首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Somatic embryogenesis from cultures of shoot apices, cotyledon and young leaves of in vitro shoots of Agave vera-cruz Mill. was studied. Embryogenic callus was obtained when explants were cultured on Murashige and Skoog’s (MS) medium (1962) supplemented with L2 vitamins, 4.52 μM 2,4-dichlorophenoxyacetic acid (2,4-d) or 5.37 μM ∝-naphthalene acetic acid (NAA). Somatic embryos differentiated from this embryogenic callus upon subculture to maturation/conversion medium containing cytokinin either alone or with auxin and l-glutamine. The best combination of growth regulators for development of somatic embryos was found to be 5.37 μM naphthalene acetic acid plus 0.91 μM zeatin and 40 g/l sucrose. The conversion frequency of somatic embryos to plantlets varied from 46–50%. Rooted plantlets were transferred directly to pots containing a soil, sand, and manure mixture without any hardening phase with 96–98% survival of the plantlets. Based on the histological observations, the potential origin of the somatic embryo is discussed.  相似文献   

2.
In vitro regeneration through somatic embryogenesis as well as organogenesis using cotyledon of a woody medicinal legume, Cassia angustifolia is reported. The cotyledons dissected from semi-mature seeds, if inoculated on Murashige and Skoog’s medium (MS) supplemented with auxin alone or in combination with cytokinin, produced direct and indirect somatic embryos. A maximum of 14.36 ± 2.26 somatic embryos per 20 mg of explants including callus were produced in 70% cultures on MS medium with 2.5 μM benzyladenine (BA) + 10 μM 2,4-dichlorophenoxyacetic acid (2,4-D). Although the percentage of embryogenic cultures was higher (83.33%) at 10 μM 2,4-D + 1 μM BA, the average number of somatic embryos was much less (7.6 ± 0.85) at this level, whereas at 2.5 μM BA and 5 μM 2,4-D, there was a simultaneous formation of both somatic embryos and shoots. The somatic embryos, although started germinating on the same medium, developed into full plantlets only if transferred to MS basal with 2% sucrose. Cytokinins alone did not induce somatic embryogenesis, but formed multiple shoots. Five micromolar BA proved optimum for recurrently inducing shoots in the competent callus with a maximum average of 12.04 ± 2.10 shoots and shoot length of 2.26 ± 0.03 cm. Nearly 91.6% shoots (2–2.5 cm in size) organized an average of 5.12 ± 0.58 roots on half strength MS + 10 μM indole-3-butyric acid. All the plantlets have been transferred successfully to soil. Types of auxin and its interaction with cytokinin significantly influenced somatic embryogenesis.  相似文献   

3.
Mature zygotic embryos of three genotypes of Passiflora edulis Sims, including ‘FB-100’, ‘FB-200’, and ‘FB-300’ were incubated on a Murashige and Skoog (MS) (1962) medium supplemented with different concentrations (18.1–114.8 μM) of 2,4-diclorophenoxyacetic acid (2,4-D) and 4.4 μM of 6-benzyladenine (BA). MS basal medium and MS with BA induced germination of P. edulis embryos. The highest frequencies of embryogenic calli were observed when explants were incubated on MS medium supplemented with 72.4 μM 2,4-D and 4.4 μM BA for ‘FB-200’, which showed the highest potential for embryogenic callus formation. Cytological and histological analyses of pro-embryogenic callus revealed two distinct cell types: thin-walled, small, isodiametric cells with large nuclei and dense cytoplasm, typical of intense metabolic activity; and elongated and vacuolated cells, with small nuclei and less dense cytoplasm. Differentiation of somatic embryos was promoted on MS medium supplemented with activated charcoal and indole-3-acetyl-l-aspartic acid (IAA-Asp) either with or without 2,4-D. However, no conversion of somatic embryos into plantlets was observed.  相似文献   

