首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rates of growth and protein turnover in the breast muscle of young chicks were measured in order to assess the roles of protein synthesis and degradation in the regulation of muscle mass. Rates of protein synthesis were measured in vivo by injecting a massive dose of L-[1-14C]valine, and rates of protein degradation were estimated as the difference between the synthesis rate and the growth rate of muscle protein. In chicks fed on a control diet for up to 7 weeks of age, the fractional rate of synthesis decreased from 1 to 2 weeks of age and then changed insignificantly from 2 to 7 weeks of age, whereas DNA activity was constant for 1 to 7 weeks. When 4-week-old chicks were fed on a protein-free diet for 17 days, the total amount of breast-muscle protein synthesized and degraded per day and the amount of protein synthesized per unit of DNA decreased. Protein was lost owing to a greater decrease in the rate of protein synthesis, as a result of the loss of RNA and a lowered RNA activity. When depleted chicks were re-fed the control diet, rapid growth was achieved by a doubling of the fractional synthesis rate by 2 days. Initially, this was a result of increased RNA activity; by 5 days, the RNA/DNA ratio also increased. There was no evidence of a decrease in the fractional degradation rate during re-feeding. These results indicate that dietary-protein depletion and repletion cause changes in breast-muscle protein mass primarily through changes in the rate of protein synthesis.  相似文献   

2.
1. Growth of breast and leg muscles and excretion of N tau methyl histidine in layer (slow growing) and broiler (fast growing) chicks were measured at five time intervals between 2 and 33 days of age. 2. The results indicate that muscles of the broiler chick grow faster than in layer chicks and that breast muscles of both strains grow faster than leg muscles in the first 2 weeks after hatching. 3. N tau methyl histidine excretion by layer chicks is higher than that by broilers relative to body weight, musculature and relative maturity at all ages examined. 4. The results suggest that faster growth of muscles is accompanied by a lower rate of protein degradation although at ages of less than 2 weeks differences in protein synthesis rates may also contribute to muscle growth.  相似文献   

3.
High intracellular glutamine levels have been implicated in promoting net protein synthesis and accretion in mammalian skeletal muscle. Little is known regarding glutamine metabolism in uricotelic species but chicken breast muscle exhibits high rates of protein accretion and would be predicted to maintain high glutamine levels. However, chicken breast muscle expresses high glutaminase activity and here we report that chicken breast muscle also expresses low glutamine synthetase activity (0.07±0.01 U/g) when compared to leg muscle (0.50±0.04 U/g). Free glutamine levels were 1.38±0.09 and 9.69±0.12 nmol/mg wet weight in breast and leg muscles of fed chickens, respectively. Glutamine levels were also lower in dove breast muscle (4.82±0.35 nmol/mg wet weight) when compared to leg muscle (16.2±1.0 nmol/mg wet weight) and much lower (1.80±0.46 nmol/mg wet weight) in lizard leg muscle. In fed chickens, rates of fractional protein synthesis were higher in leg than in breast muscle, and starvation (48 h) resulted in a decrease in both glutamine content and rate of protein synthesis in leg muscle. Thus, although tissue-specific glutamine metabolism in uricotelic species differs markedly from that in ureotelic animals, differences in rates of skeletal muscle protein synthesis are associated with corresponding differences in intramuscular glutamine content.  相似文献   

4.
1. The influences of age and weaning on muscle protein synthesis were studied in vivo, by injecting a large dose of [3H]valine into 1-, 5- and 8-week-old suckling or 8-week-old weaned lambs. 2. The fractional rates of protein synthesis, in red- and white-fibre-type skeletal muscles or striated and smooth visceral muscles, were in 8-week-old suckling animals 24-37% of their values at 1 week of age. This developmental decline was related to decreased capacities for protein synthesis, i.e. RNA/protein ratios. 3. At 8 weeks of age, suckling and weaned lambs had similar fractional synthesis rates, capacities for protein synthesis and efficiencies of protein synthesis (i.e. rates of protein synthesis relative to RNA) in skeletal muscles. 4. In contrast, visceral-muscle fractional synthesis rates were lower in 8-week-old suckling lambs than in weaned animals, owing to decreased efficiencies of protein synthesis. It was concluded that developmental factors and the change to a solid diet, or weaning in itself, or both, affect differently skeletal and visceral muscle protein synthesis in the immature lamb.  相似文献   

