首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Integrin alpha3beta1 engagement disrupts intercellular adhesion   总被引:2,自引:0,他引:2  
During tissue morphogenesis and tumor invasion, epithelial cells must undergo intercellular rearrangement in which cells are repositioned with respect to one another and the surrounding mesenchymal extracellular matrix. Using three-dimensional aggregates of squamous epithelial cells, we show that such intercellular rearrangements can be triggered by activation of beta1 integrins after their ligation with extracellular matrices. On nonadherent substrates, multicellular aggregates (MCAs) formed rapidly via E-cadherin junctional complexes and over time became compacted spheroids exhibiting a more epithelial phenotype. After MCAs were replated on culture substrates, the spheroids collapsed to yield tightly arranged cell monolayers. Cell-cell contact induced rapid elevation in E-cadherin levels, which was due to an increase in the metabolic stability of junctional receptors. During MCA remodeling of cell-cell adhesions, and monolayer formation, their E-cadherin levels fell rapidly. Similar behavior was obtained regardless of which ECM ligand-collagen type I, fibronectin, or laminin 1-MCAs were seeded on. In contrast, when seeded onto a matrix elaborated by squamous epithelial cells, cells in the MCA attached, spread, lost cell-cell junctions, and dispersed. Analysis identified laminin 5 as the active ECM ligand in this matrix, and MCA dispersion required functional beta1 integrin and specifically alpha3beta1. Furthermore, substrate-immobilized anti-integrin antibody effectively reproduced the epithelial-mesenchymal-like transition induced by the laminin 5 matrix. During the early stages of aggregate rearrangement and collapse, cells on laminin 5 substrates, but not those on collagen I substrates, exhibited intense cortical arrays of F-actin, microspikes, and fascin accumulation at their peripheral surfaces. These results suggest that engagement of specific integrin-ligand pairs regulates cadherin junctional adhesions during events common to epithelial morphogenesis and tumor invasion.  相似文献   

2.
The α-catenin molecule links E-cadherin/ β-catenin or E-cadherin/plakoglobin complexes to the actin cytoskeleton. We studied several invasive human colon carcinoma cell lines lacking α-catenin. They showed a solitary and rounded morphotype that correlated with increased invasiveness. These round cell variants acquired a more normal epithelial phenotype upon transfection with an α-catenin expression plasmid, but also upon treatment with the protein kinase C (PKC) activator 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Video registrations showed that the cells started to establish elaborated intercellular junctions within 30 min after addition of TPA. Interestingly, this normalizing TPA effect was not associated with α-catenin induction. Classical and confocal immunofluorescence showed only minor TPA-induced changes in E-cadherin staining. In contrast, desmosomal and tight junctional proteins were dramatically rearranged, with a conversion from cytoplasmic clusters to obvious concentration at cell–cell contacts and exposition at the exterior cell surface. Electron microscopical observations revealed the TPA-induced appearance of typical desmosomal plaques. TPA-restored cell–cell adhesion was E-cadherin dependent as demonstrated by a blocking antibody in a cell aggregation assay. Addition of an antibody against the extracellular part of desmoglein-2 blocked the TPA effect, too. Remarkably, the combination of anti–E-cadherin and anti-desmoglein antibodies synergistically inhibited the TPA effect.

Our studies show that it is possible to bypass the need for normal α-catenin expression to establish tight intercellular adhesion by epithelial cells. Apparently, the underlying mechanism comprises upregulation of desmosomes and tight junctions by activation of the PKC signaling pathway, whereas E-cadherin remains essential for basic cell–cell adhesion, even in the absence of α-catenin.