4.
Establishment, maintenance, regeneration, and transformation of somatic embryos by both direct and indirect means (callus-mediated) was achieved for Bixa orellana, a tropical plant whose seeds produce commercially edible ‘annatto pigment,’ which mainly constitutes an apocarotenoid called bixin. Callus-mediated methodology was found to be efficient in producing a greater number of embryos in a short time. The maximum of 28 somatic embryos were produced in 16–18 weeks when immature zygotic embryonic stalks were inoculated onto Murashige and Skoog (MS) medium containing B5 vitamins supplemented with 0.44 μM benzyladenine (BA), 0.054 μM α-naphthaleneacetic acid (NAA), 2.89 μM gibberellic acid (GA3), 0.02 μM triiodobenzoic acid (TIBA), and 0.011 μM triacontanol (TRIA). Callus initiation from hypocotyl explants was obtained on MS medium supplemented with 1.07–2.14 μM NAA and 10.2 μM BA. In 3 months, somatic embryos were produced when callus was inoculated onto MS medium supplemented with 4.44 μM BA, 40 μM AgNO3, and 0.011 μM TRIA. Somatic embryos were efficiently regenerated on MS basal solid and liquid media supplemented with 0.44–4.4 μM BA, 0.54–2.69 μM NAA, 4.92 μM 2iP, 2.1 μM calcium d-pantothenate, 0.21 μM biotin, 227.7 μM cysteine HCl monohydrate, and 108.6 μM adenine sulfate. Agrobacterium tumefaciens GV 3101 harboring pCAMBIA 1305.2 binary vector-mediated stable transformation of somatic embryos exhibited a transformation frequency of 2.56%. As somatic embryogenesis in any perennial system is useful in terms of both commercial and scientific nature, this somatic embryo-based transformation protocol for the commercially important dye-yielding tropical plant B. orellana is useful for its improvement through genetic engineering.  相似文献   

5.
When cotyledonary explants, excised from in vitro germinated seedlings, of pomegranate (Punica granatum L.) were incubated on solid Murashige and Skoog (1962) medium supplemented with 21 μM naptheleneacetic acid (NAA) and 9 μM 6-benzyladenine (BA), 80% of explants developed callus. A high frequency of shoot organogensis was obtained when explants were incubated on MS medium supplemented with 8 μM BA, 6 μM NAA, and 6 μM giberrellic acid (GA3). However, adding 24 μM silver nitrate (AgNO3) to this medium markedly enhanced shoot regeneration frequency (63%) and mean number of shoots per explant (11.26) and length of shoots (2.22 cm). Highest frequency of in vitro rooting, mean number of roots/shoot (4.32), and mean root length (2.71 cm) were obtained when regenerated shoots were transferred to half-strength MS medium supplemented with 0.02% activated charcoal. Well-rooted plantlets were acclimatized, and then transferred to soil medium. Moreover, when zygotic embryos of P. granatum, excised from seeds collected at 16 weeks following full bloom, were incubated on MS medium containing 30 g l−1 sucrose, 15% coconut water, 21 μM NAA, and 9 μM BA, they developed the highest frequency of embryogenic callus, clumps with globular embryos, and mean number of both globular and heart-shaped embryos per callus clump. Subjecting zygotic embryo explants to six-week dark incubation period was essential for embryogenic callus induction, and these were subsequently transferred to 16 h photoperiod for further growth and development of somatic embryos. Germination of somatic embryos was observed when these were transferred to MS medium was supplemented with 60 g l−1 sucrose.  相似文献   