5.
1. The addition of 4 mM acetoacetate or DL-beta-hydroxybutyrate to the incubation medium decreased the rate of protein synthesis without influencing the rate of protein degradation in extensor digitorum communis (EDC) muscles from fed chicks and decreased the rates of protein synthesis and degradation in muscles from fasted chicks. 2. Ketone bodies markedly decreased intracellular concentrations of glutamine in EDC muscles from fed chicks by increasing glutamine oxidation. 3. The addition of 0.5 mM glutamine to incubation media containing 1.0 mM glutamine reversed the ketone body-induced decrease in intracellular glutamine concentration to the control value and blocked the inhibiting effect of ketone bodies on protein synthesis in skeletal muscles from fed chicks. 4. The addition of 5 mM pyruvate blocked the ability of ketone bodies to increase glutamine oxidation and prevented the associated decrease in intracellular glutamine concentration and the rate of protein synthesis in EDC muscles from fed chicks. 5. These results suggest that ketone bodies can act directly on skeletal muscle to inhibit the rate of protein synthesis in muscles from fed chicks by decreasing intracellular glutamine concentration by increasing its oxidation.  相似文献   

6.
Newly hatched precocial chicks of arctic shorebirds are able to walk and regulate their body temperatures to a limited extent. Yet, they must also grow rapidly to achieve independence before the end of the short arctic growing season. A rapid growth rate may conflict with development of mature function, and because of the allometric scaling of thermal relationships, this trade-off might be resolved differently in large and small species. We assessed growth (mass) and functional maturity (catabolic enzyme activity) in leg and pectoral muscles of chicks aged 1-16 d and adults of two scolopacid shorebirds, the smaller dunlin (Calidris alpina: neonate mass 8 g, adult mass 50 g) and larger whimbrel (Numenius phaeopus; neonate mass 34 g, adult mass 380 g). Enzyme activity indicates maximum catabolic capacity, which is one aspect of the development of functional maturity of muscle. The growth rate-maturity hypothesis predicts that the development of catabolic capacity should be delayed in faster-growing muscle masses. Leg muscles of both species were a larger proportion of adult size at hatching and grew faster than pectoral muscles. Pectoral muscles grew more rapidly in the dunlin than in the whimbrel, whereas leg muscles grew more rapidly in the whimbrel. In both species and in both leg and pectoral muscles, enzyme activities generally increased with age, suggesting increasing functional maturity. Levels of citrate synthase activity were similar to those reported for other species, but l-3-hydroxyacyl-CoA-dehydrogenase and pyruvate kinase (PK) activities were comparatively high. Catabolic capacities of leg muscles were initially high compared to those of pectoral muscles, but with the exception of glycolytic (PK) capacities, these subsequently increased only modestly or even decreased as chicks grew. The earlier functional maturity of the more rapidly growing leg muscles, as well as the generally higher functional maturity in muscles of the more rapidly growing dunlin chicks, contradicts the growth rate-maturity function trade-off and suggests that birds have considerable latitude to modify this relationship. Whimbrel chicks, apparently, can rely on allometric scaling of power requirements for locomotion and the thermal inertia of their larger mass to reduce demands on their muscles, whereas dunlin chicks require muscles with higher metabolic capacity from an earlier age. Thus, larger and smaller species may adopt different strategies of growth and tissue maturation.  相似文献   

