首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Fifteen bacterial strains capable of utilizing naphthalene, phenanthrene, and biphenyl as the sole sources of carbon and energy were isolated from soils and bottom sediments contaminated with waste products generated by chemical and salt producing plants. Based on cultural, morphological, and chemotaxonomic characteristics, ten of these strains were identified as belonging to the genera Rhodococcus, Arthrobacter, Bacillus, and Pseudomonas. All ten strains were found to be halotolerant bacteria capable of growing in nutrient-rich media at NaCl concentrations of 1-1.5 M. With naphthalene as the sole source of carbon and energy, the strains could grow in a mineral medium with 1 M NaCl. Apart from being able to grow on naphthalene, six of the ten strains were able to grow on phenanthrene; three strains, on biphenyl; three strains, on octane; and one strain, on phenol. All of the strains were plasmid-bearing. The plasmids of the Pseudomonas sp. strains SN11, SN101, and G51 are conjugative, contain genes responsible for the degradation of naphthalene and salicylate, and are characterized by the same restriction fragment maps. The transconjugants that gained the plasmid from strain SN11 acquired the ability to grow at elevated NaCl concentrations. Microbial associations isolated from the same samples were able to grow at a NaCl concentration of 2.5 M.  相似文献   

2.
Five naphthalene- and salicylate-utilizing Pseudomonas putida strains cultivated for a long time on phenanthrene produced mutants capable of growing on this substrate and 1-hydroxy-2-naphthoate as the sole sources of carbon and energy. The mutants catabolize phenanthrene with the formation of 1-hydroxy-2-naphthoate, 2-hydroxy-1-naphthoate, salicylate, and catechol. The latter products are further metabolized by the meta- and ortho-cleavage pathways. In all five mutants, naphthalene and phenanthrene are utilized with the involvement of plasmid-borne genes. The acquired ability of naphthalene-degrading strains to grow on phenanthrene is explained by the fact that the inducible character of the synthesis of naphthalene dioxygenase, the key enzyme of naphthalene and phenanthrene degradation, becomes constitutive.  相似文献   

3.
Fifteen bacterial strains capable of utilizing naphthalene, phenanthrene, and biphenyl as the sole sources of carbon and energy were isolated from soils and bottom sediments contaminated with waste products generated by chemical- and salt-producing plants. Based on cultural, morphological, and chemotaxonomic characteristics, ten of these strains were identified as belonging to the genera Rhodococcus, Arthrobacter, Bacillus, and Pseudomonas. All ten strains were found to be halotolerant bacteria capable of growing in nutrient-rich media at NaCl concentrations of 1–1.5 M. With naphthalene as the sole source of carbon and energy, the strains could grow in a mineral medium with 1 M NaCl. Apart from being able to grow on naphthalene, six of the ten strains were able to grow on phenanthrene; three strains, on biphenyl; three strains, on octane; and one strain, on phenol. All of the strains were plasmid-bearing. The plasmids of the Pseudomonas sp. strains SN11, SN101, and G51 are conjugative, contain genes responsible for the degradation of naphthalene and salicylate, and are characterized by the same restriction fragment maps. The transconjugants that gained the plasmid from strain SN11 acquired the ability to grow at elevated NaCl concentrations. Microbial associations isolated from the same samples were able to grow at a NaCl concentration of 2.5 M.  相似文献   

4.
Five naphthalene- and salicylate-utilizing Pseudomonas putida strains cultivated for a long time on phenanthrene produced mutants capable of growing on this substrate and 1-hydroxy-2-naphthoate as the sole sources of carbon and energy. The mutants catabolize phenanthrene with the formation of 1-hydroxy-2-naphthoate, 2-hydroxy-1-naphthoate, salicylate, and catechol. The latter products are further metabolized by the meta- and ortho-cleavage pathways. In all five mutants, naphthalene and phenanthrene are utilized with the involvement of plasmid-born genes. The acquired ability of naphthalene-degrading strains to grow on phenanthrene is explained by the fact that the inducible character of the synthesis of naphthalene dioxygenase, the key enzyme of naphthalene and phenanthrene degradation, becomes constitutive.  相似文献   