6.
A protocol has been developed for somatic embryogenesis and subsequent plant regeneration in Allium schoenoprasum L. Calli were induced from root sections isolated from axenic seedlings and cultivated on media containing either Murashige and Skoog’s (MS) or Dunstan and Short’s mineral solution supplemented with 5 μM 2,4-dichlorophenoxyacetic acid (2,4-D) in combination with 6-benzylaminopurine (BA), 6-furfurylaminopurine (Kin) or thidiazuron (TDZ) at 1, 5 or 10 μM. The highest frequencies of callus induction were achieved on media with 5 μM 2,4-D in combination with 5 μM TDZ or 10 μM BA (78.9% and 78.4%, respectively). Calli were then transferred to 1 μM 2,4-D, where compact yellow callus turned to segmented yellowish callus with transparent globular somatic embryos at the surface. Calli that were previously grown on media with 5 μM 2,4-D in combination with 10 μM BA or 10 μM TDZ showed the highest frequencies of embryogenic callus formation (45% and 42%) as well as mean number of somatic embryos per regenerating callus. The choice of mineral solution formulation did not significantly affect callus induction or embryogenic callus formation. The embryos could complete development into whole plants on plant growth regulator (PGR)-free medium, but inclusion of Kin (0.5, 2.5 and 5 μM) in this phase improved somatic embryo development and multiplication. Subsequently transferred to 1/2 MS PGR-free medium, all embryos rooted and the survival rate of the plants in a greenhouse was 96%.  相似文献   

7.
Summary Sodium chloride-tolerant plantlets of Dendrocalamus strictus were regenerated successfully from NaCl-tolerant embryogenic callus via somatic embryogenesis. The selection of embryogenic callus tolerant to 100 mM NaCl was made by exposing the callus to increasing (0–200 mM) concentrations of NaCl in Murashige and Skoog medium having 3% (w/v) sucrose, 0.8% (w/v) agar, 3.0 mg l−1 (13.6 μM) 2,4-dichlorophenoxyacetic acid (2,4-D), and 0.5mg l−1 (2.3μM) kinetin (callus initiation medium). The tolerance of the selected embryogenic callus to 100 mM NaCl was stable through three successive transfers on NaCl-free callus initiation medium. The tolerant embryogenic callus had high levels of Na+, sugar, free amino acids, and proline but a slight decline was recorded in K+ level. The stable 100 mM NaCl-tolerant embryogenic callus differentiated somatic embryos on maintenance medium [MS medium +3% sucrose +0.8% agar +2.0 mg l−1 (9.0 μM) 2,4-D+0.5 mg l−1 (2.3 μM) kinetin] supplemented with different (0–200 mM) concentrations of NaCl. About 39% of mature somatic embryos tolerant to 100 mM NaCl germinated and converted into plantlets in germination medium [half-strength MS+2% sucrose+0.02 mg l−1 (0.1 μM) α-naphthaleneacetic acid +0.1 mg l−1 (0.49 μM) indole-3-butyric acid] containing 100 mM NaCl. Of these plantlets about 31% established well on transplantation into a garden soil and sand (1:1) mixture containing 0.2% (w/w) NaCl.  相似文献   

8.
An efficient in vitro micropropagation system for Clivia miniata Regel was developed using basal tissues of young petals and young ovaries as explants. For callus induction, explants were incubated on Murashige and Skoog (MS) medium containing either 2.22 μM 6-benzyladenine (BA) and 4.52 μM 2,4-dichlorophenoxyacetic acid (2,4-D) or 4.44 μM BA, 5.37 μM α-naphthaleneacetic acid (NAA), and 9.05 μM 2,4-D. Moreover, callus was induced from young ovaries when these were incubated on MS medium containing 8.88 μM BA, 10.74 μM NAA, and 9.05 or 18.10 μM 2,4-D. Subsequently, callus was transferred to MS medium supplemented with kinetin (KT) and NAA for shoot organogenesis. Frequency of shoot regeneration from petal-derived callus was highest when callus was transferred to medium containing 2.69 μM NAA with either 9.29 or 13.94 μM KT. Shoot regeneration frequency from ovary-derived callus was highest when this callus was transferred to medium containing 9.29 μM KT and 10.74 μM NAA. Overall, different explant types exhibited different organogenic capacities wherein, young petals had higher shoot regeneration frequencies than young ovaries. The highest rooting frequency (98.25 ± 3.04%) was obtained when shoots were transferred to half-strength MS medium without plant growth regulators. Regenerated plantlets were transplanted to soil mix and acclimatized, yielding a 96.80% survival frequency. Only 0.6% of regenerated plantlets exhibited morphological changes. The diploid status (2n = 22) of regenerated plantlets was determined using chromosome counts of root-tips. Moreover, inter-simple sequence repeats were used to assess the genetic fidelity of regenerated plantlets. Overall, regenerated plants shared 90.5–100.0% genetic similarities with mother plants and 89.0–100.0% similarities with each other.  相似文献   