7.
Day-old male chickens were fed ad libitum isoenergetic diets containing 20% crude protein but differing in their lysine content (from 6.5 up to 11.3 g/kg). At 3 weeks of age, protein fractional synthesis rates in the pectoralis major muscle were determined using a large dose injection of 120 mumol per kg body weight of L-[4-3H] phenylalanine. Protein gain in the pectoralis major was measured between 19 and 23 days of age. Protein breakdown was obtained by calculating the difference between protein synthesis and deposition. Weight gain varied curvilinearly with dietary lysine intake and was maximum for 11.3 g lysine/kg of diet. In birds fed an adequate lysine intake (10.1-11.3 g/kg) protein fractional synthesis and breakdown rates were 23.6-25.9 and 17.8-19.8%/d respectively. Increasing lysine supplementation in the diet resulted in an impairment of protein fractional breakdown rates. By contrast, protein fractional synthesis rates remained unchanged owing mainly to an improvement in the synthesis efficiency (kRNA), until birds were fed an adequate lysine intake. These data suggest that the growth rate reduction of chickens fed lysine deficient diets was due to alterations in both rates of protein synthesis and breakdown in skeletal muscle. A maximum protein deposition is achieved when kRNA was optimal, ie for a dietary lysine content of about 9 g/kg, a value close to the requirement.  相似文献   

8.
In this study, we investigate whether a tissue-level constraint can explain the general inverse relationship between growth rate and precocity of development in birds. On the whole, altricial (dependent) chicks grow three to four times faster than the less dependent, more able chicks of precocial species of similar adult mass. We suggest that an antagonism between growth and acquisition of mature function in skeletal muscle constrains postnatal growth and development in most species of birds. Altricial species, represented by European starlings in this study, hatch with skeletal muscle having low capacity for generating force but grow rapidly. Conversely, precocial species (northern bobwhite quail and Japanese quail), hatch with relatively mature skeletal muscle, especially in their legs, but grow more slowly. As development proceeds in all species, exponential growth rates decrease as muscles acquire adult levels of function. Among four variables associated with muscle function, exponential growth rate (EGR) was negatively correlated with pyruvate kinase activity (glycolysis), potassium concentration (electrical potential), and dry weight fraction (contractile proteins) in both pectoral and leg muscles but not with citrate synthase activity (aerobic metabolism) in either set of muscles. For pectoral muscle, these variables accounted for 87% of the total variation in EGR in all three species combined despite a twofold difference in growth rates between the starling and quail. EGRs of leg muscle (51% of variation accounted for) were less than predicted by the pectoral-muscle equation in quail during the early part of the postnatal period and in starlings during the late postnatal period. This result would not contradict a growth rate/maturity constraint hypothesis if EGRs were down-regulated for allometric or other considerations.  相似文献   

9.
1. The influence of the gut microflora on protein synthesis in individual tissues and in the whole body of young chicks was investigated by the large-dose injection of [3H]phenylalanine. 2. Growth of germ-free chicks was significantly better than that of conventional controls. Wet weights of liver, spleen, duodenum, jejunum + ileum and caeca were heavier in conventional birds than in germ-free counterparts. 3. Fractional rates of protein synthesis were higher in jejunum + ileum and whole body of conventional birds than in those of germ-free birds. Amounts of protein synthesized were larger in liver, jejunum + ileum and caeca in the presence of the gut microflora. 4. When tissues were classified into gut + liver and the remainder of the carcass, in the presence of the gut microflora an enhanced protein synthesis in fractional and absolute rate was found in the gut + liver, which is in direct contact or in close association with micro-organisms, whereas virtually no effect of the gut micro-organisms was detected in the remainder of the carcass. 5. The contribution of protein synthesis of gut + liver to that of the whole body was larger in conventional chicks than in germ-free birds, whereas the reverse was true for the remainder of the carcass.  相似文献   

10.
We measured the mass and several potential indices of functional capacity of the leg and pectoral muscles through 21 d of age in chicks of three species of galliform birds and the domesticated turkey. The study was conducted to test the hypothesis that the growth rate of a tissue is inversely related to its capacity for mature function across species. We measured the proportion of protein and the activities of the catabolic enzymes citrate synthase (CS), pyruvate kinase (PK), and beta -hydroxy-acyl-CoA-dehydrogenase (HOAD) and estimated exponential growth rate (EGR) from growth increments. EGR was negatively related to proportion of protein, PK, and HOAD and positively related to CS activity. In a multiple regression, EGR was uniquely related only to proportion of protein; it was higher in pectoral muscles and increased in this order: wild turkey相似文献   

