated methylation mutation at 6q24, 16 with a duplication of 6q24 and six of unknown aetiology, together with 29 normal controls. All were correctly assigned. The method is therefore capable of detecting all known genetic causes of TNDM at 6q24, although pUPD6 and methylation mutation cases are not distinguished from one another. In addition, we have carried out bisulphite sequencing of the DMR to compare its methylation status between six TNDM patients with a known methylation mutation, six patients with no identifiable 6q24 mutation and six normal controls. Whereas methylation mutation patients showed a near-total absence of DNA methylation at the TNDM locus, the patients with no identified molecular anomaly showed no marked methylation variation from controls.  相似文献   

20.
The DNA methylation paradox   总被引:32,自引:0,他引:32  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号