9.
Summary In vitro propagation of Andrographis paniculata (Burm. f.) Wallich ex Nees through somatic embryogenesis, and influence of 2,4-dichlorophenoxyacetic acid (2,4-1) on induction, maturation, and conversion of somatic embryos were investigated. The concentration of 2,4-D in callus induction medium determined the induction, efficacy of somatic embryogenesis, embryo maturation, and conversion. Friable callus initiated from leaf and internode explants grown on Murashige and Skoog (MS) medium supplemented with 2.26, 4.52, 6.78, and 9.05μM 2,4-D started to form embryos at 135, 105, 150, and 185d, respectively, after explant establishment. Callus initiated at 13.56μM 2,4-D did not induce embryos even after 240 d, whereas those initiated on MS medium with 4.52μM 2,4-D was most favorable for the formation and maturation of somatic embryos. Callus subcultured on the medium with reduced concentration of 2,4-D (2.26μM) became embryogenic. This embryogenic callus gave rise to the highest number of embryos (mean of 312 embryos) after being transferred to half-strength MS basal liquid medium. The embryos were grown only up to the torpedo stage. A higher frequency of embryos developed from callus initiated on 2.26 or 4.52 μM 2,4-D underwent maturation compared to that initiated on higher concentrations of 2.4-D. The addition of 11.7μM silver nitrate to half-strength MS liquid medium resulted in 71% of embryos undergoing maturation, while 83% of embryos developed into plantlets after being transferred to agar inedium with 0.44 μMN6-benzyladenine and 1.44 μM gibberellic acid. Most plantlets (88%) survived under field conditions and were morphologically identical to the parent plant.  相似文献   

10.
Somatic embryogenesis and subsequent plant regeneration were established from hypocotyl and internode explants collected from in vitro-grown seedlings and in vitro-proliferated shoots, respectively. Somatic embryogenesis was significantly influenced by the types of auxin and cytokinin. Friable calluses with somatic embryos developed well in Murashige and Skoog basal (MS) medium supplemented with 0.8–8.8 μM 6-benzylaminopurine (BA) and 2.0–8.0 μM 2,4-dichlorophexoxyacetic acid (2,4-D) or α-naphthaleneacetic acid (NAA). The maximal frequency of embryogenic callus and somatic embryo formation were obtained when the MS medium was amended with 8.8 μM BA and 4.0 μM 2,4-D. The best embryo germination occurred in a hormone-free 1/2-MS medium. The highest percentage of shoot proliferation was observed in embryogenic calluses in MS medium containing 2.0 μM BA and 1.0 μM NAA. In vitro-grown shoots were rooted in MS medium with 0.5–2.0 μM indole-3-butyric acid. Regenerants were transferred to vermiculite and successfully established under an ex vitro environment in garden soil.  相似文献   

11.
An efficient protocol was established for regeneration of Desmodium motorium via somatic embryogenesis. Embryogenic calli were induced from cotyledon segments (6 mm, 16 days old) lacking embryo axis, excised from seedlings grown in vitro on Murashige and Skoog (MS) medium supplemented with indole-3-acetic acid (IAA) (2.9 μM) in combination with 6-benzyladenine (BA) (4.44 and 8.88 μM). Differentiation of embryogenic calli into globular and heart-shaped somatic embryos was achieved on transfer to hormone-free MS medium. When incubated for 4 days on MS medium supplemented with BA (8.88 μM), 95% of the globular and heart-shaped somatic embryos matured into torpedo and cotyledonary stages with minimum (10%) abnormalities. Modified MS basal medium without hormones and containing half-strength macronutrients and 0.88 M sucrose was suitable for germination of mature somatic embryos. Regenerated plantlets were successfully transferred to earthen pots with survival rate of 50%. Secondary embryogenesis was observed when pre-existing somatic embryos at globular and heart-shaped stages were cultured on MS medium supplemented with various concentrations of BA, adenine sulphate (AdS) and abscisic acid (ABA) individually.  相似文献   