11.
1. This paper discusses factors that influence the evolution of growth rate and determine its variation among species of birds. Growth rate is related to evolutionary fitness through the use of time, energy, and nutrients. In addition, balances between factors favouring rapid growth and those favouring slow growth may be investigated directly by experiment and by comparative observation. 2. David Lack (1968) proposed that the growth rate of the young is the optimum balance between selection for rapid growth to reduce the vulnerable period of development and selection for slow growth to reduce the energy requirements of the young. 3. To test Lack's hypothesis, the growth rates of birds, estimated by fitting sigmoid equations to curves relating weight to age, were surveyed widely from the literature. Among all species examined, growth rate was inversely related to adult weight. Among birds of similar size, most variation in growth rate was related to the degree of maturity of the neonate. Altricial chicks, which depend upon their parents for food and warmth, grow more rapidly than precocial chicks, which are self-sufficient shortly after hatching. Lack's hypothesis, which predicts a direct relationship between growth rate and mortality rate, was not supported. 4. I propose that the key to understanding variation in growth rate among birds lies in the balance between rate of cell proliferation or cell growth, on one hand, and acquisition of mature function, on the other. This idea is consistent with principles of cellular and developmental biology. It is supported by comparisons of (a) the neonates of different species, (b) the individual over the course of the developmental period, and (c) tissues whose use is acquired at different stages of development, wherein more mature individuals or tissues grow more slowly than those with less developed function. 5. Species of birds that are classified as semi-precocial develop precocially but grow rapidly. Although these seemingly violate the general rule relating growth rate to precocity, a closer inspection of their development reveals that they too support the rule. In the Common Tern, the legs, which are the key organ in precocial development, grow at the expected slow rate. The body as a whole grows rapidly because the growth increment of the legs is small and their growth is completed quickly. 6. Growth rates of precocial birds do not decrease abruptly at hatching. This points more to gradual tissue differentiation than to the pattern of procurement and allocation of energy as the primary control for growth rate. 7. Precocious development is favoured when the chicks are capable of self-feeding or when food supplies are distant from the next site and travelling time between one and the other is long. Precocity of the neonates frees both parents to feed at a distant food source. 8. Some species having diets with low levels of protein or other nutrients may grow slowly in order to match nutrient requirements to their availability in the diet. This pattern is indicated especially among the Procellariiformes, which feed an oily diet to their young, and also among tropical fruit-eating birds. 9. Some tropical, pelagically-feeding sea-birds that rear only one offspring at a time may not be able to procure food sufficient to support rapid chick growth. Alternative explanations for slow growth among these species include difficulty in obtaining essential nutrients and more precocious development of activity than in related species having more rapid growth.  相似文献   

12.
1. We measured fractional rates of protein synthesis, capacities for protein synthesis (i.e. RNA/protein ratio) and efficiencies of protein synthesis (i.e. protein-synthesis rate relative to RNA content) in fasted (24 or 48 h) or fasted/surgically stressed female adult rats. 2. Of the 15 tissues studied, fasting caused decreases in protein content in the liver, gastrointestinal tract, heart, spleen and tibia. There was no detectable decrease in the protein content of the skeletal muscles studied. 3. Fractional rates of synthesis were not uniformly decreased by fasting. Rates in striated muscles, uterus, liver, spleen and tibia were consistently decreased, but decreases in other tissues (lung, gastrointestinal tract, kidney or brain) were inconsistent or not detectable, suggesting that, in many tissues in the mature rat, protein synthesis was not especially sensitive to fasting. 4. In fasting, the decreases in fractional synthesis rate resulted from changes in efficiency (liver and tibia) or from changes in efficiency and capacity (heart, diaphragm, plantaris and gastrocnemius). In the soleus, the main change was a decrease in capacity. 5. Surgical stress increased fractional rates of protein synthesis in diaphragm (where there were increases in both efficiency and capacity) by about 50%, in liver by about 20%, in spleen by about 40%, and possibly also in the heart. In liver and spleen, capacities were increased. In other tissues (including the skeletal muscles), the fractional rates of protein synthesis were unaffected by surgical stress.  相似文献   