  相似文献   

3.
In epithelial cells, α-, β-, and γ-catenin are involved in linking the peripheral microfilament belt to the transmembrane protein E-cadherin. α-Catenin exhibits sequence homologies over three regions to vinculin, another adherens junction protein. While vinculin is found in cell–matrix and cell–cell contacts, α-catenin is restricted to the latter. To elucidate, whether vinculin is part of the cell–cell junctional complex, we investigated complex formation and intracellular targeting of vinculin and α-catenin. We show that α-catenin colocalizes at cell–cell contacts with endogenous vinculin and also with the transfected vinculin head domain forming immunoprecipitable complexes. In vitro, the vinculin NH2-terminal head binds to α-catenin, as seen by immunoprecipitation, dot overlay, cosedimentation, and surface plasmon resonance measurements. The Kd of the complex was determined to 2–4 × 10−7 M. As seen by overlays and affinity mass spectrometry, the COOH-terminal region of α-catenin is involved in this interaction.  相似文献   

4.
Mechanical linkage between cell–cell and cell–extracellular matrix (ECM) adhesions regulates cell shape changes during embryonic development and tissue homoeostasis. We examined how the force balance between cell–cell and cell–ECM adhesions changes with cell spread area and aspect ratio in pairs of MDCK cells. We used ECM micropatterning to drive different cytoskeleton strain energy states and cell-generated traction forces and used a Förster resonance energy transfer tension biosensor to ask whether changes in forces across cell–cell junctions correlated with E-cadherin molecular tension. We found that continuous peripheral ECM adhesions resulted in increased cell–cell and cell–ECM forces with increasing spread area. In contrast, confining ECM adhesions to the distal ends of cell–cell pairs resulted in shorter junction lengths and constant cell–cell forces. Of interest, each cell within a cell pair generated higher strain energies than isolated single cells of the same spread area. Surprisingly, E-cadherin molecular tension remained constant regardless of changes in cell–cell forces and was evenly distributed along cell–cell junctions independent of cell spread area and total traction forces. Taken together, our results showed that cell pairs maintained constant E-cadherin molecular tension and regulated total forces relative to cell spread area and shape but independently of total focal adhesion area.  相似文献   

5.
α7β1 is the major integrin complex expressed in differentiated muscle cells where it functions as a laminin receptor. In this work we have expressed the α7 integrin subunit in CHO cells to investigate the functional properties of this receptor. After transfection with α7 CHO cells acquired the ability to adhere and spread on laminin 1 consistent with the laminin receptor activity of the α7β1. α7 transfectants, however, showed a 70% reduction in the ability to adhere to fibronectin and were unable to assemble a fibronectin matrix. The degree of reduction was inversely related to the level of α7 expression. To define the mechanisms underlying this adhesive defect we analyzed surface expression and functional properties of the α5β1 fibronectin receptor. Although cell surface expression of α5β1 was reduced by a factor of 20–25% in α7 transfectants compared to control untransfected cells, this slight reduction was not sufficient to explain the dramatic reduction in cell adhesion (70%) and matrix assembly (close to 100%). Binding studies showed that the affinity of125I-fibronectin for its surface receptor was decreased by 50% in α7 transfectants, indicating that the α5β1 integrin is partially inactivated in these cells. Inactivation can be reversed by Mn2+, a cation known to increase integrin affinity for their ligands. In fact, incubation of cells with Mn2+restored fibronectin binding affinity, adhesion to fibronectin, and assembly of fibronectin matrix in α7 transfectants. These data indicate that α7 expression leads to the functional down regulation of α5β1 integrin by decreasing ligand binding affinity and surface expression. In conclusion, the data reported establish the existence of anegative cooperativitybetween α7 and α5 integrins that may be important in determining functional regulation of integrins during myogenic differentiation.  相似文献   

6.
7.
Epithelial-mesenchymal transition (EMT) is a morphogenetic process that endows epithelial cells with migratory and invasive potential. Mechanical and chemical signals from the tumor microenvironment can activate the EMT program, thereby permitting cancer cells to invade the surrounding stroma and disseminate to distant organs. Transforming growth factor β1 (TGFβ1) is a potent inducer of EMT that can also induce apoptosis depending on the microenvironmental context. In particular, stiff microenvironments promote EMT while softer ones promote apoptosis. Here, we investigated the molecular signaling downstream of matrix stiffness that regulates the phenotypic switch in response to TGFβ1 and uncovered a critical role for integrin-linked kinase (ILK). Specifically, depleting ILK from mammary epithelial cells precludes their ability to sense the stiffness of their microenvironment. In response to treatment with TGFβ1, ILK-depleted cells undergo apoptosis on both soft and stiff substrata. We found that knockdown of ILK decreases focal adhesions and increases cell–cell adhesions, thus shifting the balance from cell–matrix to cell–cell adhesion. High cell–matrix adhesion promotes EMT whereas high cell–cell adhesion promotes apoptosis downstream of TGFβ1. These results highlight an important role for ILK in controlling cell phenotype by regulating adhesive connections to the local microenvironment.  相似文献   