5.
Pseudomonas sp. strain PP2 isolated in our laboratory efficiently metabolizes phenanthrene at 0.3% concentration as the sole source of carbon and energy. The metabolic pathways for the degradation of phenanthrene, benzoate and p-hydroxybenzoate were elucidated by identifying metabolites, biotransformation studies, oxygen uptake by whole cells on probable metabolic intermediates, and monitoring enzyme activities in cell-free extracts. The results obtained suggest that phenanthrene degradation is initiated by double hydroxylation resulting in the formation of 3,4-dihydroxyphenanthrene. The diol was finally oxidized to 2-hydroxymuconic semialdehyde. Detection of 1-hydroxy-2-naphthoic acid, alpha-naphthol, 1,2-dihydroxy naphthalene, and salicylate in the spent medium by thin layer chromatography; the presence of 1,2-dihydroxynaphthalene dioxygenase, salicylaldehyde dehydrogenase and catechol-2,3-dioxygenase activity in the extract; O(2) uptake by cells on alpha-naphthol, 1,2-dihydroxynaphthalene, salicylaldehyde, salicylate and catechol; and no O(2) uptake on o-phthalate and 3,4-dihydroxybenzoate supports the novel route of metabolism of phenanthrene via 1-hydroxy-2-naphthoic acid --> [alpha-naphthol] --> 1,2-dihydroxy naphthalene --> salicylate --> catechol. The strain degrades benzoate via catechol and cis,cis-muconic acid, and p-hydroxybenzoate via 3,4-dihydroxybenzoate and 3-carboxy- cis,cis-muconic acid. Interestingly, the culture failed to grow on naphthalene. When grown on either hydrocarbon or dextrose, the culture showed good extracellular biosurfactant production. Growth-dependent changes in the cell surface hydrophobicity, and emulsification activity experiments suggest that: (1) production of biosurfactant was constitutive and growth-associated, (2) production was higher when cells were grown on phenanthrene as compared to dextrose and benzoate, (3) hydrocarbon-grown cells were more hydrophobic and showed higher affinity towards both aromatic and aliphatic hydrocarbons compared to dextrose-grown cells, and (4) mid-log-phase cells were significantly (2-fold) more hydrophobic than stationary phase cells. Based on these results, we hypothesize that growth-associated extracellular biosurfactant production and modulation of cell surface hydrophobicity plays an important role in hydrocarbon assimilation/uptake in Pseudomonas sp. strain PP2.  相似文献   

6.
Sphingomonas yanoikuyae B1 possesses several different multicomponent oxygenases involved in metabolizing aromatic compounds. Six different pairs of genes encoding large and small subunits of oxygenase iron-sulfur protein components have previously been identified in a gene cluster involved in the degradation of both monocyclic and polycyclic aromatic hydrocarbons. Insertional inactivation of one of the oxygenase large subunit genes, bphA1c, results in a mutant strain unable to grow on naphthalene, phenanthrene, or salicylate. The knockout mutant accumulates salicylate from naphthalene and 1-hydroxy-2-naphthoic acid from phenanthrene indicating the loss of salicylate oxygenase activity. Complementation experiments verify that the salicylate oxygenase in S. yanoikuyae B1 is a three-component enzyme consisting of an oxygenase encoded by bphA2cA1c, a ferredoxin encoded by the adjacent bphA3, and a ferredoxin reductase encoded by bphA4 located over 25kb away. Expression of bphA3-bphA2c-bphA1c genes in Escherichia coli demonstrated the ability of salicylate oxygenase to convert salicylate to catechol and 3-, 4-, and 5-methylsalicylate to methylcatechols.  相似文献   