13.
1. Activities of cathepsins B, D and H were measured in leg and breast muscles of fast growing (broiler) and slow growing (layer) chicks at eight time intervals between 1 and 29 days of age. 2. These enzyme activities were also measured in muscles from fast and slow growing chicks given a low protein (125 g/kg crude protein) diet between the ages of 17 and 24 days. 3. Activities of none of these cathepsins differed greatly between muscle type or strain of chick. However in both strains of chick cathepsin D and H in muscles significantly decreased with increasing age (muscle size) of the chick. Cathepsin D activity also increased when muscle proteolytic rates were increased by feeding a low protein diet. This latter effect was significant only in the muscles of fast growing chicks. 4. The results suggest that lysosomal proteases are not responsible for the differences in muscle protein degradation and growth between fast and slow growing strains of chicks, or between muscle types in the chick.  相似文献   

14.
We recently observed that, around the time of hatching, chick skeletal muscles synthesize and secrete apolipoprotein A1 (apo-A1) at high rates and that reinitiation of synthesis of this serum protein to high levels occurs in mature chicken breast muscle following surgical denervation (Shackelford, J. E., and Lebherz, H. G. (1983) J. Biol. Chem. 258, 7175-7180; 14829-14833). In the present work we investigate the effect of avian muscular dystrophy on the synthesis of apo-A1 in chicken muscles. The relative rate of synthesis of apo-A1 and levels of apo-A1 RNA in mature dystrophic breast (fast-twitch) muscle were about 6-fold higher than normal, while synthesis of apo-A1 in breast muscles derived from 2-day-old dystrophic chicks was close to normal. These observations suggest that the elevated apo-A1 synthetic rate in mature dystrophic breast muscle results from a failure of the diseased tissue to "shut down" apo-A1 synthesis to the normal level during postembryonic maturation. Apo-A1 synthesis in the "slow-twitch" lateral adductor muscle of dystrophic chickens was found to be normal. Our work is discussed in terms of the apparent similarities between the effects of surgical denervation and muscular dystrophy on the protein synthetic programs expressed by chicken skeletal muscles.  相似文献   

15.
Uric acid is an important antioxidant and methods to elevate its plasma concentration may be important in animal health. In a first study, the effect of dietary protein on plasma uric acid (PUA) and glucose concentrations were determined in 3-week-old chicks. Twenty-four broiler chicks were randomly assigned to four diets: a commercial control diet (C, 20% crude protein), low protein (LP) containing 10% casein, medium protein (MP) containing 20% casein or high protein (HP) containing 45% casein for a 3-week experiment. PUA concentration increased (P<0.05) in chicks fed HP diet and declined (P<0.05) in chicks fed LP while plasma glucose concentrations were lower (P<0.05) in chicks fed the LP diet at the end of the study. In a second study, PUA and leukocyte oxidative activity (LOA) were determined in broilers fed C, LP, MP or HP diets for 4 weeks. As in the first study, dietary protein directly affected PUA concentrations. In birds consuming HP diets, PUA was negatively correlated (P=0.06) with lowered LOA. These data support the view that increases in dietary protein can increase PUA concentrations, which can ameliorate oxidative stress.  相似文献   

16.
Protein synthesis in vivo was studied in whole brain of rat fetuses using continuous intravenous infusion of L-[U-14C]tyrosine into unrestrained pregnant rats at 19 and 21 days gestation. Protein degradation (KD) was calculated by subtracting fractional growth rate of brain protein (KG) from the fractional synthesis rate (KS). KS was high at both gestational ages (0.42 +/- 0.03 days-1 at day 19, 0.47 +/- 0.029 days-1 at 21 days), comparable to values previously reported for newborn rat cerebral hemispheres, and threefold higher than is seen in adult animals. KD was similar at both 19 and 21 days gestation (0.19-0.24) and lower than that reported in neonatal rat brain using similar techniques. Protein accretion during the most rapid phase of brain growth (fetus) is accomplished by similar rates of protein synthesis, but decreased rates of degradation when compared with a slower growth phase (newborn). KD in the brain of the rapidly growing fetus is slightly higher than in adult cerebral hemispheres.  相似文献   