8.
Laminins, a family of heterotrimeric proteins with cell adhesive/signaling properties, are characteristic components of basement membranes of vasculature and tissues. In the present study, permeabilized platelets were found to react with a monoclonal antibody to laminin γ1 chain by immunofluorescence. In Western blot analysis of platelet lysates, several monoclonal antibodies to γ1 and β1 laminin chains recognized 220- to 230-kDa polypeptides, under reducing conditions, and a structure with much slower electrophoretic mobility under nonreducing conditions. Immunoaffinity purification on a laminin β1 antibody–Sepharose column yielded polypeptides of 230, 220, 200, and 180 kDa from platelet lysates. In the purified material, mAbs to β1 and γ1 reacted with the two larger polypeptides, while affinity-purified rabbit antibodies to laminin α4 chain recognized the smallest polypeptide. Identity of the polypeptides was confirmed by microsequencing. One million platelets contained on average 1 ng of laminin (approximately 700 molecules per cell), of which 20–35% was secreted within minutes after stimulation with either thrombin or phorbol ester. Platelets adhered to plastic surfaces coated with the purified platelet laminin, and this process was largely inhibited by antibodies to β1 and α6 integrin chains. We conclude that platelets contain and, following activation, secrete laminin-8 (α4β1γ1) and that the cells adhere to the protein by using α6β1 integrin.  相似文献   

9.
The developing chicken embryo lens provides a unique model for examining the relationship between α6 integrin expression and cell differentiation, since multiple stages of differentiation are expressed concurrently at one stage of development. We demonstrate that α6 integrin is likely to mediate the inductive effects of laminin on lens differentiation as well as to function in a matrix-independent manner along the cell–cell interfaces of the differentiating cortical lens fiber cells. Both α6 isoform expression and its linkage to the cytoskeleton were regulated in a differentiation-specific manner. The association of α6 integrin with the Triton-insoluble cytoskeleton increased as the lens cells differentiated, reaching its highest levels in the cortical fiber region where the lens fiber cells are formed. In this region of the lens α6 integrin was uniquely localized along the cell–cell borders of the differentiating fiber cells, similar to β1. α6β4, the primary transmembrane protein of hemidesmosomes, is also expressed in the lens, but in the absence of hemidesmosomes. Differential expression of α6A and α6B isoforms with lens cell differentiation was seen at both the mRNA and the protein levels. RT-PCR studies demonstrated that α6B was the predominant isoform expressed both early in development, embryonic day 4, and in the epithelial regions of the day 10 embryonic lens. Isoform switching, with α6A now the predominant isoform, occurred in the fiber cell zones. Immunoprecipitation studies showed that α6B, which is characteristic of undifferentiated cells, was expressed by the lens epithelial cells but was dramatically reduced in the lens fiber zones. Expression of α6B began to drop as the cells initiated their differentiation and then dropped precipitously in the cortical fiber zone. In contrast, expression of the α6A isoform remained high until the cells became terminally differentiated. α6A was the predominant isoform expressed in the cortical fiber region. The down-regulation of α6B relative to α6A provides a developmental switch in the process of lens fiber cell differentiation.  相似文献   