7.
Pseudomonas rhodesiae KK1 was isolated from a former manufactured-gas plant site, due to its ability to grow rapidly in a mixture of polycyclic aromatic hydrocarbons (PAHs). Radiorespirometric analysis revealed that strain KK1 was found to be able to mineralize anthracene, naphthalene and phenanthrene. Notably, phenanthrene-grown cells were able to mineralize anthracene much more rapidly than naphthalene-grown cells. Comparative analysis of amino acid sequences from 17 randomly selected dioxygenases capable of hydroxylating unactivated aromatic nuclei indicated that the enzymes for catabolism of PAHs, such as naphthalene and phenanthrene, might exist redundantly in strain KK1. Northern hybridization for cells grown on naphthalene or phenanthrene, using the putative naphthalene or phenanthrene dioxygenase gene fragment as a probe, suggested that the enzyme for naphthalene catabolism might share some homology in deduced amino acid sequences with phenanthrene dioxygenases. Also, it was found that three lipids (17:0 cyclo, 18:1 omega7c, 19:0 cyclo) increased in response to both naphthalene and phenanthrene, while the shift of other lipids varied from substrate to substrate.  相似文献   

8.
The genetic control of naphthalene, phenanthrene, and anthracene biodegradation was studied in three Pseudomonas putida strains isolated from coal tar- and oil-contaminated soils. These strains isolated from different geographical locations contained similar catabolic plasmids controlling the first steps of naphthalene conversion to salicylate (the nah1 operon), functionally inoperative salicylate hydroxylase genes, and genes of the metha-pathway of catechol degradation (the nah2 operon). Salicylate oxidation in these strains is determined by genes located in trans-position relative to the nah1 operon: in strains BS202 and BS3701, they are located on the chromosome, and in the strain BS3790, on the second plasmid.  相似文献   

9.
From the leaves of three urban trees (Tilia sp., Acer sp., and Fraxinus sp.), 180 strains degrading phenanthrene, naphthalene, and salicylate were isolated by direct plating and enrichment cultures. The leaves of each tree species were characterized by a specific profile of aromatic hydrocarbon-degrading microflora. Members of the type Actinobacteria were predominant in the case of direct plating on media with phenanthrene and naphthalene. Enrichment cultures with phenanthrene and salicylate were shown to yield microbial consortia, the composition of which changed with time. Members of the type Proteobacteria were predominant in these consortia. No plasmids of polycyclic aromatic hydrocarbon degradation of the P-7 and P-9 incompatibility groups were revealed in the studied strains.  相似文献   

10.
Metabolism of 2,6-dimethylnaphthalene by flavobacteria   总被引:1,自引:0,他引:1  
Flavobacteria that were able to grow on 2,6-dimethylnaphthalene (2,6-DMN) were isolated from soil. Most were able to oxidize a broad range of aromatic hydrocarbons after growth on 2,6-DMN at rates comparable to that of the oxidation of 2,6-DMN itself. One small group was neither able to grow on naphthalene nor able to oxidize this compound after growth on 2,6-DMN, but metabolized 2,6-DMN by a pathway which converged with that previously described for naphthalene metabolism in pseudomonads. These organisms could also grow on salicylate or methylsalicylate, and in so doing, early enzymes for 2,6-DMN metabolism were induced.  相似文献   

11.
Metabolism of 2,6-dimethylnaphthalene by flavobacteria.   总被引:5,自引:2,他引:3       下载免费PDF全文
Flavobacteria that were able to grow on 2,6-dimethylnaphthalene (2,6-DMN) were isolated from soil. Most were able to oxidize a broad range of aromatic hydrocarbons after growth on 2,6-DMN at rates comparable to that of the oxidation of 2,6-DMN itself. One small group was neither able to grow on naphthalene nor able to oxidize this compound after growth on 2,6-DMN, but metabolized 2,6-DMN by a pathway which converged with that previously described for naphthalene metabolism in pseudomonads. These organisms could also grow on salicylate or methylsalicylate, and in so doing, early enzymes for 2,6-DMN metabolism were induced.  相似文献   