17.
An experiment was conducted to investigate the effect of phytase transgenic corn (PTC) on intestinal microflora, and the fate of transgenic DNA and protein in the digesta and tissues of broilers. A total of 160 1-day-old Arbor Acres commercial male broilers were randomly assigned to 20 cages (8 chicks per cage) with 10 cages (replicates) for each treatment. Birds were fed with a diet containing either PTC (54.0% during 1–21 days and 61.0% during 22–42 days) or non-transgenic isogenic control corn (CC) for a duration of 42 days. There were no significant differences (P>0.05) between birds fed with the PTC diets and those fed with the CC diets in the quantities of aerobic bacteria, anaerobic bacteria, colibacillus and lactobacilli, or microbial diversities in the contents of ileum and cecum. Transgenic phyA2 DNA was not detected, but phyA2 protein was detected in the digesta of duodenum and jejunum of broilers fed with the PTC diets. Both transgenic phyA2 DNA and protein fragments were not found in the digesta of the ileum and rectum, heart, liver, kidney, and breast or thigh muscles of broilers fed with the PTC diets. It was concluded that PTC had no adverse effect on the quantity and diversity of gut microorganisms; Transgenic phyA2 DNA or protein was rapidly degraded in the intestinal tract and was not transferred to the tissues of broilers.  相似文献   

18.
Urate oxidase is not present in birds yet allantoin, a product of this enzyme, has been measured in birds. Studies were designed to compare the concentrations of plasma purine derivatives in chickens and turkeys fed inosine-supplemented diets. The first study consisted of 12 male chicks that were fed diets supplemented with 0.6 mol inosine or hypoxanthine per kilogram diet from 3- to 6-week-old. Study 2 consisted of 12 turkey poults (toms) fed inosine-supplemented diets (0.7 mol/kg) from 6- to 8-week-old. Plasma allantoin and oxypurines concentrations were measured weekly using high performance liquid chromatography. Plasma uric acid (PUA) in chickens fed inosine-supplemented diets increased from 0.31 to 1.34 mM (P<0.05) at the end of week 2. In turkeys, those fed control diet had 0.17 mM PUA concentration compared to 0.3 mM in those fed the inosine diet at week 2 (P<0.05). Allantoin concentration increased in chickens from week 1 to 2 while a decrease was observed in turkeys (P<0.005) for both treatments. These data show that allantoin is present in turkey and chicken plasma. The presence of allantoin in avian plasma is consistent with uric acid acting as an antioxidant in these species.  相似文献   

19.
During the early development of avian nestlings, their mass-specific resting metabolic rate (RMR) changes in a biphasic pattern with the peak value often being much higher than that expected for an adult bird of similar body mass. In the present study we examined the possible influence of variations in the size of internal organs in “setting” the high RMR and peak metabolic rate (PMR) during development in a large altricial species, the European shag (Phalacrocorax aristotelis). Thermoneutral RMR and cold-exposure induced PMR were measured in nestlings 15 days old, the age at which the highest RMR occurred during development. Body mass averaged 414 g. Mean values of RMR and PMR were 5.75 W and 9.08 W, respectively; the RMR value corresponds to approximately 250% of the expected value for an adult non-passerine bird of similar body mass. The masses of all the organs measured (breast and leg muscles, heart, liver, intestine, and kidney) varied isometrically with total body mass. However, large chicks had a significantly lower fractional water content than small chicks, suggesting that the former had achieved a higher level of functional maturity. In contrast to what has been suggested for adult birds in general, the heart and kidney masses of shag nestlings were not significantly correlated with the metabolic rates. The intestine length, in contrast, was highly and positively correlated with both the RMR and the PMR, i.e. intestine length was a better predictor of RMR and PMR than was total body mass. In addition, liver mass was positively correlated with RMR. The results of the present study suggest that the liver in particular may play a key role in establishing the high, mass-specific RMR which is attained during development in bird chicks. Our results also support previous suggestions that early in their development, altricial chicks mainly allocate energy to the growth of `energy-processing' organs (such as the intestine and liver) rather than to `energy-consuming' organs. Accepted: 3 March 1999  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号