10.
The transforming growth factors-β (TGFs-β) family of genes plays important roles in cell growth and differentiation in many cell types. TGFβ modulates the synthesis and accumulation of extracellular matrix (ECM) components and the expression of cell surface receptors for ECM components. TGFβ is increased in alveolar lining fluid during inflammatory reactions of the lung and has been identified in alveolar epithelial cells of developing lungs and hyperplastic type II cells during repair. However, little is known about how TGFβ may regulate expression of extracellular matrix proteins and ECM receptors in lung alveolar epithelial cells. Laminin, a major glycoprotein component of epithelial basement membrane, is synthesized and secreted by alveolar epithelial cells. To study the effects of TGFβ on modulation of laminin and its integrin receptors α6β1 and α3β1 in lung alveolar epithelial cells, a rat alveolar type II cell-derived cell line, LM5, was incubated with TGFβ1 (0-100 pg/ml) in serum-free medium for 0-16 h. We examined the expression of integrin subunits and laminin β2 chain (s-laminin) mRNAs and protein expression. By Northern blot analysis, TGFβ1 induced dose-dependent increases in α6 and β1 mRNA levels. TGFβ1 also increased the expression of laminin β2 chain mRNA at 12-16 h poststimulation. In contrast, TGFβ decreased α3 mRNA expression. Immunoprecipitation studies of TGFβ1-treated cells showed increased surface expression of both α6 and β1 protein while surface expression of the α3 integrin subunit was decreased. The same treatment resulted in increased laminin protein expression. These data suggest that TGFβ1 may regulate alveolar epithelial cell differentiation in part through its modulation of integrins and laminin chains.  相似文献   

11.
Prenatal inflammation prevents normal lung morphogenesis and leads to bronchopulmonary dysplasia (BPD), a common complication of preterm birth. We previously demonstrated in a bacterial endotoxin mouse model of BPD that disrupting fibronectin localization in the fetal lung mesenchyme causes arrested saccular airway branching. In this study we show that expression of the fibronectin receptor, integrin α8β1 is decreased in the lung mesenchyme in the same inflammation model suggesting it is required for normal lung development. We verified a role for integrin α8β1 in lung development using integrin α8-null mice, which develop fusion of the medial and caudal lobes as well as abnormalities in airway division. We further show in vivo and in vitro that α8-null fetal lung mesenchymal cells fail to form stable adhesions and have increased migration. Thus we propose that integrin α8β1 plays a critical role in lung morphogenesis by regulating mesenchymal cell adhesion and migration. Furthermore, our data suggest that disruption of the interactions between extracellular matrix and integrin α8β1 may contribute to the pathogenesis of BPD.  相似文献   

12.
It is well established that integrins and extracellular matrix (ECM) play key roles in cell migration, but the underlying mechanisms are poorly defined. We describe a novel mechanism whereby the integrin α6β1, a laminin receptor, can affect cell motility and induce migration onto ECM substrates with which it is not engaged. By using DNA-mediated gene transfer, we expressed the human integrin subunit α6A in murine embryonic stem (ES) cells. ES cells expressing α6A (ES6A) at the surface dimerized with endogenous β1, extended numerous filopodia and lamellipodia, and were intensely migratory in haptotactic assays on laminin (LN)-1. Transfected α6A was responsible for these effects, because cells transfected with control vector or α6B, a cytoplasmic domain α6 isoform, displayed compact morphology and no migration, like wild-type ES cells. The ES6A migratory phenotype persisted on fibronectin (Fn) and Ln-5. Adhesion inhibition assays indicated that α6β1 did not contribute detectably to adhesion to these substrates in ES cells. However, anti-α6 antibodies completely blocked migration of ES6A cells on Fn or Ln-5. Control experiments with monensin and anti-ECM antibodies indicated that this inhibition could not be explained by deposition of an α6β1 ligand (e.g., Ln-1) by ES cells. Cross-linking with secondary antibody overcame the inhibitory effect of anti-α6 antibodies, restoring migration or filopodia extension on Fn and Ln-5. Thus, to induce migration in ES cells, α6Aβ1 did not have to engage with an ECM ligand but likely participated in molecular interactions sensitive to anti-α6β1 antibody and mimicked by cross-linking. Antibodies to the tetraspanin CD81 inhibited α6Aβ1-induced migration but had no effect on ES cell adhesion. It is known that CD81 is physically associated with α6β1, therefore our results suggest a mechanism by which interactions between α6Aβ1 and CD81 may up-regulate cell motility, affecting migration mediated by other integrins.  相似文献   