12.
The genetic control of naphthalene, phenanthrene, and anthracene biodegradation was studied in three Pseudomonas putida strains isolated from coal tar- and oil-contaminated soils. These strains isolated from different geographical locations contained similar catabolic plasmids controlling the first steps of naphthalene conversion to salicylate (the nah1operon), functionally inoperative salicylate hydroxylase genes, and genes of the metha-pathway of catechol degradation (the nah2 operon). Salicylate oxidation in these strains is determined by genes located in trans-position relative to the nah1 operon: in strains BS202 and BS3701, they are located on the chromosome, and in the strain BS3790, on the second plasmid.  相似文献   

13.
The genetic systems responsible for naphthalene and phenanthrene catabolism have been analyzed in the five strains of Burkholderia sp. isolated from soil samples (West Siberia) contaminated by heavy residual fuel and in the laboratory collection strain Burkholderia sp. BS3702 isolated from soil samples of the coke gas plant (Vidnoe, Moscow oblast). The results of this work demonstrate that naphthalene and phenanthrene degradation in the above strains is encoded by the sequences not homologous to the classical nah genes of pseudomonades. In the Burkholderia sp. BS3702 strain, the initial stages of phenanthrene degradation and the subsequent stages of salicylate degradation are controlled by the sequences of different evolutionary descent (phn and nag genes).  相似文献   

14.
A total of 58 bacterial strains degrading naphthalene and salicylate were isolated from soil samples polluted with oil products, collected in different regions of Russia during winter and summer. The isolates were assessed for their ability to grow at low temperatures (4, 8, and 15 degrees C); bacteria growing at 4 degrees C in the presence of naphthalene or salicylate accounted for 65% and 53%, respectively, of the strains isolated. The strains differed in the temperature dependence of their growth rates. It was demonstrated that the type of expression of Nah+ phenotype at low temperatures depended on the combination of the host bacterium and the plasmid.  相似文献   

15.
[13C6]salicylate, [U-13C]naphthalene, and [U-13C]phenanthrene were synthesized and separately added to slurry from a bench-scale, aerobic bioreactor used to treat soil contaminated with polycyclic aromatic hydrocarbons. Incubations were performed for either 2 days (salicylate, naphthalene) or 7 days (naphthalene, phenanthrene). Total DNA was extracted from the incubations, the "heavy" and "light" DNA were separated, and the bacterial populations associated with the heavy fractions were examined by denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene clone libraries. Unlabeled DNA from Escherichia coli K-12 was added to each sample as an internal indicator of separation efficiency. While E. coli was not detected in most analyses of heavy DNA, a low number of E. coli sequences was recovered in the clone libraries associated with the heavy DNA fraction of [13C]phenanthrene incubations. The number of E. coli clones recovered proved useful in determining the relative amount of light DNA contamination of the heavy fraction in that sample. Salicylate- and naphthalene-degrading communities displayed similar DGGE profiles and their clone libraries were composed primarily of sequences belonging to the Pseudomonas and Ralstonia genera. In contrast, heavy DNA from the phenanthrene incubations displayed a markedly different DGGE profile and was composed primarily of sequences related to the Acidovorax genus. There was little difference in the DGGE profiles and types of sequences recovered from 2- and 7-day incubations with naphthalene, so secondary utilization of the 13C during the incubation did not appear to be an issue in this experiment.  相似文献   

16.
A total of 58 bacterial strains degrading naphthalene and salicylate were isolated from soil samples polluted with oil products, collected in different regions of Russia during winter and summer. The isolates were assessed for their ability to grow at low temperatures (4, 8, and 15°C); bacteria growing at 4°C in the presence of naphthalene or salicylate accounted for 65 and 53%, respectively, of the strains isolated. The strains differed in the temperature dependence of their growth rates. It was demonstrated that the type of expression of the Nah+ phenotype at low temperatures depended on the combination of host bacterium and plasmid.  相似文献   