12.
An efficient in vitro plant regeneration protocol through somatic embryogenesis and direct shoot organogenesis has been developed for pearl millet (Pennisetum glaucum). Efficient plant regeneration is a prerequisite for a complete genetic transformation protocol. Shoot tips, immature inflorescences, and seeds of two genotypes (843B and 7042-DMR) of pearl millet formed callus when cultured on Murashige and Skoog (MS) medium supplemented with varying levels of 2,4-dichlorophenoxyacetic acid (2,4-D; 4.5, 9, 13.5, and 18 μM). The level of 2,4-D, the type of explant, and the genotype significantly effected callus induction. Calli from each of the three explant types developed somatic embryos on MS medium containing 2.22 μM 6-benzyladenine (BA) and either 1.13, 2.25, or 4.5 μM of 2,4-D. Somatic embryos developed from all three explants and generated shoots on MS medium containing high levels of BA (4.4, 8.8, or 13.2 μM) combined with 0.56 μM 2,4-D. The calli from the immature inflorescences exhibited the highest percentage of somatic embryogenesis and shoot regeneration. Moreover, these calli yielded the maximum number of differentiated shoots per callus. An efficient and direct shoot organogenesis protocol, without a visible, intervening callus stage, was successfully developed from shoot tip explants of both genotypes of pearl millet. Multiple shoots were induced on MS medium containing either BA or kinetin (4.4, 8.8, 17.6, or 26.4 μM). The number of shoots formed per shoot tip was significantly influenced by the level of cytokinin (BA/kinetin) and genotype. Maximum rooting was induced in 1/2 strength MS with 0.8% activated charcoal. The regenerated plants were transferred to soil in pots, where they exhibited normal growth.  相似文献   

13.
Summary The types of auxin in Murashige and Skoog (MS) medium containing N 6-benzyladenine (BA) determined indirect morphogenesis, i.e. development to bipolar somatic embryos or monopolar shoots in Euphorbia nivulia Buch.-Ham. Indirect in vitro morphogenesis depended on growth regulators, explant excision period, and light. Calli induced from explants collected in March–April were superior in the induction of indirect morphogenesis to those collected in July–August. Light enforced in vitro morphogenesis, while darkness was inhibitory. The presence of kinetin in the medium also inhibited morphogenesis. Calli developed on explants collected in March–April grown on MS medium fortified with α-naphthaleneacetic acid (NAA) and BA facilitated indirect organogenesis, while those developed on medium containing 2,4-dichlorophenoxyacetic acid (2,4-D) and BA underwent somatic embryogenesis. MS medium with 13.3 μM BA and 2.69 μM NAA was the best for induction of shoots from callus, which developed a mean of 15.7 shoots. Shoots were best rooted on half-strength MS medium enriched with 2.46 μM indole-3-butyric acid with a mean of 5.1 roots per shoot. MS medium supplemented with 2.26 μM 2,4-D and 4.44 μM BA induced the highest number (mean of 13.4) of somatic embryos. Of the embryos transferred on half-strength MS medium containing 2.89 μM gibberellic acid, 78% of embryos developed to the cotyledonary stage. Most cotyledonary embryos (80%) underwent conversion to plantlets upon being transferred to half-strength MS basal medium in light. The survival rate of organogenesis and embryo-derived plants was 80 and 90%, respectively. Calli transformed with Agrobacterium tumefaciens showed expression of the gusA transgene and resistance to kanamycin, but did not undergo morphogenesis.  相似文献   