13.
14.
Laminins assemble into trimers composed of α, β, and γ chains which posttranslationally are glycosylated and sometimes proteolytically cleaved. In the current paper we set out to characterize posttranslational modifications and the laminin isoforms formed by laminin α1 and α5 chains. Comparative pulse–chase experiments and deglycosylation studies in JAR cells established that the Mr 360,000 laminin α1 chain is glycosylated into a mature Mr 400,000 band while the Mr 370,000 laminin α5 chain is glycosylated into a Mr 390,000 form that upon secretion is further processed into a Mr 380,000 form. Hence, despite the shorter peptide length of α1 chain in comparison with the α5 chain, secreted α1 assumes a larger size in SDS–PAGE due to a higher degree of N-linked glycosylation and due to the lack of proteolytic processing. Immunoprecipitations and Western blotting of JAR laminins identified laminin α1 and laminin α5 chains in laminin-1 and laminin-10. In placenta laminin α1 chain (Mr 400,000) and laminin α5 chain (Mr 380,000/370,000 doublet) were found in laminin-1/-3 and laminin-10/-11. Immunohistochemically we could establish that the laminin α1 chain in placenta is deposited in the developing villous and trophoblast basement membrane, also found to contain laminin β2 chains. Surprisingly, a fraction of the laminin α1 chain from JAR cells and placenta could not be precipitated by antibodies to laminin β1–β3 chains, possibly pointing to an unexpected complexity in the chain composition of α1-containing laminin isoforms.  相似文献   

15.
Previously, we have established K562 transfectants that express either α6Aβ1 or α6Bβ1 (Kα6A or Kα6B) on their surface. Both cell lines bind to laminin and kalinin after treatment with the β1-stimulatory antibody TS2/16. Here we introduce the full-length β4 cDNA into the α6A- and α6B-expressing K562 cells and selected stably transfected cells. The β4 subunit was expressed on the surface of both transfectants and it formed dimers with the α6A or α6B subunits. Immunoprecipitation and preclearing analyses revealed that both transfectants expressed α6β1, in addition to α6β4. While Kα6A and Kβ6B cells required TS2/16 stimulation for binding to laminin or kalinin, adhesion of the unstimulated β4-transfected Kα6A and Kα6B cells to these matrix components was already substantial. This adhesion was mediated by both α6β1 and α6β4 since it was completely blocked by an α6-specific antibody or by a combination of anti-β1 and anti-β4 antibodies, but only partially by either of these latter two antibodies alone. Adhesion to laminin was completely blocked by an antiserum to laminin fragment E8 as was the adhesion to kalinin by an antibody to kalinin, demonstrating the specificity of adhesion. Both transfectants always adhered more strongly to kalinin than to laminin. Furthermore, binding to kalinin was less well blocked by antibodies to β4 than binding to laminin, indicating that the affinity of α6β4 for kalinin is higher than that for laminin. The fact that α6β1 mediated adhesion without TS2/16 stimulation on the β4-transfected Kα6A and Kα6B cells suggests that some activation of α6β1 had occurred in these cells, even though binding was increased when they were actively stimulated by the antibody TS2/16. Finally, we show that Mn2+ induced binding of solubilized α6β4 to matrix containing kalinin, deposited by the murine cell line RAC-11P/SD. This binding was inhibited by the anti-α6 mAb GoH3. Together, these results indicate that both α6β1 and α6β4 are receptors for laminin and kalinin and that there are no differences in ligand specificity between the A and B variants of the α6 subunit when associated with either β1 or β4.  相似文献   

16.
Laminins, the main components of basement membranes, are heterotrimers consisting of α, β, and γ polypeptide chains linked together by disulfide bonds. Laminins-1 and -2 are both composed of β1 and γ1 chains and differ from each other on their α chain, which is α1 and α2 for laminin-1 and -2, respectively. The present study shows that whereas laminins-1 and -2 are synthesized in the mouse developing lung and in epithelial–mesenchymal cocultures derived from it, epithelial and mesenchymal monocultures lose their ability to synthesize the laminin α1 chain. Synthesis of laminin α1 chain however returns upon re-establishment of epithelial–mesenchymal contact. Cell–cell contact is critical, since laminin α1 chain is not detected in monocultures exposed to coculture-conditioned medium or in epithelial–mesenchymal cocultures in which heterotypic cell–cell contact is prevented by an interposing filter. Immunohistochemical studies on cocultures treated with brefeldin A, an inhibitor of protein secretion, indicated both epithelial and mesenchymal cells synthesize laminin α1 chain upon heterotypic cell– cell contact. In a set of functional studies, embryonic lung explants were cultured in the presence of monoclonal antibodies to laminin α1, α2, and β/γ chains. Lung explants exposed to monoclonal antibodies to laminin α1 chain exhibited alterations in peribronchial cell shape and decreased smooth muscle development, as indicated by low levels of smooth muscle α actin and desmin. Taken together, our studies suggest that laminin α1 chain synthesis is regulated by epithelial–mesenchymal interaction and may play a role in airway smooth muscle development.  相似文献   