17.
1-Hydroxy-2-naphthoate is formed as an intermediate in the bacterial degradation of phenanthrene. A monooxygenase which catalyzed the oxidation of 1-hydroxy-2-naphthoateto 1,2-dihydroxynaphthalene was purified from the phenanthrene- and naphthalene-degrading Pseudomonas putida strain BS202-P1. The purified protein had a molecular weight of45 kDa and required NAD(P)H and FAD as cofactors. The purified enzyme also catalysed the oxidation of salicylate and various substituted salicylates. The comparison of the Kmand Vmax values for 1-hydroxy-2-naphthoate and salicylate demonstrated a higher catalytic efficiency of the enzyme for salicylate as a substrate. A significant substrate-inhibition was detected with higher concentrations of 1-hydroxy-2-naphthoate.The aminoterminal amino acid sequence of the purified enzyme showed significant homologies to salicylate 1-monooxygenases from other Gram negative bacteria. It was therefore concluded that during the degradation of phenanthrene the conversion of 1-hydroxy-2-naphthoate to 1,2-dihydroxynaphthalene is catalysed by a salicylate1-monooxygenase. Together with previous studies, this suggested that the enzymes of the naphthalene pathway are sufficient to catalyse also the mineralization of phenanthrene.  相似文献   

18.
A phenanthrene-assimilating bacterium which belongs to the genus Aeromonas was isolated from soil. The cells which adapted to phenanthrene required a growth lag time on a naphthalene medium. The cells oxidized l-hydroxy-2-naphthoate (1H2NA), 2-carboxybenzaldehyde (2CBAL), o-phthalate (OPA) and protocatechuate (PCA) but did not oxidize salicylaldehyde (SAL), salicylate (SA) and catechol (CAT) which are intermediates in naphthalene catabolism. Using the cell-free extract, the same results were obtained in oxidative capacity. The intact cells metabolized 1H2NA and 2CBAL without the lag time, giving 2CBAL and PCA, respectively. The ammonium sulfate-treated extract prepared from the cells grown in phenanthrene medium, converted 1H2NA to 2CBAL and 2CBAL to OPA. It was suggested that the Aeromonas sp. degraded phenanthrene through OPA.  相似文献   

19.
Two bacterial strains were isolated from a bacterial community formed of nine strains, selected from a marine sediment on a seawater medium with naphthalene as sole carbon source. The two strains studied in the present work were the only strains of this community able to grow in pure culture on naphthalene; therefore, they were called "primary" strains. The seven other strains were maintained in the community by using metabolic intermediates of the two primary strains; they were called "auxiliary" strains. Regulation of naphthalene metabolism was studied for the two primary strains. They oxidized naphthalene into catechol, which was degraded only by the meta pathway. For Pseudomonas Lav. 4, naphthalene oxygenase and salicylate hydroxylase were inducible; catechol 2,3-dioxygenase was constitutive. For Moraxella Lav. 7, naphthalene oxygenase was constitutive; salicylate hydroxylase and catechol 2,3-oxygenase were inducible. The Moraxella strain carries two cryptic plasmids, about 63- and 85-kb in molecular size. In the bacterial community culture medium, Moraxella Lav. 7 prevented accumulation of 2-hydroxymuconate semialdehyde formed by Pseudomonas Lav. 4. The auxiliary strains take up formic, acetic, pyruvic, propionic, and succinic acids released by the two primary strains.  相似文献   

20.
Beijerinckia mobilis 1f capable of degrading polycyclic aromatic hydrocarbons (PAHs) was isolated from a soil contaminated with creosote. Strain 1f could utilize phenanthrene and naphthalene as the sole sources of carbon. The mean rate of phenanthrene degradation during culture growth was 7-8 micrograms/(ml h). After cultivation under nonselective conditions, strain 1f retained its ability to degrade phenanthrene. Cometabolism considerably widened the range of PAHs that could be transformed by strain 1f. The strain was able to grow in a mineral medium with creosote as the sole source of carbon. After 30 days of cultivation in this medium, the total concentration of PAHs decreased from 665.5 mg/l to 170 mg/l.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号