14.
A simple and efficient system was developed for rapid somatic embryogenesis from leaf explants of Merwilla plumbea, a traditional but threatened medicinal plant in South Africa. Friable embryogenic callus (FEC) was obtained from leaf explants on embryogenic callus induction medium containing agar-solidified Murashige and Skoog (MS) salts and vitamins, 8.3 μM picloram, 2.3 μM thidiazuron (TDZ) and 20 μM glutamine. FEC was subsequently incubated in embryogenic callus proliferation medium containing 4.5 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 4.1 μM picloram for 7 days before it was transferred to liquid somatic embryo medium (SEML) containing MS medium supplemented with 0.4 μM picloram and 0.9 μM TDZ. In SEML supplemented with 150 mg L−1 haemoglobin, 5.4–35.6 somatic embryos per settled cell volume of 500 mg FEC were obtained. These embryos were at globular to cotyledonary developmental stages. Embryo maturation, germination and plant formation rate was 94.4% following transfer of SEs to half-strength MS medium supplemented with 1.4 μM gibberellic acid. Plantlets transferred into soil acclimatized in the misthouse and established successfully in the greenhouse (100%). This is the first report on induction of Merwilla plumbea somatic embryogenesis. The protocol developed offers controlled vegetative propagation by alleviating extinction threats, ensures germplasm conservation and provides a system for physiological, biochemical, molecular and cellular studies of embryo development.  相似文献   

15.
Creamy friable calli were induced from meristems (scalps) of proliferating shoots of plantain (Musa sp.) cv. Spambia (genome AAB) incubated on a semi-solid modified Murashige and Skoog (MS) medium supplemented with 4.5 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.0 μM zeatin. About 25% of shoot-tip explants formed scalps, and about 98% of scalps developed embryogenic calli. Small dense aggregates of cells, were obtained when these calli were transferred to liquid MS medium supplemented with 4.5 μM 2,4-D and 1.0 μM zeatin. Upon transfer to semi-solid MS medium of the same composition as described above, aggregates of cells formed somatic embryos. In the presence of 2.5 μM abscisic acid (ABA), maturation of somatic embryos was 2.6-fold higher than that of control (lacking ABA), and regardless of the type of cytokinin used in the medium. Upon transfer to MS medium supplemented with 1.25 μM 6-benzyladenine (BA), 80% of germinated embryos developed into plantlets.  相似文献   

16.
In vitro propagation of an anticancerous drug synthesizing plant, Ophiorrhiza prostrata D. Don, was established through indirect somatic embryogenesis. Friable embryogenic calluses were initiated from O. prostrata leaf and internode explants on Murashige and Skoog (MS) media supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) either alone or in combination with N6-benzyladenine (BA) or kinetin (KIN). Somatic embryos were developed after subculture of the friable calluses onto half strength MS media containing 0.45 or 2.26 μM 2,4-D alone or in combination with BA or KIN. Medium supplemented with 2.26 μM 2,4-D and 2.22 μM BA was optimal, supporting the production of a mean of 5.8 globular embryos. Subculture of globular embryo-bearing calluses on half strength MS medium without growth regulators produced the highest embryo frequency, and the majority of them developing to early torpedo stage. Somatic embryos underwent maturation and converted to plantlets at high frequency (90 %) on half strength MS medium supplemented with 0.44 μM BA. Somatic embryo-derived plantlets with well-developed roots were established in field conditions with a 90 % survival rate.  相似文献   