17.
18.
The interaction of β1 integrin receptors and different extracellular matrix molecules during neuronal development was investigated by comparing both migration and morphological differentiation of D3 wild-type embryonic stem (ES) cell line-derived neural precursor cells with those of the β1 integrin knockout ES cell line G201. Analysing neurosphere explants on laminin and fibronectin as major β1 integrin ligands, the maximal spreading of outward migrating neuronal cells was determined. Compared with gelatine as a standard substrate, migration was found to be significantly increased for D3-derived neurospheres on fibronectin and laminin-1. These matrix effects were found to be even enhanced for G201 preparations. In addition, also the differentiation of wild-type and β1 integrin −/− neurones – as determined by MAP-2- and HNK-1-immunoreactive processes – was found to be increased on fibronectin and laminin when compared to gelatine standards. In the respective knockout preparations on these matrices, again perturbation effects were less pronounced than on gelatine. Our observations indicate that laminin and fibronectin are involved both in β1 integrin-dependent and -independent signalling mechanisms during neurogenesis. Upregulation of compensatory mechanisms such as β1 integrin-independent receptors for laminin and fibronectin might be responsible for the much less pronounced perturbations of G201 neural precursor migration and differentiation on these two substrates than on gelatine.  相似文献   

19.
By introducing an α3 gene-containing plasmid into a human T cell line Jurkat, we prepared the T cells, which express a high level of the α3β1 integrin, to assess the role of laminin 5 in the skin immune system. The α3β1-expressing T cells adhered to laminin 5 and exhibited spreading. These adhered T cells showed a significant tyrosine phosphorylation of intracellular proteins including p59fynupon T-cell receptor (TCR) stimulation. Six hours after cross-linking TCR, these cells on laminin 5 secreted a three times higher level of IL-2 than those on a BSA-coated plate. Twenty hours after the stimulation, 48% of the α3β1-expressing T cells on laminin 5 caused apoptosis. The protein level of cyclin D3 and E decreased, while that of p53 increased in these T cells. These data suggest that laminin 5 may play at least two regulatory roles for T cell functions: augmentation of IL-2 production by antigen-stimulated T cells and induction of apoptosis in these T cells.  相似文献   

20.
Integrins are transmembrane proteins linking the extracellular matrix or certain cell–cell contacts to the cytoskeleton. To study integrin–cytoskeleton interactions we wanted to relate talin–integrin interaction to integrin function in cell spreading and formation of focal adhesions. For talin-binding studies we used fusion proteins of glutathione S-transferase and the cytoplasmic domain of integrin β1 (GST-cytoβ1) expressed in bacteria. For functional studies chimeric integrins containing the extracellular and transmembrane parts of β3 linked to the cytoplasmic domain of β1 were expressed in CHO cells as a dimer with the αIIb subunit. Point mutations in the amino acid sequence N785PIY788 of β1 disrupted both the integrin–talin interaction and the ability of the integrin to mediate cell spreading. COOH-terminal truncation of β1 at the amino acid position 797 disrupted its ability to mediate cell spreading, whereas the disruption of talin binding required deletion of five more amino acids (truncation at position 792). A synthetic peptide from this region of β1 (W780DTGENPIYKSAV792) bound to purified talin and inhibited talin binding to GST-cytoβ1. The ability of the mutants to mediate focal adhesion formation or to codistribute to focal adhesions formed by other integrins correlated with their ability to mediate cell spreading. These results confirm the previous finding that a talin-binding site in the integrin β1 tail resides at or close to the central NPXY motif and suggest that the integrin–talin interaction is necessary but not sufficient for integrin-mediated cell spreading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号