17.
Summary Suspension culture of cucumber (Cucumis sativus L.) has been an inefficient method for production of somatic embryos owing to problems with embryo maturation and conversion. Embryogenic callus of cv. Green Long was induced on semisolid Murashige and Skoog (MS) medium containing 6.8 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 2.2 μM 6-benzylaminopurine (BA). A large number of globular somatic embryos were obtained on transfer of the callus to MS liquid medium supplemented with 87.6 mM sucrose, 1.1 μM 2,4-D, and improved by the addition of 342.4 μM l-glutamine. MS medium supplemented with 87.6 mM sucrose was more effective in somatic embryo production than other sugars. Subsequent development led to the formation of heart-and torpedo-shaped embryos. Maturation of somatic embryos occurred on plant growth regulator-free MS semi-solid medium containing 175.2 mM sucrose and 0.5 gl−1 activated charcoal. Conversion of embryos into plants was achieved on half-strength MS semi-solid medium containing 87.6 mM sucrose and 1.4 μM gibberellic acid (GA3) in a 16h photoperiod. Twenty-seven percent of embryos were converted into normal plants.  相似文献   

18.
The present study prospects Bridelia stipularis (L.) Blume as a new source of anthocyanins through leaf and internode explants-derived callus cultures. Murashige and Skoog (MS) medium fortified with 21.48 μM α-naphthaleneacetic acid was superior for callus growth. Of the different regimes, the anthocyanin production relied on synergic effects of plant growth regulators, pH, light, and carbon source. The calluses incubated in light on MS medium with 4% glucose containing 2.22 μM N6-benzyladenine (BA) and 2.26 μM 2,4-dichlorophenoxyacetic acid (2,4-D) at pH 3.5 yielded the highest amount (a mean of 0.42 mg g−1 callus) of anthocyanins. Subsequent cultures of the calluses on the above medium yielded a stable production of anthocyanins. Medium containing glucose was superior to that with sucrose for anthocyanin formation. Kinetin was inhibitory to anthocyanin accumulation. Suspension cultures of MS medium containing 2.26 μM 2,4-D and 2.22 μM BA at pH 5.0 started excretion of anthocyanins into the medium on reaching to pH 4.4–4.6.  相似文献   

19.
We developed a new protocol for highly efficient somatic embryogenesis and plantlet conversion of Schisandra chinensis. Friable embryogenic callus was induced from cotyledonary leaves and hypocotyls of germinated zygotic embryos on Murashige and Skoog (MS) agar medium containing 2,4-dichlorophenoxyacetic acid (2,4-D). Preculture of zygotic embryos on 2,4-D-containing medium increased embryogenic callus induction efficiency. The highest embryogenic callus induction frequency of 56.7% was obtained from shoot apical meristem-containing hypocotyl explants from 1-week-old germinated embryos on MS medium containing 4.0 mg l−1 2,4-D. Embryogenic callus proliferation, somatic embryo (SE) formation, and subsequent plantlet conversion occurred under optimal culture conditions. The effects of MS medium strength, sucrose, gibberellic acid (GA3), and 6-benzyladenine (BA) on SE formation and plantlet conversion were evaluated. Low MS medium strength (1/4 to 1/2) was necessary for SE formation, and the optimal sucrose concentration was 2.0%. Supplementing medium with GA3 negatively impacted SE formation and subsequent development. BA significantly increased the number of SEs and the plantlet conversion capacity. One-third-strength MS medium with 1.0% sucrose and 0.5 mg l−1 BA produced the highest number of SEs (309 embryos from 9 mg embryogenic callus) and the highest frequency of plantlet conversion from germinated SEs (52.6%). When transplanted to soil, 90% of the regenerated plants developed into normal plants.  相似文献   

20.
Summary A protocol was developed for high frequency somatic embryogenesis and plant regeneration from cotyledon and hypocotyl explants of Eruca sativa. Explants grown on Murashige and Skoog (MS) medium supplemented with 4.52 μM 2,4-D formed embryogenic callus after 4 wk of culture. Secondary somatic embryos were also produced from primary somatic embryos on MS medium containing 0.56 μM 2,4-D. Somatic embryos developed into mature embryos on MS medium in the presence of 45 gl−1 polyethylene glycol. After desiccation, somatic embryos developed into plantlets by culturing the mature somatic embryos on 1/2 x MS medium containing 0.24 μM indole-3-butyric acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号